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The signature of a path

Let x : [0,T ]→ Rd be a continuous path with bounded
variation.
In 1954, Chen introduced the exponential homomorphism

S(x) =
∞

∑
n=0

∫
0<t1<···<tn<1

dxt1⊗·· ·⊗dxtn .

Under the canonical basis {e1, · · · ,ed},

S(x) =
∞

∑
n=1

d

∑
i1,··· ,in=1

(∫
0<t1<···<tn<T

dx i1t1 · · ·dx
in
tn

)
ei1⊗·· ·⊗ ein .

S(x) is known as the signature of the path x .
Lyons 1998: the signature is well-defined for arbitrary rough
paths.
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Analytic and algebraic properties

Let X be a geometric p-rough path, and let
S(X)s,t = (1,X 1

s,t ,X
2
s,t , · · ·) be the signature of X over [s, t].

Analytic property (Lyons 1998):

|X n
s,t |6

Cnω(s, t)
n
p

(n/p)!
.

Algebraic properties (Chen 1954, 1958):

1 S : Space of B.V. paths→ T ((Rd)) is a homomorphism.
2 S(x) satisfies the shuffle product formula:

e∗I (S(x)) · e∗J(S(x)) = ∑
σ∈Shuffle(|I |,|J|)

e∗
σ−1(ItJ)(S(x)).
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The uniqueness result for signature

Uniqueness result for signature (Hambly-Lyons 2010,
Boedihardjo-G.-Lyons-Yang 2016): Let X be a geometric
rough path. X has trivial signature if and only if it is tree-like,
in the sense that it can be lifted to a continuous loop in some
real tree.
Every geometric rough path is uniquely determined by its
signature up to tree-like equivalence.
Every tree-like equivalence class contains a unique
representative, called the tree-reduced path, which does not
contain any tree-like pieces.
Uniqueness result  one-to-one correspondence between
tree-reduced paths and their signatures.
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The length conjecture

Question: can we recover intrinsic geometric quantities of a
tree-reduced path from its signature/tail asymptotics of
signature?

Conjecture (Length conjecture)

Let x : [0,1]→ V be a continuous B.V. path over a finite
dimensional normed vector space V , and let g = (1,g1,g2, · · ·) be
its signature. Then

Length(x) = lim
n→∞

(
n!‖gn‖proj

) 1
n ,

where ‖ · ‖proj denotes the projective tensor norm.
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Hambly-Lyons’ result for C 1-paths

V = Rd is equipped with the Euclidean norm.
Hambly-Lyons 2010: If x ∈ C 1 when parametrized in unique
speed such that the modulus of continuity ωẋ(ε) = o(ε3/4),
then the length conjecture holds.
The fundamental idea of proof: look at the hyperbolic
development of the underlying path x .
Let

Hd =

{
x ∈ Rd+1 :

d

∑
i=1

x2
i −x2

d+1 =−1, xd+1 > 0

}

be the d-dimensional hyperbloid.
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Hambly-Lyons’ result for C 1-paths

The isometry group G of Hd is the space of
(d +1)× (d +1)-matrices Γ such that Γ∗JΓ = J, where
J = diag(1, · · · ,1,−1).
The lie algebra g of G is the space of
(d +1)× (d +1)-matrices of the form

A =

(
A0 b
b∗ 0

)
,

where A0 is a skew-symmetric d ×d-matrix and b ∈ Rd .
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Hambly-Lyons’ result for C 1-paths

In general, if γ is a path in the Lie algebra g, we can develop γ

to a path Γ on the Lie group G in the way

Γt+δ t ≈ Γt · exp(δγt).

δ Γt = Γt ·δγt .
The solution to the equation{

dΓt = Γt ·dγt ,

Γ0 = Id,

is called the Cartan development of γ onto the group G .
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Hambly-Lyons’ result for C 1-paths

Define a natural embedding F : Rd → g by

F : Rd → g,

x 7→
(

0 x
x∗ 0

)
.

Define Γt to be the solution to the linear ODE{
dΓt = Γt ·F (dxt),

Γ0 = Id.

Define Xt , Γto, where o = (0, · · · ,0,1)∗ is the base point of
the hyperboild Hd .
Xt is called the hyperbolic development of xt onto Hd .
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Hambly-Lyons’ result for C 1-paths

The hyperbolic length of X = the Euclidean length of x .
The development of a line segment is a geodesic.
If x is a piecewise linear path, then X is a piecewise geodesic
with the same edge lengths and intersection angles as x .
The hyperbolic distance d(X1,o) between endpoints of X is

coshd(o,X1) =
∞

∑
n=0

∫
0<t1<···<t2n<1

〈dγt1 ,dγt2〉 · · · 〈dγt2n−1 ,dγt2n〉.
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Hambly-Lyons’ result for C 1-paths

Let θ ∈ (0,π). For any hyperbolic triangle with edges a,b,c and
with angle against a being θ , we have

b+ c−a6 log
2

1− cosθ
.
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Hambly-Lyons’ result for C 1-paths

x : piecewise linear path with two edges and intersection angle
θ . Define L, Length(x).
For each λ > 0, let X λ be the hyperbolic development of λ ·x .
We have uniform estimate (in λ )

06 λL−d(X λ
1 ,o)6 log

2
1− cosθ

.

limλ→∞ d(X λ
1 ,o)/λ = L.
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Hambly-Lyons’ result for C 1-paths

coshd(X λ
1 ,o) =

∑
∞
n=0 λ 2n ∫

0<t1<···<t2n<1〈dγt1 ,dγt2〉 · · · 〈dγt2n−1 ,dγt2n〉.
Define

L̃, sup
n>1

(
n!‖gn‖proj

) 1
n 6 L.

d(X λ
1 ,o)6 λ L̃.

L̃ = L.
L̃ = limsupn→∞

(
n!‖gn‖proj

) 1
n = limn→∞

(
n!‖gn‖proj

) 1
n .
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The analysis for a general piecewise linear path is similar:

06 λL−d(X λ
1 ,0)6 N · log 2

1− cosθ
,

where θ ∈ (0,π) is the minimal intersection angle between
adjacent edges, and N is the number of edges.
The C 1-case can eventually be handled by piecewise geodesic
approximations.
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A naive guess for the rough path case

In the rough path case, in view of the factorial estimate on
signature, a natural renormalization of ‖gn‖proj will be((

n

p

)
!‖gn‖proj

) p
n

.

We should look at "limsup" instead of "lim" in the tail
asymptotics (e.g. consider the 2 rough-path exp(t[e1,e2])).
If length conjecture for a B.V. path x is true, then for any
p > 1,

limsup
n→∞

((
n

p

)
!‖gn‖proj

) p
n

= 0.

A naive guess: the "limsup" might recover the local
p-variation of a rough path?
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The tail asymptotics of the Brownian signature

Let Bt = (B1
t , · · · ,Bd

t ) be a d-dimensional Brownian motion
over [0,1].
Bt has finite quadratic variation in the mean sense.
For 06 s 6 t 6 1, define

L̃s,t , limsup
n→∞

((n
2

)
!

∥∥∥∥∫
s<t1<···<tn<t

◦dBt1⊗·· ·⊗◦dBtn

∥∥∥∥) 2
n

.

Question: what does L̃s,t give us?
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The tail asymptotics of the Brownian signature

Theorem (Boedihardjo-G. 2017)

Let Rd be equipped with the Euclidean norm. Then there exists a
deterministic constant κd depending only on d , such that

P
(
L̃s,t = κd(t− s) for all 06 s 6 t 6 1

)
= 1.

Moreover, the constant κd satisfies

d −1
2
6 κd 6 d2.
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The tail asymptotics of the Brownian signature

Lemma
Define

Bn;i1,··· ,in
s,t ,

∫
s<t1<···<tn<t

◦dB i1
t1 · · · ◦dB

in
tn .

Then

E
[∣∣∣Bn;i1,··· ,in

s,t

∣∣∣]6 (1
2

+
√
2
)(

e√
2π

) 1
2 2

n
2

(n−2)
1
4
√
n!

(t− s)
n
2 .

Main points of proof:

By the shuffle product formula, the square of signature in
degree n can be read off from the signature in degree 2n.
Second moment of Bn can be estimated by using the explicit
formula for the expected signature of Brownian motion.
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The tail asymptotics of the Brownian signature

Proposition
For each pair of s < t, we have

P
(
L̃s,t 6 d2(t− s)

)
= 1.

Main point of proof:

A Borel-Cantelli type argument  for each r > t− s, with
probability one,

‖Bn
s,t‖proj 6

Cdn2
n
2

(n−2)
1
4
√
n!
r

n
2

for all sufficiently large n.
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The tail asymptotics of the Brownian signature

Lemma
Let X be a rough path and let p > 1. Define

l̃s,t , limsup
n→∞

((
n

p

)
!‖Xn

s,t‖proj

) p
n

, s 6 t.

Then (s, t) 7→ l̃s,t is sub-additive, i.e.

l̃s,t 6 l̃s,u + l̃u,t

for s 6 u 6 t.

Main points of proof: manipulation of Chen’s identity and the
neo-classical inequality.
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The tail asymptotics of the Brownian signature

Proposition

There exists a deterministic constant κd 6 d2, such that for each
pair of s < t,

P
(
L̃s,t = κd(t− s)

)
= 1.

Main points of proof:

Sub-additivity of L̃ =⇒ L̃s,t 6∑i L̃tmi−1,t
m
i

= 2−m ∑i 2m · L̃tmi−1,t
m
i
.

Weak law of large numbers =⇒ L̃s,t 6 E
[
L̃s,t
]
.

The null set can be chosen to be independent of s, t: strengthen all
the previous estimates to the corresponding maximal inequalities.
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The tail asymptotics of the Brownian signature

The more interesting part: a lower estimate on κd .
Define

L̃t , limsup
n→∞

((n
2

)
!‖Bn

0,t‖proj

) 2
n
.

For each λ > 0, define Γλ
t to be the unique solution to the

Stratonovich type SDE{
dΓλ

t = λ Γλ
t F (◦dBt), t ∈ [0,1],

Γλ
0 = Id.

The hyperbolic development of Brownian motion: X λ
t , Γλ

t o.
The hypebolic height of X λ

t : h
λ
t , coshd(X λ

t ,o).
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The tail asymptotics of the Brownian signature

Lemma
With probability one, we have

limsup
λ→∞

1
λ 2 logh

λ
t 6 L̃t .

Main points of proof:

The projective norm is characterized by

‖ξ‖proj = sup
{
|Φ(ξ )| : Φ ∈ L

(
Rd , · · · ,Rd ;R1

)
, ‖Φ‖6 1

}
.

The proof is essentially deterministic.
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The tail asymptotics of the Brownian signature

Lemma
For any 0< µ < d −1, we have

E
[
(hλ

t )−µ

]
6 exp

(
−λ 2µ(d −1−µ)t

2

)
.

Sketch of proof:
Rewrite the development equation in Itô form, we get

dΓλ
t = λ Γλ

t ·F (dBt) +
λ 2

2
Γλ
t

(
Id 0
0 d

)
dt.

By Itô’s formula,

d(hλ
t )−µ =−λ µ(hλ

t )−(µ+1)
d

∑
i=1

(Γλ
t )d+1

i dB i
t

− 1
2

(
λ

2
µ(d −1−µ)(hλ

t )−µ + λ
2
µ(µ +1)(hλ

t )−(µ+2)
)
dt.
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The tail asymptotics of the Brownian signature

d

dt
E
[(

hλ
t

)−µ
]
6−λ 2µ(d −1−µ)

2
E
[(

hλ
t

)−µ
]

Proposition

The constant κd satisfies κd >
d−1

2

Main point of proof:

A Borel-Cantelli type argument implies that

limsup
λ→∞

1
λ 2 logh

λ
t >

d −1
2

t.
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Applications to the Brownian rough path

Recall that with probability one, the Brownian motion Bt has
a canonical lifting Bt as geometric p-rough paths with
2< p < 3. Bt is known as the Brownian rough path.

Corollary
For almost every ω , the path t 7→ Btω is tree-reduced. In
particular, with probability one, the Brownian rough path is
uniquely determined by its signature up to reparametrization.

Proof:

P
(
L̃s,t = κd(t− s) for all s < t

)
= 1.

κd > (d −1)/2> 0.
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Applications to the Brownian rough path

Corollary
There exists a P-null set N , such that for any two distinct
ω1,ω2 /∈N , B(ω1) and B(ω2) cannot be equal up to a
reparametrization. In particular, with probability one, the Brownian
rough path together with its natural parametrization is uniquely
determined by its signature.

Proof:

Pick the null set N as in the main result.
Suppose that Bt(ω2) = Bσ(t)(ω1).

Then L̃0,t(ω2) = L̃0,σ(t)(ω1).
This implies that κd t = κdσ(t). In particular, σ(t) = t.
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Applications to the Brownian rough path

Given the signature g of B(ω), the uniqueness result implies
that the image of the signature path of B(ω) is uniquely
determined by g .
For each ξ = (1,ξ1,ξ2, · · ·) on the image, define

‖ξ‖, limsup
n→∞

((n
2

)
!‖ξn‖proj

) 2
n
.

Then B‖ξ‖/κd
(ω) = π(2)(ξ ).

Remark
The result is stronger than the uniqueness result proved by Le Jan
and Qian .
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Further questions

Question 1: What is the exact value of κd?
Question 2: What is the meaning of κd? Does it correspond to
some sort of quadratic variation of the Brownian rough path?
Question 3: Is it true that with probability one, no two sampe
paths of Brownian motion can be equal up to a
reparametrization?
Question 3’: We know that with probability one, the lifting of
piecewise linear interpolation of Brownian motion converges to
the Brownian rough path. But the P-null set depends on the
choice of the piecewise linear approximation. Can we make the
null set universal, so that any arbitrary piecewise linear
approximation gives the same Brownian rough path?
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The end

Thank you very much for your attention!
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