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RDS and MET

The theory of Random dynamical systems (RDS) provides a
formalism which can be used to describe a large class of
stochastic systems which evolve in time (like dynamical systems
do for deterministic time evolutions).

It proved to be useful in particular when studying the long time
behaviour of stochastic systems.

Main tool: Multiplicative Ergodic Theorem; yields existence of
Lyapunovexponents for linear systems (Oseledets ’68).

For non-linear systems, one may look at their linearization, and
the MET can still provide information about the local behaviour
of the non-linear system (stable manifold theorem, Ruelle ’79).
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Stable manifolds for SDE

Stable manifold theorem for SDE. (Mohammed-Scheutzow ’99)
Assume

dY ξ
t = b(Y ξ

t ) dt+ σ(Y ξ
t ) ◦ dBt(ω), Y ξ

0 = ξ ∈ Rm

induces stochastic (semi-)flow and solution admits an ergodic
invariant measure.

Differential of the flow solves a linear equation; existence of
Lyanpunovexponents follow from the MET (under certain
assumptions):

P− lim
t→∞

1

t
log
∣∣∣DξY

ξ(ω)
t v

∣∣∣ ∈ {λl < . . . < λ1},

1 ≤ l ≤ m, v ∈ Rm.

Possible to conclude existence of stable (or unstable) manifolds
around stationary solutions for the original equation (following
Ruelle’s strategy).

Random dynamical systems and rough paths S. Riedel 5/24



Stable manifolds for SDE

Stable manifold theorem for SDE. (Mohammed-Scheutzow ’99)
Assume

dY ξ
t = b(Y ξ

t ) dt+ σ(Y ξ
t ) ◦ dBt(ω), Y ξ

0 = ξ ∈ Rm

induces stochastic (semi-)flow and solution admits an ergodic
invariant measure.

Differential of the flow solves a linear equation; existence of
Lyanpunovexponents follow from the MET (under certain
assumptions):

P− lim
t→∞

1

t
log
∣∣∣DξY

ξ(ω)
t v

∣∣∣ ∈ {λl < . . . < λ1},

1 ≤ l ≤ m, v ∈ Rm.

Possible to conclude existence of stable (or unstable) manifolds
around stationary solutions for the original equation (following
Ruelle’s strategy).

Random dynamical systems and rough paths S. Riedel 5/24



Stable manifolds for SDE

Stable manifold theorem for SDE. (Mohammed-Scheutzow ’99)
Assume

dY ξ
t = b(Y ξ

t ) dt+ σ(Y ξ
t ) ◦ dBt(ω), Y ξ

0 = ξ ∈ Rm

induces stochastic (semi-)flow and solution admits an ergodic
invariant measure.

Differential of the flow solves a linear equation; existence of
Lyanpunovexponents follow from the MET (under certain
assumptions):

P− lim
t→∞

1

t
log
∣∣∣DξY

ξ(ω)
t v

∣∣∣ ∈ {λl < . . . < λ1},

1 ≤ l ≤ m, v ∈ Rm.

Possible to conclude existence of stable (or unstable) manifolds
around stationary solutions for the original equation (following
Ruelle’s strategy).

Random dynamical systems and rough paths S. Riedel 5/24



Remarks

Remark.

Itō-theory not really necessary; only used to make sense of
initial equation.

Markov property used only to speak about invariant measures.
In fact, not really necessary, too, more general concept of
invariant measures available in the theory of RDS (cf. below).

One of our goals: Build a bridge between the “two cultures”
(L. Arnold) Dynamical systems and Stochastic analysis.
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Long term goal: Prove more general stable manifold theorem for

dYt = b(Yt) dt+ σ(Yt) dXt(ω) (1)

with t 7→ Xt rough paths lift of a stochastic process (e.g. fBm).

Moreover, we will be interested in:

equilibrium of the system, invariant measures

long time behaviour (convergence towards equilibrium,
attractors,...)

qualitative difference between random and deterministic system
(stabilization, synchronization by noise, ...)

Remark: In general, solution Y to (1) not Markovian.
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Metric dynamical systems

Definition.
(Ω,F ,P, (θt)t∈R) called metric dynamical system if

(i) (ω, t) 7→ θtω is measurable

(ii) θ0 = IdΩ

(iii) θt+s = θt ◦ θs
(iv) P = P ◦ θ−1

t for all t ∈ R.

Example: Ω = C0(R,Rd), θ Wiener shift:

θtω := ω(t+ ·)− ω(t).

If (iv) holds, coordinate process has stationary increments.
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Construction of MDS from processes with stationary
increments

Assume that X̄ is Rd-valued process defined on some probability
space (Ω̄, F̄ , P̄) with X̄(ω̄) ∈ C0(R,Rd) for all ω̄ ∈ Ω̄.

If X̄ has stationary increments, can build MDS as follows:

Ω := C0(R,Rd)
F := Borel sigma-algebra
P := Law of X̄
θ := Wiener shift

Coordinate process X on this space has same law as X̄ and
satisfies the cocycle (or helix) property:

Xt+s(ω)−Xs(ω) = Xt(θsω).
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Random dynamical system

Definition.
A continuous random dynamical system (RDS) on a topological
space X is a metric DS (Ω,F ,P, (θt)) with mapping

ϕ : [0,∞)× Ω×X → X

such that

(i) ϕ is measurable and (t, ξ) 7→ ϕ(t, ω, ξ) is continuous for all
ω ∈ Ω.

(ii) ϕ(0, ω, ·) = IdX for all ω ∈ Ω and

ϕ(t+ s, ω, ·) = ϕ(t, θsω, ·) ◦ ϕ(s, ω, ·) “cocycle property”

for all s, t ∈ [0,∞) and all ω ∈ Ω.
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Example: SDEs

Example: ϕ(t, ω, ξ) := φ(0, t, ω, ξ) where

φ : [0,∞[×[0,∞[×Ω× Rm → Rm

solution (semi-)flow to SDE

dY = b(Y ) dt+ σ(Y ) ◦ dB

if b, σ sufficiently “nice”.
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Cocycle property for Itō-SDEs

Using Itō’s theory creates nullsets which depend on all data of
the equation.

Therefore, can deduce cocycle property only on sets of full
measure which depend on respective time points (crude cocycle
property).

In the literature, there are perfection theorems available which
can be used to obtain perfect, indistinguishable versions of
crude cocycles (Arnold-Scheutzow ’95, Scheutzow ’96). Typical
assumption: continuity of crude cocycle.

Not a problem for a pathwise calculus.
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Rough path cocycles

Definition.

An MDS (Ω,F ,P, (θt)) together with a rough path valued process
X defined on this probability space is called a rough paths cocycle if
the cocycle relation

Xs+t(ω) = Xs(ω)⊗Xt(θsω) (2)

holds for every s, t and ω ∈ Ω.

Remark.

(2) coincides with L. Arnold’s notion of the cocycle property for
group-valued processes.

on the first level, property (2) reads

Xs+t(ω) = Xs(ω) +Xt(θsω).
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RDEs induce RDS

Theorem (Bailleul, R., Scheutzow ’17).

If X is a rough paths cocycle, the flow of the rough differential
equation

dY = b(Y ) dt+ σ(Y ) dX,

induces a continuous cocycle.

Proof.

Straightforward!
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Existence of rough cocycles

More interesting question: Existence of rough cocycles.

Theorem (Bailleul, R., Scheutzow).

If a geometric rough paths valued process X̄ has stationary
increments, there is a rough paths cocycle X with the same law as
X̄.

Proof.

As for Rd-valued processes.
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RDEs induce RDS III

Theorem (Bailleul, R., Scheutzow).

If X has stationary increments and the iterated integrals of Xε

converge towards a rough paths valued process X̄ in law, there is a
rough paths cocycle X with the same law as X̄.

Proof.

May assume w.l.o.g. that X is defined on MDS and satisfies
cocycle property.

Can check: Also Xε and canonical lift Xε satisfies cocycle
property.

From convergence, X̄ has stationary increments. Assertion
follows by previous theorem.

Example.

fBm with Hurst parameter H ∈ (1/4, 1/2].
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Invariant measures for RDS

Definition.
Let (Ω,F ,P, (θt), ϕ) be a RDS on a measurable space (X,B). Then
the mapping

Θt : Ω×X → Ω×X
(ω, x) 7→ (θtω, ϕ(t, ω, x))

is called skew product.
A probability measure µ on F ⊗ B is called invariant for ϕ if it has
first marginal P and if µ ◦Θ−1

t = µ for all t ≥ 0.
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Invariant measures II

Remark.

(Ω×X,F ⊗ B, µ, (Θt)t≥0) itself MDS.

Existence of invariant measures implies existence of a
stationary state, i.e. a random variable Z : Ω→ X for which
ϕ(t, ω, Z(ω)) = Z(θtω). In particular,

t 7→ ϕ(t, ·, Z)

is stationary.

One-to-one correspondence between “Markovian” invariant
measures for RDS and (classical) invariant measures for Markov
semigroups (Crauel ’91).

We will ask for existence of invariant measures for RDS induced by
RDEs

dY = b(Y ) dt+ σ(Y ) dX(ω).
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An explicit example

Example.
Consider

dY = αY dt+ dX(ω), α ∈ R, X fBm.

Then

Z(ω) :=

{∫ 0
−∞ e

−αs dXs(ω) for α < 0

−
∫∞

0 e−αs dXs(ω) for α > 0

is a stationary state.
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Existence of invariant measures

Theorem.

Let X be a rough paths cocycle. If b and σ have compact support,
the cocycle map induced by the RDE

dY = b(Y ) dt+ σ(Y ) dX(ω)

admits an invariant measure.

Proof. Can find a compact subset of Rm on which cocycle can be
defined; existence follows by standard fixed-point theorems (cf.
[Crauel, 2002]).
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Thank you.
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