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Paper: “Cubature, approximation, and isotropy in the hypercube,”  SIAM Review, 2017 

Figures in this talk: many stolen from the internet without attribution



1.  Low-rank approximation
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A few names:

Absil, Bader, Bebendorf, Beckermann, Beylkin, Carvajal, Chapman, Dahmen, de 
Lathauwer, DeVore, Dolgov, Drineas, Geddes, Goreinov, Gorodetsky, Grasedyck, 
Hackbusch, Halko, Hashemi, Kannan, Karaman, Khoromskij, Kolda, Kressner, 
Kroonenberg, Kühnemund, Kuske, Mahoney, Martinsson, Marzouk, 
Mohlenkamp, Oseledets, Rjasanow, Savostyanov, Süli, Tobler, Townsend, Tropp, 
Tyrtyshnikov, Uschmajew, Vandereycken, Vandewalle, Wilber, Zamarashkin,…

.

In 2D, low-rank approximation with greedy 
selection of pivots amounts to Gaussian elimination 
as an iterative rather than direct algorithm.  So just 
like conjugate gradients, GE was born direct but 
turns out also to be iterative.
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.

I got into this through                                     : numerical computing with functions.

In 1D, Chebfun represents functions to 16 digits by Chebyshev series.
What to do in 2D?  Bivariate Chebyshev series (= tensor products)?

I suggested to Alex Townsend that he try low-rank
approximations instead.  He built Chebfun2 (2013).

Later Behnam Hashemi took us to 3D, using
low-rank tensors.  He built Chebfun3 (2017).

Alex Townsend
Cornell U.

Behnam Hashemi
Shiraz U.



5/29

.

So, are the low-rank representations worthwhile?
Are they more efficient than tensor products?

The answer is: often yes, often no. 
I believe the main reason for the “yes” cases is that interesting
functions 𝑓(𝑥, 𝑦) or 𝑓(𝑥, 𝑦, 𝑧) often have some alignment with the axes.

Low-rank compression methods are nonisotropic.
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.

Alex Townsend’s compression of the Cornell bear



Function

cos 100𝑥

cos(100 𝑥 + 𝑦 / 2 )

𝐽0(100𝑥)

𝐽0(100 𝑥 + 𝑦 / 2 )

tan(5𝑥)

tan(5 𝑥 + 𝑦 / 2 )

(1 + 25𝑥2)−1

(1 + 25 𝑥2 + 𝑦2 )−1

1

2

1

61

1

55

1

19

149  1

115  115

141  1

115  115

116  1

88  88

185  1

185  185

aligned

lucky algebra

aligned

no lucky algebra

aligned

not aligned

aligned

localized

Comment
Bivariate

series size*
Chebfun2

rank
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.
*These numbers should be divided by 𝜋/2 for a fair comparison, 

because polynomial series always waste a factor of 𝜋/2.
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Sometimes alignment with axes is baked-in: 

Functions vs. data

One would hardly think of “rotating coordinates” to the new variables   

users + movies

2

users − movies

2
, ! 
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But often the situation is not so clear.  For example, what about —

• A 2D image?  A (3D?) movie?

• A stochastic PDE with 20 parameters?

• A tensor-train electronic structure calculation with 𝑠 = 100?

• A financial instrument represented in dimension 𝑠 = 360?
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.

Many papers prove theorems to show their low-rank methods are effective. 
Here are three ways in which this is done:

The literature

Asymptotic smoothness, for 𝑓 dominated by singularities near the boundary.
Bebendorf, Brandt, Hackbusch, Tyrtyshnikov,….

PDE with low-rank right-hand side, where the solution inherits this structure.
Penzl, Dahmen-DeVore-Grasedyck-Süli,….

Hierarchical representations, where 𝑓 is smooth away from the diagonal and
one exploits this with an approximation built recursively of low-rank pieces.
Calderon-Zygmund, Beylkin-Coifman-Rokhlin, Greengard-Rokhlin, Hackbusch,….

No theorems, however, show that arbitrary functions can be compressed.
Analogously, random matrices have approximately full numerical rank

(see e.g. Edelman 1988). 
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The impossibility of compressing arbitrary data is not often highlighted.  
Perhaps typical is this statement from the excellent 2013 survey
by Grasedyck-Kressner-Tobler :

An analogy and a plea

But just because something is “essential” doesn’t make it possible!

Our task is to understand what structures are compressible and how
problems can be reformulated to enhance this structure.

Analogy. Conjugate gradients and other Krylov iterations are 
useless for random matrices.  Everybody knows this, and the 
discussion is always about enhancing structure via preconditioners.

I wish the low-rank compression literature were equally forthright.

”

“



2.  Quasi-Monte Carlo (QMC)
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A few names:

Caflisch, Dick, Glasserman, Halton, Hickernell, Kuo, L’Ecuyer, Lemieux, 
Moskowitz, Niederreiter, Novak, Nuyens, Pilichshammer, Schwab, Sloan, 
Sobol’, Woźniakowski, Zaremba,…

Equal-weight quadrature in hypercube of volume 1: 𝐼𝑁 = 𝑁−1෍

𝑖=1

𝑁

𝑓(𝑠𝑖)

Monte Carlo: nodes are random.  Accuracy 𝑂(𝑁−1/2 ) .

Quasi-Monte Carlo: nodes are more uniform than random. 
The aim is to get accuracy closer to 𝑂(𝑁−1 ) .

Very successful in practice.  The method hit the headlines in 1995 with 
Papageorgiou-Paskov-Traub, valuation of financial derivatives in dim 360. 
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.

.

QMC methods are axis-dependent:

One can guess their success must depend on some kind of axis-alignment 
in applications.  Experts know this, but don’t always emphasize it.
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.

error  ≤  star-discrepancy  × Hardy-Krause variation 

Standard theory justifies QMC methods by the Koksma-Hlawka inequality:

Star-discrepancy: a measure of irregularity of distribution of the sample pts
with respect to rectangles aligned with the axes

Hardy-Krause variation:  a measure of nonsmoothness of the integrand
with respect to derivatives aligned with the axes

low-discrepancy grid high-discrepancy gridlow-variation function high-variation function



3.  Sparse grids
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.
A few names:

Babenko, Bungartz, Garcke, Griebel, Gunzburger, Hegland, Holtz, Ma, 
Nobile, Rüde, Schwab, Smolyak, Temlyakov, Tempone, Webster, Wohlmuth, 
Yserentant, Zabaras, Zenger,….

Standard PDE grids are cheap for dimension 𝑠 = 2, expensive for  𝑠 = 3,
and next to impossible for  𝑠 ≥ 6.  Sparse grids are based on a recursive idea 
and have only logarithmically as many degrees of freedom.

Sparse grids have been very successful in some applications.
As the pictures suggest, they depend on grid alignment.
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A typical theorem showing smooth functions are well approximated

But what are  |𝑢|𝟐,∞ and |𝑢|𝟐,2 ?   They are based on mixed derivatives….

Bungartz-Griebel,
Acta Numerica,
2004

”

“



Mixed derivatives

E.G.,    
𝜕4𝑓

𝜕𝑥2 𝜕𝑦2
is a mixed derivative of order 2, but   

𝜕4𝑓

𝜕𝑥4
is of order 4. 

So  cos(100𝑥) , for example, is reasonably smooth, but becomes

exponentially less smooth if you rotate the axes in  𝑠 ≫ 1 dimensions.

(Mathematically this is close to the Hardy-Krause variation.)

17/29

where the order of a mixed derivative is the ∞-norm of its multiindex 𝜶. 

,
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This is the central topic of algebraic geometry.   (Interesting question: why?)

(finite sum)

Degree ( = total degree) of   x1
i1… xs

is :   d = i1 + … + is .

Reason #1: this definition is isotropic = invariant wrt rotations.

Reason #2: degree d terms are  O(hd)  as  h → 0 .

Strong contrast with maximal degree:  d = max  { i1 , … , is } .

The degree of  p is the maximum of the degrees of its monomials. .

4.  Multivariate polynomials

A few names:

Bates, de Boor, Bos, Cools, Hauenstein, Levenberg, Lyons, Novak, Ritter, Ron, 
Salzer, Sauer, Sommariva, Sommese, Stetter, Stillman, Sturmfels, Wampler, Xu,.…



Applications of multivariate polynomials
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Polynomials of maximal degree d are easy to work with — tensor products.
But the number of parameters is huge: for degree  d ,  ≈ d s .

Total degree d is far more compact: ≈ d s/s! .  Even in 3D this is 6 times less.

It is an old idea to seek algorithms based on polynomials of total degree d ,
though there are pervasive challenges of existence/uniqueness (unisolvency).

For cubature, i.e. multivariate integration,
this begins with Maxwell 1877.

Recent development: Padua points.
Unisolvency with small Lebesgue const.

.



f (x) = exp(–100x2) can be resolved to 15 digits on [–1,1] by p(x) of degree 120.

Chebyshev coeffs of  f (x)

What degree p(x,y) is needed for
f (x,y) = exp(–100(x2+y2)) on [–1,1]2 ?

NB:  f  is isotropic, and multivariate
polynomials are isotropic.

Chebyshev coeffs
of  f (x,y)

We expect
to need coeffs
from this triangle

The anisotropy effect
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Explanation: the square is    2 times longer along the diagonal.√–

Wrong!  Need degree 120  2, not 120,
to get 15 digits in the unit square.

√–
index of Cheb coeff wrt x

in
d

ex
 o

f 
C

h
eb

co
ef

f
w

rt
y

.



1D 2D 3D

.

f = @(x) exp(-100*x.^2);

plotcoeffs(chebfun(f),'.');

f = @(x,y,z) exp(-100*(x.^2+y.^2+z.^2));

c = abs(chebcoeffs3(chebfun3(f)));

c = c(1:2:end,1:2:end,1:2:end);

[m,n,p] = size(c);

isosurface(2*(0:n-1),2*(0:m-1),...

2*(0:p-1),log10(c),-15);

axis equal, view(30,15)

f = @(x,y) exp(-100*(x.^2+y.^2));

c = abs(chebcoeffs2(chebfun2(f)));

c = c(1:2:end,1:2:end); [m,n] = size(c);

contour(2*(0:n-1),2*(0:m-1),log10(c),-15:-2);

colorbar, axis equal

21/29

Chebfun codes



Euclidean degree
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Maximal degree  - ∞-norm of exponent vector

Euclidean degree  - 2-norm of exponent vector

Total degree  - 1-norm of exponent vector

We are thus led to conjecture that what matters for approximation in the
s-hypercube is not total degree or maximal degree but Euclidean degree.

.

Maximal degree (tensor products):  s  times finer resolution along diagonal

Euclidean degree: uniform resolution in all directions

Total degree: s  times coarser resolution along diagonal;
isotropic in the s-ball, not the s-cube

√–

√–



Exponential dependence on dimension  s

23/29

volume of s-ball
compared with
volume of  s-cube

For s >>1, most of the volume of the hypercube is outside

the inscribed hyperball (ratio ≈ ss/2 ).

Polynomials of given total degree in the 6-hypercube, one might say,
have a nonuniformity analogous to this 3×3 grid in a rectangle:

.

→ measure concentration



Exponential dependence on dimension  s, continued
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.

Inefficiency of using maximal degree in the s-hypercube

Inefficiency of using total degree in the s-hypercube



Bernstein (=Hooke) and Newton ellipses
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Standard theory for approximation of  f (x ) on [–1,1]  (Bernstein 1912):

define Bernstein ρ-ellipse Eρ : foci 1,  semi-axis lengths sum to  ρ .

Thm. f (x ) analytic for xEρ  || f – p*n || = Oε( ρ–n ) .

How to generalize this to approximation of  f ( x1 , …, xs ) on [–1,1]s ?

Note that xEρ  x2N1,h2 if we define  ρ= h + (1+h2)1/2 and

Newton ellipse N
s,h2 : foci 0 ,s ,  leftmost point  –h2 .

Thm. f (x ) analytic for x2N
1,h2  || f – p*n || = Oε( ρ–n ) .

In  s dimensions our region of analyticity will be      x1
2 + … + xs

2  N
s,h2 . .
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.

Assumption A.  For some  h > 0,  f  is analytic for all  x  with  x1
2 + … + xs

2  N
s,h2  .

After some pretty algebra and appeal to Bochner and Martin 1948, we get:

“Multivariate polynomial approximation in the hypercube,”  Proc. AMS, 2017

Also related work by Bos & Levenberg, arXiv, 2017.  
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Cubes, balls, and a return to Padua points

Padua points live in the square, yet are made

for interpolation by polynomials of given total

degree – which are adapted to the disk.  Mismatch.

1. Staying with the square: can we devise good points for Euclidean degree?

2. Staying with total degree: can we devise good points for the disk?  [Bos]

.

Two research questions
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Summary of polynomial approximation in the hypercube

.

Polynomials of total degree d in the hypercube make sense

• as d→∞ in a ball (p-convergence)

• as h→0 in any shape (h-convergence)

They don’t make much sense as  d→∞ in a cube.
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