AN ASYMPTOTIC PRESERVING AND WELL-BALANCED SCHEME FOR THE SHALLOW-WATER EQUATIONS WITH MANNING FRICTION

CHRISTOPHE BERTHON, MARIANNE BESSEMOULIN-CHATARD, SOLÈNE BULTEAU

The purpose of this work concerns the derivation of a non-negative, well-balanced and asymptotic preserving scheme for the shallow-water equations with Manning friction. This problem, used to model the flow of water in a one-dimensional channel with a flat bottom that applies a friction force, reads:

$$
\left\{\begin{array}{l}
\partial_{t} h+\partial_{x} q=0 \tag{1}\\
\partial_{t} q+\partial_{x}\left(\frac{q^{2}}{h}+\frac{g h^{2}}{2}\right)=-k q|q| h^{-\eta}
\end{array}\right.
$$

The unknowns involved are the positive water height $h(t, x)$ and the depth-averaged discharge $q(t, x)$. The parameters of the model are the gravity constant g, the Manning coefficient k and the parameter η, usually equal to $7 / 3$.
The objectives of the proposed work are twofold. First, we are insterested by the steady states of (1). They are governed by

$$
\left\{\begin{array}{l}
\partial_{x} q=0 \tag{2}\\
\partial_{x}\left(\frac{q^{2}}{h}+\frac{g h^{2}}{2}\right)=-k q|q| h^{-\eta}
\end{array}\right.
$$

In addition, we are also interested in asymptotic regime satisfied by the solutions of (1). More precisely we study the long time and dominant friction. In order to model it, we proceed to a rescaling of (1) using a small parameter ε as follows:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} h+\partial_{x} q=0 \tag{3}\\
\varepsilon \partial_{t} q+\partial_{x}\left(\frac{q^{2}}{h}+\frac{g h^{2}}{2}\right)=-\frac{k}{\varepsilon^{2}} q|q| h^{-\eta}
\end{array}\right.
$$

Arguing a formal Chapman-Enskog expansion of the solutions of (3) in the limit of ε goes to zero, h satisfies the following non-linear parabolic equation:

$$
\begin{equation*}
\partial_{t} h+\partial_{x}\left(-\operatorname{sign}\left(\partial_{x} h\right) \sqrt{\frac{h^{\eta}}{k}\left|\partial_{x} \frac{g h^{2}}{2}\right|}\right)=0 . \tag{4}
\end{equation*}
$$

The objective of this work is to derive a numerical method to capture both all the steady states and the correct diffusive limit of (3). In a first part, we present a technique to extend the asymptotic preserving scheme of Berthon and Turpault [1] in order to take into account asymptotic regimes governed by quadratic terms, as in this case. Next we present a method to get, in addition, the fully well-balanced property. To access such an issue, we propose an extension of a scheme recently introduced by Michel-Dansac in [2].

REFERENCES

[1] C. Berthon and R. Turpault, Asymptotic preserving HLL schemes, Numer. Methods Partial Differential Equations, 27 (2011), pp. 1396-1422.
[2] V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher, A well-balanced scheme for the shallowwater equations with topography or Manning friction, J. Comput. Phys., 335 (2017), pp. 115-154.

