Random dynamical systems and rough paths

Sebastian Riedel

Technische Universität Berlin

Workshop "Rough Paths in Toulouse" INSA Toulouse 19.10.2017

1 Random dynamical systems: Motivation

2 Random dynamical systems and rough paths

3 Invariant measures for RDEs

1 Random dynamical systems: Motivation

2 Random dynamical systems and rough paths

Invariant measures for RDEs

• The theory of *Random dynamical systems* (RDS) provides a formalism which can be used to describe a large class of stochastic systems which evolve in time (like *dynamical systems* do for deterministic time evolutions).

- The theory of *Random dynamical systems* (RDS) provides a formalism which can be used to describe a large class of stochastic systems which evolve in time (like *dynamical systems* do for deterministic time evolutions).
- It proved to be useful in particular when studying the long time behaviour of stochastic systems.

- The theory of *Random dynamical systems* (RDS) provides a formalism which can be used to describe a large class of stochastic systems which evolve in time (like *dynamical systems* do for deterministic time evolutions).
- It proved to be useful in particular when studying the long time behaviour of stochastic systems.
- Main tool: Multiplicative Ergodic Theorem; yields existence of Lyapunovexponents for linear systems (Oseledets '68).

- The theory of *Random dynamical systems* (RDS) provides a formalism which can be used to describe a large class of stochastic systems which evolve in time (like *dynamical systems* do for deterministic time evolutions).
- It proved to be useful in particular when studying the long time behaviour of stochastic systems.
- Main tool: Multiplicative Ergodic Theorem; yields existence of Lyapunovexponents for linear systems (Oseledets '68).
- For non-linear systems, one may look at their linearization, and the MET can still provide information about the local behaviour of the non-linear system (stable manifold theorem, Ruelle '79).

Stable manifolds for SDE

Stable manifold theorem for SDE. (Mohammed-Scheutzow '99) Assume

$$\mathrm{d}Y_t^{\xi} = b(Y_t^{\xi})\,\mathrm{d}t + \sigma(Y_t^{\xi})\,\circ\mathrm{d}B_t(\omega), \quad Y_0^{\xi} = \xi \in \mathbb{R}^m$$

induces stochastic (semi-)flow and solution admits an ergodic invariant measure.

Stable manifolds for SDE

Stable manifold theorem for SDE. (Mohammed-Scheutzow '99) Assume

$$\mathrm{d} Y^{\xi}_t = b(Y^{\xi}_t) \, \mathrm{d} t + \sigma(Y^{\xi}_t) \, \circ \mathrm{d} B_t(\omega), \quad Y^{\xi}_0 = \xi \in \mathbb{R}^m$$

induces stochastic (semi-)flow and solution admits an ergodic invariant measure.

 Differential of the flow solves a linear equation; existence of Lyanpunovexponents follow from the MET (under certain assumptions):

$$\mathbb{P} - \lim_{t \to \infty} \frac{1}{t} \log \left| D_{\xi} Y_t^{\xi(\omega)} v \right| \in \{\lambda_l < \ldots < \lambda_1\},\$$
$$1 \le l \le m, v \in \mathbb{R}^m.$$

Stable manifolds for SDE

Stable manifold theorem for SDE. (Mohammed-Scheutzow '99) Assume

$$\mathrm{d} Y^{\xi}_t = b(Y^{\xi}_t) \, \mathrm{d} t + \sigma(Y^{\xi}_t) \, \circ \mathrm{d} B_t(\omega), \quad Y^{\xi}_0 = \xi \in \mathbb{R}^m$$

induces stochastic (semi-)flow and solution admits an ergodic invariant measure.

 Differential of the flow solves a linear equation; existence of Lyanpunovexponents follow from the MET (under certain assumptions):

$$\mathbb{P} - \lim_{t \to \infty} \frac{1}{t} \log \left| D_{\xi} Y_t^{\xi(\omega)} v \right| \in \{\lambda_l < \ldots < \lambda_1\},\$$

 $1\leq l\leq m\text{, }v\in \mathbb{R}^{m}\text{.}$

• Possible to conclude existence of stable (or unstable) manifolds around stationary solutions for the original equation (following Ruelle's strategy).

 Itō-theory not really necessary; only used to make sense of initial equation.

- Itō-theory not really necessary; only used to make sense of initial equation.
- Markov property used only to speak about invariant measures. In fact, not really necessary, too, more general concept of invariant measures available in the theory of RDS (cf. below).

- Itō-theory not really necessary; only used to make sense of initial equation.
- Markov property used only to speak about invariant measures. In fact, not really necessary, too, more general concept of invariant measures available in the theory of RDS (cf. below).
- One of our goals: Build a bridge between the "two cultures" (L. Arnold) Dynamical systems and Stochastic analysis.

$$dY_t = b(Y_t) dt + \sigma(Y_t) d\mathbf{X}_t(\omega)$$
(1)

with $t \mapsto \mathbf{X}_t$ rough paths lift of a stochastic process (e.g. fBm).

$$dY_t = b(Y_t) dt + \sigma(Y_t) d\mathbf{X}_t(\omega)$$
(1)

with $t \mapsto \mathbf{X}_t$ rough paths lift of a stochastic process (e.g. fBm).

Moreover, we will be interested in:

$$dY_t = b(Y_t) dt + \sigma(Y_t) d\mathbf{X}_t(\omega)$$
(1)

with $t \mapsto \mathbf{X}_t$ rough paths lift of a stochastic process (e.g. fBm).

Moreover, we will be interested in:

• equilibrium of the system, invariant measures

$$dY_t = b(Y_t) dt + \sigma(Y_t) d\mathbf{X}_t(\omega)$$
(1)

with $t \mapsto \mathbf{X}_t$ rough paths lift of a stochastic process (e.g. fBm).

Moreover, we will be interested in:

- equilibrium of the system, invariant measures
- long time behaviour (convergence towards equilibrium, attractors,...)

$$dY_t = b(Y_t) dt + \sigma(Y_t) d\mathbf{X}_t(\omega)$$
(1)

with $t \mapsto \mathbf{X}_t$ rough paths lift of a stochastic process (e.g. fBm).

Moreover, we will be interested in:

- equilibrium of the system, invariant measures
- long time behaviour (convergence towards equilibrium, attractors,...)
- qualitative difference between random and deterministic system (stabilization, synchronization by noise, ...)

$$dY_t = b(Y_t) dt + \sigma(Y_t) d\mathbf{X}_t(\omega)$$
(1)

with $t \mapsto \mathbf{X}_t$ rough paths lift of a stochastic process (e.g. fBm).

Moreover, we will be interested in:

- equilibrium of the system, invariant measures
- long time behaviour (convergence towards equilibrium, attractors,...)
- qualitative difference between random and deterministic system (stabilization, synchronization by noise, ...)

Remark: In general, solution Y to (1) not Markovian.

1 Random dynamical systems: Motivation

2 Random dynamical systems and rough paths

Invariant measures for RDEs

Metric dynamical systems

Definition.

 $\begin{aligned} &(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t)_{t \in \mathbb{R}}) \text{ called metric dynamical system if} \\ &(\mathbf{i}) \ (\omega, t) \mapsto \theta_t \omega \text{ is measurable} \\ &(\mathbf{ii}) \ \theta_0 = \mathrm{Id}_\Omega \\ &(\mathbf{iii}) \ \theta_{t+s} = \theta_t \circ \theta_s \\ &(\mathbf{iv}) \ \mathbb{P} = \mathbb{P} \circ \theta_t^{-1} \text{ for all } t \in \mathbb{R}. \end{aligned}$

 $\begin{aligned} &(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t)_{t \in \mathbb{R}}) \text{ called metric dynamical system if} \\ &(\mathbf{i}) \ (\omega, t) \mapsto \theta_t \omega \text{ is measurable} \\ &(\mathbf{ii}) \ \theta_0 = \mathrm{Id}_\Omega \\ &(\mathbf{iii}) \ \theta_{t+s} = \theta_t \circ \theta_s \\ &(\mathbf{iv}) \ \mathbb{P} = \mathbb{P} \circ \theta_t^{-1} \text{ for all } t \in \mathbb{R}. \end{aligned}$

Example: $\Omega = \mathcal{C}_0(\mathbb{R}, \mathbb{R}^d)$, θ Wiener shift:

$$\theta_t \omega := \omega(t + \cdot) - \omega(t).$$

If (iv) holds, coordinate process has stationary increments.

Assume that \bar{X} is \mathbb{R}^d -valued process defined on some probability space $(\bar{\Omega}, \bar{\mathcal{F}}, \bar{\mathbb{P}})$ with $\bar{X}(\bar{\omega}) \in \mathcal{C}_0(\mathbb{R}, \mathbb{R}^d)$ for all $\bar{\omega} \in \bar{\Omega}$.

Assume that \bar{X} is \mathbb{R}^d -valued process defined on some probability space $(\bar{\Omega}, \bar{\mathcal{F}}, \bar{\mathbb{P}})$ with $\bar{X}(\bar{\omega}) \in \mathcal{C}_0(\mathbb{R}, \mathbb{R}^d)$ for all $\bar{\omega} \in \bar{\Omega}$.

• If \bar{X} has stationary increments, can build MDS as follows:

Assume that \bar{X} is \mathbb{R}^d -valued process defined on some probability space $(\bar{\Omega}, \bar{\mathcal{F}}, \bar{\mathbb{P}})$ with $\bar{X}(\bar{\omega}) \in \mathcal{C}_0(\mathbb{R}, \mathbb{R}^d)$ for all $\bar{\omega} \in \bar{\Omega}$.

- If \bar{X} has stationary increments, can build MDS as follows:
 - $\Omega := \mathcal{C}_0(\mathbb{R}, \mathbb{R}^d)$
 - $\mathcal{F} :=$ Borel sigma-algebra
 - $\mathbb{P} := \mathsf{Law} \text{ of } \bar{X}$
 - $\theta := Wiener shift$

Assume that \bar{X} is \mathbb{R}^d -valued process defined on some probability space $(\bar{\Omega}, \bar{\mathcal{F}}, \bar{\mathbb{P}})$ with $\bar{X}(\bar{\omega}) \in \mathcal{C}_0(\mathbb{R}, \mathbb{R}^d)$ for all $\bar{\omega} \in \bar{\Omega}$.

- If \bar{X} has stationary increments, can build MDS as follows:
 - $\Omega := \mathcal{C}_0(\mathbb{R}, \mathbb{R}^d)$
 - $\mathcal{F} :=$ Borel sigma-algebra
 - $\mathbb{P} := \mathsf{Law} \text{ of } \bar{X}$
 - $\theta :=$ Wiener shift
- Coordinate process X on this space has same law as \overline{X} and satisfies the cocycle (or helix) property:

$$X_{t+s}(\omega) - X_s(\omega) = X_t(\theta_s \omega).$$

A continuous random dynamical system (RDS) on a topological space X is a metric DS $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t))$ with mapping

 $\varphi\colon [0,\infty)\times\Omega\times X\to X$

such that

A continuous random dynamical system (RDS) on a topological space X is a metric DS $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t))$ with mapping

$$\varphi\colon [0,\infty)\times\Omega\times X\to X$$

such that

(i) φ is measurable and $(t,\xi) \mapsto \varphi(t,\omega,\xi)$ is continuous for all $\omega \in \Omega$.

A continuous random dynamical system (RDS) on a topological space X is a metric DS $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t))$ with mapping

$$\varphi\colon [0,\infty)\times\Omega\times X\to X$$

such that

(i) φ is measurable and $(t,\xi) \mapsto \varphi(t,\omega,\xi)$ is continuous for all $\omega \in \Omega$.

(ii) $\varphi(0,\omega,\cdot) = \operatorname{Id}_X$ for all $\omega \in \Omega$ and

 $\varphi(t+s,\omega,\cdot)=\varphi(t,\theta_s\omega,\cdot)\circ\varphi(s,\omega,\cdot)\quad\text{``cocycle property''}$

for all $s, t \in [0, \infty)$ and all $\omega \in \Omega$.

Example: $\varphi(t, \omega, \xi) := \phi(0, t, \omega, \xi)$ where $\phi \colon [0, \infty[\times [0, \infty[\times \Omega \times \mathbb{R}^m \to \mathbb{R}^m$ solution (semi-)flow to SDE

$$\mathrm{d}Y = b(Y)\,\mathrm{d}t + \sigma(Y)\,\circ\mathrm{d}B$$

if b, σ sufficiently "nice".

• Using Itō's theory creates nullsets which depend on all data of the equation.

- Using Ito's theory creates nullsets which depend on all data of the equation.
- Therefore, can deduce cocycle property only on sets of full measure which depend on respective time points (*crude cocycle property*).

- Using Ito's theory creates nullsets which depend on all data of the equation.
- Therefore, can deduce cocycle property only on sets of full measure which depend on respective time points (*crude cocycle property*).
- In the literature, there are perfection theorems available which can be used to obtain perfect, indistinguishable versions of crude cocycles (Arnold-Scheutzow '95, Scheutzow '96). Typical assumption: continuity of crude cocycle.

- Using Ito's theory creates nullsets which depend on all data of the equation.
- Therefore, can deduce cocycle property only on sets of full measure which depend on respective time points (*crude cocycle property*).
- In the literature, there are perfection theorems available which can be used to obtain perfect, indistinguishable versions of crude cocycles (Arnold-Scheutzow '95, Scheutzow '96). Typical assumption: continuity of crude cocycle.
- Not a problem for a pathwise calculus.

Definition.

An MDS $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t))$ together with a rough path valued process **X** defined on this probability space is called a *rough paths cocycle* if the cocycle relation

$$\mathbf{X}_{s+t}(\omega) = \mathbf{X}_s(\omega) \otimes \mathbf{X}_t(\theta_s \omega)$$
(2)

holds for every s, t and $\omega \in \Omega$.

Definition.

An MDS $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t))$ together with a rough path valued process **X** defined on this probability space is called a *rough paths cocycle* if the cocycle relation

$$\mathbf{X}_{s+t}(\omega) = \mathbf{X}_s(\omega) \otimes \mathbf{X}_t(\theta_s \omega)$$
(2)

holds for every s, t and $\omega \in \Omega$.

Remark.

Definition.

An MDS $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t))$ together with a rough path valued process **X** defined on this probability space is called a *rough paths cocycle* if the cocycle relation

$$\mathbf{X}_{s+t}(\omega) = \mathbf{X}_s(\omega) \otimes \mathbf{X}_t(\theta_s \omega)$$
(2)

holds for every s, t and $\omega \in \Omega$.

Remark.

• (2) coincides with L. Arnold's notion of the cocycle property for group-valued processes.

Definition.

An MDS $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t))$ together with a rough path valued process **X** defined on this probability space is called a *rough paths cocycle* if the cocycle relation

$$\mathbf{X}_{s+t}(\omega) = \mathbf{X}_s(\omega) \otimes \mathbf{X}_t(\theta_s \omega)$$
(2)

holds for every s, t and $\omega \in \Omega$.

Remark.

- (2) coincides with L. Arnold's notion of the cocycle property for group-valued processes.
- on the first level, property (2) reads

$$X_{s+t}(\omega) = X_s(\omega) + X_t(\theta_s \omega).$$

If ${\bf X}$ is a rough paths cocycle, the flow of the rough differential equation

$$\mathrm{d}Y = b(Y)\,\mathrm{d}t + \sigma(Y)\,\mathrm{d}\mathbf{X},$$

induces a continuous cocycle.

If ${\bf X}$ is a rough paths cocycle, the flow of the rough differential equation

$$\mathrm{d}Y = b(Y)\,\mathrm{d}t + \sigma(Y)\,\mathrm{d}\mathbf{X},$$

induces a continuous cocycle.

Proof.

Straightforward!

More interesting question: Existence of rough cocycles.

More interesting question: Existence of rough cocycles.

Theorem (Bailleul, R., Scheutzow).

If a geometric rough paths valued process $\bar{\mathbf{X}}$ has stationary increments, there is a rough paths cocycle \mathbf{X} with the same law as $\bar{\mathbf{X}}.$

More interesting question: Existence of rough cocycles.

Theorem (Bailleul, R., Scheutzow).

If a geometric rough paths valued process $\bar{\mathbf{X}}$ has stationary increments, there is a rough paths cocycle \mathbf{X} with the same law as $\bar{\mathbf{X}}$.

Proof.

As for \mathbb{R}^d -valued processes.

If X has stationary increments and the iterated integrals of X^{ε} converge towards a rough paths valued process $\bar{\mathbf{X}}$ in law, there is a rough paths cocycle \mathbf{X} with the same law as $\bar{\mathbf{X}}$.

If X has stationary increments and the iterated integrals of X^{ε} converge towards a rough paths valued process $\bar{\mathbf{X}}$ in law, there is a rough paths cocycle \mathbf{X} with the same law as $\bar{\mathbf{X}}$.

Proof.

If X has stationary increments and the iterated integrals of X^{ε} converge towards a rough paths valued process $\bar{\mathbf{X}}$ in law, there is a rough paths cocycle \mathbf{X} with the same law as $\bar{\mathbf{X}}$.

Proof.

• May assume w.l.o.g. that X is defined on MDS and satisfies cocycle property.

If X has stationary increments and the iterated integrals of X^{ε} converge towards a rough paths valued process $\bar{\mathbf{X}}$ in law, there is a rough paths cocycle \mathbf{X} with the same law as $\bar{\mathbf{X}}$.

Proof.

- May assume w.l.o.g. that X is defined on MDS and satisfies cocycle property.
- Can check: Also X^{ε} and canonical lift \mathbf{X}^{ε} satisfies cocycle property.

If X has stationary increments and the iterated integrals of X^{ε} converge towards a rough paths valued process $\bar{\mathbf{X}}$ in law, there is a rough paths cocycle \mathbf{X} with the same law as $\bar{\mathbf{X}}$.

Proof.

- May assume w.l.o.g. that X is defined on MDS and satisfies cocycle property.
- Can check: Also X^{ε} and canonical lift \mathbf{X}^{ε} satisfies cocycle property.
- From convergence, $\bar{\mathbf{X}}$ has stationary increments. Assertion follows by previous theorem.

If X has stationary increments and the iterated integrals of X^{ε} converge towards a rough paths valued process $\bar{\mathbf{X}}$ in law, there is a rough paths cocycle \mathbf{X} with the same law as $\bar{\mathbf{X}}$.

Proof.

- May assume w.l.o.g. that X is defined on MDS and satisfies cocycle property.
- Can check: Also X^{ε} and canonical lift \mathbf{X}^{ε} satisfies cocycle property.
- From convergence, $\bar{\mathbf{X}}$ has stationary increments. Assertion follows by previous theorem.

Example.

fBm with Hurst parameter $H \in (1/4, 1/2]$.

1 Random dynamical systems: Motivation

2 Random dynamical systems and rough paths

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t), \varphi)$ be a RDS on a measurable space (X, \mathcal{B}) . Then the mapping

$$\begin{array}{l} \displaystyle \varTheta_t \colon \Omega \times X \to \Omega \times X \\ \displaystyle (\omega, x) \mapsto (\theta_t \omega, \varphi(t, \omega, x)) \end{array}$$

is called *skew product*.

A probability measure μ on $\mathcal{F} \otimes \mathcal{B}$ is called *invariant* for φ if it has first marginal \mathbb{P} and if $\mu \circ \Theta_t^{-1} = \mu$ for all $t \ge 0$.

Remark.

Remark.

•
$$(\Omega \times X, \mathcal{F} \otimes \mathcal{B}, \mu, (\Theta_t)_{t \geq 0})$$
 itself MDS.

Remark.

- $(\Omega \times X, \mathcal{F} \otimes \mathcal{B}, \mu, (\Theta_t)_{t \geq 0})$ itself MDS.
- Existence of invariant measures implies existence of a stationary state, i.e. a random variable $Z \colon \Omega \to X$ for which $\varphi(t, \omega, Z(\omega)) = Z(\theta_t \omega)$. In particular,

$$t\mapsto \varphi(t,\cdot,Z)$$

is stationary.

Remark.

- $(\Omega \times X, \mathcal{F} \otimes \mathcal{B}, \mu, (\Theta_t)_{t \geq 0})$ itself MDS.
- Existence of invariant measures implies existence of a stationary state, i.e. a random variable $Z \colon \Omega \to X$ for which $\varphi(t, \omega, Z(\omega)) = Z(\theta_t \omega)$. In particular,

$$t\mapsto \varphi(t,\cdot,Z)$$

is stationary.

• One-to-one correspondence between "Markovian" invariant measures for RDS and (classical) invariant measures for Markov semigroups (*Crauel '91*).

Remark.

- $(\Omega \times X, \mathcal{F} \otimes \mathcal{B}, \mu, (\Theta_t)_{t \geq 0})$ itself MDS.
- Existence of invariant measures implies existence of a stationary state, i.e. a random variable $Z \colon \Omega \to X$ for which $\varphi(t, \omega, Z(\omega)) = Z(\theta_t \omega)$. In particular,

$$t\mapsto \varphi(t,\cdot,Z)$$

is stationary.

• One-to-one correspondence between "Markovian" invariant measures for RDS and (classical) invariant measures for Markov semigroups (*Crauel '91*).

We will ask for existence of invariant measures for RDS induced by $\ensuremath{\mathsf{RDEs}}$

$$dY = b(Y) dt + \sigma(Y) d\mathbf{X}(\omega).$$

Example.

Consider

$$dY = \alpha Y dt + dX(\omega), \quad \alpha \in \mathbb{R}, \quad X \text{ fBm.}$$

Example.

Consider

$$\mathrm{d} Y = \alpha Y \, \mathrm{d} t + \mathrm{d} X(\omega), \quad \alpha \in \mathbb{R}, \quad X \text{ fBm}.$$

Then

$$Z(\omega) := \begin{cases} \int_{-\infty}^{0} e^{-\alpha s} \, \mathrm{d}X_s(\omega) & \text{ for } \alpha < 0\\ -\int_{0}^{\infty} e^{-\alpha s} \, \mathrm{d}X_s(\omega) & \text{ for } \alpha > 0 \end{cases}$$

is a stationary state.

Theorem.

Let ${\bf X}$ be a rough paths cocycle. If b and σ have compact support, the cocycle map induced by the RDE

$$dY = b(Y) dt + \sigma(Y) d\mathbf{X}(\omega)$$

admits an invariant measure.

Theorem.

Let ${\bf X}$ be a rough paths cocycle. If b and σ have compact support, the cocycle map induced by the RDE

$$dY = b(Y) dt + \sigma(Y) d\mathbf{X}(\omega)$$

admits an invariant measure.

Proof. Can find a compact subset of \mathbb{R}^m on which cocycle can be defined; existence follows by standard fixed-point theorems (cf. [Crauel, 2002]).

L. Arnold. Random Dynamical Systems. *Springer*, 1998.

- I. Bailleul, S. Riedel, M. Scheutzow.
 Random dynamical systems, rough paths and rough flows. Journal of Differential Equations, 2017.

H. Crauel.

Random Probability Measures on Polish Spaces. *Taylor and Francis*, 2002.

S. Mohammed, M. Scheutzow.

The stable manifold theorem for stochastic differential equations.

The Annals of Probability, 1999.

Thank you.