On level sets in the Heisenberg group

Dario Trevisan *

Università degli Studi di Pisa

Toulouse, October 19, 2017

[^0]
An implicit function theorem on Lie groups

Implicit function theorem
Regular level sets of a C^{1} map between Euclidean spaces have a local C^{1} parametrization.

Problem

What happens if we replace Euclidean spaces with more general Lie groups?

We study the simplest non-trivial case: F

An implicit function theorem on Lie groups

Implicit function theorem

Regular level sets of a C^{1} map between Euclidean spaces have a local C^{1} parametrization.

Problem

What happens if we replace Euclidean spaces with more general Lie groups?

We study the simplest non-trivial case: $F: \mathbb{H} \approx \mathbb{R}^{3} \rightarrow \mathbb{R}^{k}$.

Structure of the talk

1 Introduction

2 Heisenberg group

3 LSDE: formulation

4 LSDE: well-posedness

5 Towards higher dimensional level sets

Heisenberg group: differential structure

The group \mathbb{H} is a non-commutative Lie group, with two generators.

Heisenberg group: differential structure

The group \mathbb{H} is a non-commutative Lie group, with two generators.
■ On $\mathbb{H}=\mathbb{R}^{3}, x=\left(x^{1}, x^{2}, x^{3}\right)$, consider the two (horizontal) vector fields

$$
\begin{gathered}
X_{1}(x):=\partial_{1}-x^{2} \partial_{3} \quad X_{2}(x):=\partial_{2}+x^{1} \partial_{3} \\
{\left[X_{1}, X_{2}\right]=\left[\partial_{1}-x^{2} \partial_{3}, \partial_{2}+x^{1} \partial_{3}\right]=2 \partial_{3} \quad \text { (Hörmander condition). }}
\end{gathered}
$$

Heisenberg group: differential structure

The group \mathbb{H} is a non-commutative Lie group, with two generators.
■ On $\mathbb{H}=\mathbb{R}^{3}, x=\left(x^{1}, x^{2}, x^{3}\right)$, consider the two (horizontal) vector fields

$$
\begin{gathered}
X_{1}(x):=\partial_{1}-x^{2} \partial_{3} \quad X_{2}(x):=\partial_{2}+x^{1} \partial_{3} \\
{\left[X_{1}, X_{2}\right]=\left[\partial_{1}-x^{2} \partial_{3}, \partial_{2}+x^{1} \partial_{3}\right]=2 \partial_{3} \quad \text { (Hörmander condition). }}
\end{gathered}
$$

■ Dual description: contact 1-form

$$
\theta=d x^{3}+x^{2} d x^{1}-x^{1} d x^{2} \Rightarrow d \theta=-2 d x^{1} \wedge d x^{2}
$$

Heisenberg group: differential structure

The group \mathbb{H} is a non-commutative Lie group, with two generators.
■ On $\mathbb{H}=\mathbb{R}^{3}, x=\left(x^{1}, x^{2}, x^{3}\right)$, consider the two (horizontal) vector fields

$$
\begin{gathered}
X_{1}(x):=\partial_{1}-x^{2} \partial_{3} \quad X_{2}(x):=\partial_{2}+x^{1} \partial_{3} \\
{\left[X_{1}, X_{2}\right]=\left[\partial_{1}-x^{2} \partial_{3}, \partial_{2}+x^{1} \partial_{3}\right]=2 \partial_{3} \quad \text { (Hörmander condition). }}
\end{gathered}
$$

■ Dual description: contact 1-form

$$
\theta=d x^{3}+x^{2} d x^{1}-x^{1} d x^{2} \Rightarrow d \theta=-2 d x^{1} \wedge d x^{2}
$$

■ Horizontal tangent at $x \in \mathbb{H}$ is span $\left\{X_{1}(x), X_{2}(x)\right\}=\operatorname{Ker} \theta_{x}$.
 \section*{Heisenberg group: curves and distance}
 \section*{Heisenberg group: curves and distance}

Heisenberg group: curves and distance

■ A (smooth) curve $\eta: I \rightarrow \mathbb{H}$ is horizontal if, for $t \in I$,

$$
\theta_{\eta_{t}}\left(\dot{\eta}_{t}\right)=\dot{\eta}_{t}^{3}+\eta_{t}^{2} \dot{\eta}_{t}^{1}-\eta_{t}^{1} \dot{\eta}_{t}^{2}=0
$$

- Imposing $X_{1}(x) X_{2}(x)$ are orthonormal \Rightarrow CC-distance

$$
d(x, y):=\inf \left\{\int_{0}^{1}\left|\dot{\eta}_{t}\right|: \eta \text { horizontal, } \eta_{0}=x, \eta_{1}=y .\right\}
$$

- Equivalence

$$
d(x, y) \approx\left|y^{1}-x^{1}\right|+\left|y^{2}-x^{2}\right|+\left|\vartheta_{x y}\right|^{1 / 2}
$$

where a "discrete" contact form appears

$$
\begin{aligned}
& \quad \vartheta_{x y}:=\left(y^{3}-x^{3}\right)+x^{2}\left(y^{1}-x^{1}\right)-x^{1}\left(y^{2}-x^{2}\right) . \\
& \text { (Recall } \left.\theta=\mathrm{d} x^{3}+x^{2} \mathrm{~d} x^{1}-x^{1} \mathrm{~d} x^{2}\right) .
\end{aligned}
$$

Examples

1 Horizontal curve \leftrightarrow

$$
\eta_{t}^{3}-\eta_{s}^{3}=\int_{s}^{t} \eta_{r}^{2} \dot{\eta}_{r}^{1} \mathrm{~d} r-\int_{r}^{r} \eta_{r}^{1} \dot{\eta}_{r}^{2} \mathrm{~d} r
$$

If $\left(\eta_{t}^{1}, \eta_{t}^{2}\right)=\left(\eta_{s}^{1}, \eta_{s}^{2}\right) \rightarrow \eta_{t}^{3}-\eta_{s}^{3}=$ signed area.
2 If $\left(\eta^{1}, \eta^{2}\right)$ are $\frac{1+\alpha}{2}$-Hölder continuous \rightarrow horizontal lift

$$
\theta_{\eta_{t}}\left(\dot{\eta}_{t}\right)=0
$$

in the sense Young integrals or in the "incremental" sense

$$
\vartheta_{\eta_{s} \eta_{t}}=\left(\eta_{t}^{3}-\eta_{s}^{3}\right)+\eta_{s}^{2}\left(\eta_{t}^{1}-\eta_{s}^{1}\right)-\eta_{s}^{1}\left(\eta_{t}^{2}-\eta_{s}^{2}\right)=o(t-s)
$$

3 If $\alpha=0$, pure area rough path

$$
n^{-1 / 2}(\cos (n t), \sin (n t)) \quad n \rightarrow \infty
$$

The limit of horizontal lifts is not horizontal!

Heisenberg group: regular maps

■ We "measure" regularity of $F: \mathbb{H} \rightarrow \mathbb{R}^{k}$ in terms of horizontal derivatives

$$
\nabla_{h} F(x):=\left(X_{1} F(x), X_{2} F(x)\right) .
$$

$p \in \mathbb{H}$ is non degenerate for F if $\nabla_{h} F(p)$ has maximum rank

- For $\alpha \in(0,1), F \in C_{h}^{1, \alpha}$ if $x \mapsto \nabla_{h} F(x)$ is (well-defined and) α-Hölder continuous, (w.r.t. d). ($F \in C_{h}^{1}$ if just continuous).

- Fact: There are $F \in C^{+}$nowhere (Euclidean) dilferentiable on a set of positive Lebesgue measure.

Heisenberg group: regular maps

- We "measure" regularity of $F: \mathbb{H} \rightarrow \mathbb{R}^{k}$ in terms of horizontal derivatives

$$
\nabla_{h} F(x):=\left(X_{1} F(x), X_{2} F(x)\right) .
$$

$p \in \mathbb{H}$ is non degenerate for F if $\nabla_{h} F(p)$ has maximum rank

- For $\alpha \in(0,1), F \in C_{h}^{1, \alpha}$ if $x \mapsto \nabla_{h} F(x)$ is (well-defined and) α-Hölder continuous, (w.r.t. d). ($F \in C_{h}^{1}$ if just continuous).
- Fact: There are $F \in C^{1, \alpha}$ nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Locally parametrize $F^{-1}(F(p))$ for $F \in C_{h}^{1}$ for non degenerate p 's.

Heisenberg group: regular maps

- We "measure" regularity of $F: \mathbb{H} \rightarrow \mathbb{R}^{k}$ in terms of horizontal derivatives

$$
\nabla_{h} F(x):=\left(X_{1} F(x), X_{2} F(x)\right) .
$$

$p \in \mathbb{H}$ is non degenerate for F if $\nabla_{h} F(p)$ has maximum rank

- For $\alpha \in(0,1), F \in C_{h}^{1, \alpha}$ if $x \mapsto \nabla_{h} F(x)$ is (well-defined and) α-Hölder continuous, (w.r.t. d). ($F \in C_{h}^{1}$ if just continuous).
- Fact: There are $F \in C^{1, \alpha}$ nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

Locally parametrize $F^{-1}(F(p))$ for $F \in C_{h}^{1}$ for non degenerate p 's.

Heisenberg group: regular maps

- We "measure" regularity of $F: \mathbb{H} \rightarrow \mathbb{R}^{k}$ in terms of horizontal derivatives

$$
\nabla_{h} F(x):=\left(X_{1} F(x), X_{2} F(x)\right) .
$$

$p \in \mathbb{H}$ is non degenerate for F if $\nabla_{h} F(p)$ has maximum rank

- For $\alpha \in(0,1), F \in C_{h}^{1, \alpha}$ if $x \mapsto \nabla_{h} F(x)$ is (well-defined and) α-Hölder continuous, (w.r.t. d). ($F \in C_{h}^{1}$ if just continuous).
- Fact: There are $F \in C^{1, \alpha}$ nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

Locally parametrize $F^{-1}(F(p))$ for $F \in C_{h}^{1}$ for non degenerate p 's.

Literature on level sets in Heisenberg group, $F: \mathbb{H} \rightarrow \mathbb{R}^{k}$

$k=1$: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, ...) \Rightarrow "intrinsic graphs", parametrized surfaces via group operation. (Interesting connection with non-linear PDE's, recall talk by Katrin Fässler).
$k=2$: Magnani-Leonardi $(2010) \Rightarrow$ continuous curves, intersections of two intrinsic surfaces.
$k=2$: Kozhevnikov (2011) $\Rightarrow \beta$-Hölder continuous curves $(\beta<1 / 2)$ via a sub-Riemannian Reifenberg-type argument.

Literature on level sets in Heisenberg group, $F: \mathbb{H} \rightarrow \mathbb{R}^{k}$

$k=1$: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, ...) \Rightarrow "intrinsic graphs", parametrized surfaces via group operation. (Interesting connection with non-linear PDE's, recall talk by Katrin Fässler).
$k=2$: Magnani-Leonardi $(2010) \Rightarrow$ continuous curves, intersections of two intrinsic surfaces.
$k=2$: Kozhevnikov (2011) $\Rightarrow \beta$-Hölder continuous curves $(\beta<1 / 2)$ via a sub-Riemannian Reifenberg-type argument.
For $k=2$, parametrizations are quite implicit: is a "good calculus" missing?

Literature on level sets in Heisenberg group, $F: \mathbb{H} \rightarrow \mathbb{R}^{k}$

$k=1$: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, ...) \Rightarrow "intrinsic graphs", parametrized surfaces via group operation. (Interesting connection with non-linear PDE's, recall talk by Katrin Fässler).
$k=2$: Magnani-Leonardi $(2010) \Rightarrow$ continuous curves, intersections of two intrinsic surfaces.
$k=2$: Kozhevnikov (2011) $\Rightarrow \beta$-Hölder continuous curves $(\beta<1 / 2)$ via a sub-Riemannian Reifenberg-type argument.

For $k=2$, parametrizations are quite implicit: is a "good calculus" missing?

Main results (Magnani-Stepanov-T., 2016): $k=2$.
■ Explicit "Level Set Differential Equation" (LSDE).

Literature on level sets in Heisenberg group, $F: \mathbb{H} \rightarrow \mathbb{R}^{k}$

$k=1$: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, ...) \Rightarrow "intrinsic graphs", parametrized surfaces via group operation. (Interesting connection with non-linear PDE's, recall talk by Katrin Fässler).
$k=2$: Magnani-Leonardi $(2010) \Rightarrow$ continuous curves, intersections of two intrinsic surfaces.
$k=2$: Kozhevnikov (2011) $\Rightarrow \beta$-Hölder continuous curves $(\beta<1 / 2)$ via a sub-Riemannian Reifenberg-type argument.

For $k=2$, parametrizations are quite implicit: is a "good calculus" missing?

Main results (Magnani-Stepanov-T., 2016): $k=2$.

■ Explicit "Level Set Differential Equation" (LSDE).
■ Prove existence, uniqueness, and stability w.r.t. approximations for $F \in C_{h}^{1, \alpha}(\alpha>0)$ using tools from Young integration (Rough paths).
■ Prove area formula and (re)-obtain a coarea formula for $F \in C_{h}^{1, \alpha}$.

The Euclidean ODE argument

Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be C^{1}.

- Write $x=\left(x^{1}, x^{2}, x^{3}\right) \in \mathbb{R}^{3}, \partial_{i}=\frac{\partial}{\partial x^{\prime}}, i=1,2,3$,
- $F=\left(F^{1}, F^{2}\right)$ and

$$
\nabla F=\left(\begin{array}{ccc}
\partial_{1} F^{1} & \partial_{2} F^{1} & \partial_{3} F^{1} \\
\partial_{1} F^{2} & \partial_{2} F^{2} & \partial_{3} F^{2}
\end{array}\right)=\left(\nabla_{12} F, \nabla_{3} F\right) \quad \text { with } \nabla_{12} F \text { invertible. }
$$

Differentiating $F\left(\gamma_{t}\right)=c$

Impose $\dot{\gamma}_{t}^{3}=1$ and solve (Peano) for $\left(\gamma_{t}^{1}, \gamma_{t}^{2}\right)$

The Euclidean ODE argument

Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be C^{1}.

- Write $x=\left(x^{1}, x^{2}, x^{3}\right) \in \mathbb{R}^{3}, \partial_{i}=\frac{\partial}{\partial x^{\prime}}, i=1,2,3$,
- $F=\left(F^{1}, F^{2}\right)$ and

$$
\nabla F=\left(\begin{array}{ccc}
\partial_{1} F^{1} & \partial_{2} F^{1} & \partial_{3} F^{1} \\
\partial_{1} F^{2} & \partial_{2} F^{2} & \partial_{3} F^{2}
\end{array}\right)=\left(\nabla_{12} F, \nabla_{3} F\right) \quad \text { with } \nabla_{12} F \text { invertible. }
$$

Differentiating $\boldsymbol{F}\left(\gamma_{t}\right)=\boldsymbol{c}$,

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{12} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \dot{\gamma}_{t}^{3} .
$$

Impose $\dot{\gamma}_{t}^{3}=1$ and solve (Peano) for $\left(\gamma_{t}^{1}, \gamma_{t}^{2}\right)$. (Uniqueness of solutions?)

The Euclidean ODE argument

Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be C^{1}.

- Write $x=\left(x^{1}, x^{2}, x^{3}\right) \in \mathbb{R}^{3}, \partial_{i}=\frac{\partial}{\partial x^{\prime}}, i=1,2,3$,
- $F=\left(F^{1}, F^{2}\right)$ and

$$
\nabla F=\left(\begin{array}{ccc}
\partial_{1} F^{1} & \partial_{2} F^{1} & \partial_{3} F^{1} \\
\partial_{1} F^{2} & \partial_{2} F^{2} & \partial_{3} F^{2}
\end{array}\right)=\left(\nabla_{12} F, \nabla_{3} F\right) \quad \text { with } \nabla_{12} F \text { invertible. }
$$

Differentiating $\boldsymbol{F}\left(\gamma_{t}\right)=\boldsymbol{c}$,

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{12} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \dot{\gamma}_{t}^{3} .
$$

Impose $\dot{\gamma}_{t}^{3}=1$ and solve (Peano) for $\left(\gamma_{t}^{1}, \gamma_{t}^{2}\right)$.

The Euclidean ODE argument

Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be C^{1}.
■ Write $x=\left(x^{1}, x^{2}, x^{3}\right) \in \mathbb{R}^{3}, \partial_{i}=\frac{\partial}{\partial x^{1}}, i=1,2,3$,

- $F=\left(F^{1}, F^{2}\right)$ and

$$
\nabla F=\left(\begin{array}{ccc}
\partial_{1} F^{1} & \partial_{2} F^{1} & \partial_{3} F^{1} \\
\partial_{1} F^{2} & \partial_{2} F^{2} & \partial_{3} F^{2}
\end{array}\right)=\left(\nabla_{12} F, \nabla_{3} F\right) \quad \text { with } \nabla_{12} F \text { invertible. }
$$

Differentiating $\boldsymbol{F}\left(\gamma_{t}\right)=\boldsymbol{c}$,

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{12} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \dot{\gamma}_{t}^{3} .
$$

Impose $\dot{\gamma}_{t}^{3}=1$ and solve (Peano) for $\left(\gamma_{t}^{1}, \gamma_{t}^{2}\right)$. (Uniqueness of solutions?)

A naive approach to the LSDE

In $\mathbb{H} \sim \mathbb{R}^{3}$, recast the ODE
in terms of the horizontal derivatives $X_{1} F, X_{2} F$ (change of coordinates)

A naive approach to the LSDE

In $\mathbb{H} \sim \mathbb{R}^{3}$, recast the ODE

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{12} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \dot{\gamma}_{t}^{3} .
$$

in terms of the horizontal derivatives $X_{1} F, X_{2} F$ (change of coordinates)

In analogy with $\dot{\gamma}_{t}^{3}=1$, set $\theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1 \Rightarrow$ non-horizontal, (vertical), curve.
Twn difficulties:

A naive approach to the LSDE

In $\mathbb{H} \sim \mathbb{R}^{3}$, recast the ODE

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{12} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \dot{\gamma}_{t}^{3} .
$$

in terms of the horizontal derivatives $X_{1} F, X_{2} F$ (change of coordinates):

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{h} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right) .
$$

In analogy with $\dot{\gamma}_{t}^{3}=1$, set $\theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1 \Rightarrow$ non-horizontal, (vertical), curve.
Two difficulties:
If The "vertical derivative" $\nabla_{3} F$ may not be defined, even if $F \in C^{1, \alpha}$ with

A naive approach to the LSDE

In $\mathbb{H} \sim \mathbb{R}^{3}$, recast the ODE

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{12} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \dot{\gamma}_{t}^{3} .
$$

in terms of the horizontal derivatives $X_{1} F, X_{2} F$ (change of coordinates):

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{h} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right) .
$$

In analogy with $\dot{\gamma}_{t}^{3}=1$, set $\theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1 \Rightarrow$ non-horizontal, (vertical), curve.
Two difficulties:

A naive approach to the LSDE

In $\mathbb{H} \sim \mathbb{R}^{3}$, recast the ODE

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{12} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \dot{\gamma}_{t}^{3}
$$

in terms of the horizontal derivatives $X_{1} F, X_{2} F$ (change of coordinates):

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{h} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)
$$

In analogy with $\dot{\gamma}_{t}^{3}=1$, set $\left.\theta_{\gamma_{t}} \dot{\gamma}_{t}\right)=1 \Rightarrow$ non-horizontal, (vertical), curve.
Two difficulties:
1 The "vertical derivative" $\nabla_{3} F$ may not be defined, even if $F \in C^{1, \alpha}$ with $0<\alpha<1$.

2 The intrinsic distance is $1 / 2$-Hölder along "vertical" directions $\Rightarrow \gamma$ is truly $\mathrm{Hölder} \Rightarrow \dot{\gamma}_{t}$ is not defined.

A naive approach to the LSDE

In $\mathbb{H} \sim \mathbb{R}^{3}$, recast the ODE

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{12} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \dot{\gamma}_{t}^{3}
$$

in terms of the horizontal derivatives $X_{1} F, X_{2} F$ (change of coordinates):

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{h} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)
$$

In analogy with $\dot{\gamma}_{t}^{3}=1$, set $\theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1 \Rightarrow$ non-horizontal, (vertical), curve.
Two difficulties:
1 The "vertical derivative" $\nabla_{3} F$ may not be defined, even if $F \in C^{1, \alpha}$ with $0<\alpha<1$.
2 The intrinsic distance is $1 / 2$-Hölder along "vertical" directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_{t}$ is not defined.

Heuristics

Here's a "rule of thumb" to define

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{h} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right), \quad \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1
$$

Heuristics

Here's a "rule of thumb" to define

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{h} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right), \quad \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1
$$

Heuristics

Here's a "rule of thumb" to define

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{h} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right), \quad \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1
$$

1 "Integrating" $\theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1$ gives $\vartheta_{\gamma_{s} \gamma_{t}}=t-s$,

$$
\mathrm{d}\left(\gamma_{s}, \gamma_{t}\right) \approx|t-s|^{1 / 2} \Rightarrow \gamma \text { is (intrinsically) } 1 / 2 \text {-Hölder. }
$$

[2 Writing $\partial_{3} F=\left[X_{1}, X_{2}\right] F=X_{1}\left(X_{2} F\right)-X_{2}\left(X_{1} F\right)$ gives
|3 The composition (!) $\partial_{3} F\left(\gamma_{t}\right)$ is then $\frac{1}{2} \cdot(\alpha-1)$-Hölder.

Heuristics

Here's a "rule of thumb" to define

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{h} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right), \quad \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1 .
$$

11 "Integrating" $\theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1$ gives $\vartheta_{\gamma_{s} \gamma_{t}}=t-s$,

$$
\mathrm{d}\left(\gamma_{s}, \gamma_{t}\right) \approx|t-\boldsymbol{s}|^{1 / 2} \Rightarrow \gamma \text { is (intrinsically) 1/2-Hölder. }
$$

2 Writing $\partial_{3} F=\left[X_{1}, X_{2}\right] F=X_{1}\left(X_{2} F\right)-X_{2}\left(X_{1} F\right)$ gives

$$
\partial_{3} F \text { is }(\alpha-1) \text {-Hölder. }
$$

Heuristics

Here's a "rule of thumb" to define

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{h} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right), \quad \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1
$$

11 "Integrating" $\theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1$ gives $\vartheta_{\gamma_{s} \gamma_{t}}=t-s$,

$$
\mathrm{d}\left(\gamma_{s}, \gamma_{t}\right) \approx|t-s|^{1 / 2} \Rightarrow \gamma \text { is (intrinsically) } 1 / 2 \text {-Hölder. }
$$

2. Writing $\partial_{3} F=\left[X_{1}, X_{2}\right] F=X_{1}\left(X_{2} F\right)-X_{2}\left(X_{1} F\right)$ gives

$$
\partial_{3} F \text { is }(\alpha-1) \text {-Hölder. }
$$

3 The composition (!) $\partial_{3} F\left(\gamma_{t}\right)$ is then $\frac{1}{2} \cdot(\alpha-1)$-Hölder.

Heuristics

Here's a "rule of thumb" to define

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{h} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right), \quad \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1 .
$$

11 "Integrating" $\theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1$ gives $\vartheta_{\gamma_{s} \gamma_{t}}=t-s$,

$$
\mathrm{d}\left(\gamma_{s}, \gamma_{t}\right) \approx|t-s|^{1 / 2} \Rightarrow \gamma \text { is (intrinsically) } 1 / 2 \text {-Hölder. }
$$

2. Writing $\partial_{3} F=\left[X_{1}, X_{2}\right] F=X_{1}\left(X_{2} F\right)-X_{2}\left(X_{1} F\right)$ gives

$$
\partial_{3} F \text { is }(\alpha-1) \text {-Hölder. }
$$

3 The composition (!) $\partial_{3} F\left(\gamma_{t}\right)$ is then $\frac{1}{2} \cdot(\alpha-1)$-Hölder.
4 Integration w.r.t. t increases regularity of "one degree" \Rightarrow

$$
\left(\gamma^{1}, \gamma^{2}\right) \text { is }\left[\frac{1}{2} \cdot(\alpha-1)+1\right]=\frac{1+\alpha}{2} \text {-Hölder. }
$$

Heuristics

Here's a "rule of thumb" to define

$$
\binom{\dot{\gamma}_{t}^{1}}{\dot{\gamma}_{t}^{2}}=-\left(\nabla_{h} F\left(\gamma_{t}\right)\right)^{-1} \nabla_{3} F\left(\gamma_{t}\right) \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right), \quad \theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1
$$

1 "Integrating" $\theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=1$ gives $\vartheta_{\gamma_{s} \gamma_{t}}=t-s$,

$$
\mathrm{d}\left(\gamma_{s}, \gamma_{t}\right) \approx|t-s|^{1 / 2} \Rightarrow \gamma \text { is (intrinsically) } 1 / 2 \text {-Hölder. }
$$

2 Writing $\partial_{3} F=\left[X_{1}, X_{2}\right] F=X_{1}\left(X_{2} F\right)-X_{2}\left(X_{1} F\right)$ gives

$$
\partial_{3} F \text { is }(\alpha-1) \text {-Hölder. }
$$

3 The composition (!) $\partial_{3} F\left(\gamma_{t}\right)$ is then $\frac{1}{2} \cdot(\alpha-1)$-Hölder.
4 Integration w.r.t. t increases regularity of "one degree" \Rightarrow

$$
\left(\gamma^{1}, \gamma^{2}\right) \text { is }\left[\frac{1}{2} \cdot(\alpha-1)+1\right]=\frac{1+\alpha}{2} \text {-Hölder. }
$$

$5 \frac{1+\alpha}{2}$-Hölder continuity is consistent with assumption 1 , closing the circle.

The "vertical" equation

We adopt the point of view of "local descriptions" by finite increments and use physicists notation

$$
\delta \gamma_{s t}^{i}=\gamma_{t}^{i}-\gamma_{s}^{i}, \quad \text { for } s, t \in I, i \in\{1,2,3\}
$$

The "vertical" equation

We adopt the point of view of "local descriptions" by finite increments and use physicists notation

$$
\delta \gamma_{s t}^{i}=\gamma_{t}^{i}-\gamma_{s}^{i}, \quad \text { for } s, t \in I, i \in\{1,2,3\}
$$

The equation

$$
\theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=\dot{\gamma}^{3}+\gamma_{t}^{2} \dot{\gamma}_{t}^{1}-\gamma_{t}^{1} \dot{\gamma}_{t}^{2}=1
$$

(Compare with horizontal lift $\vartheta_{\gamma_{s} \gamma_{t}}=o(t-s)$.)

The "vertical" equation

We adopt the point of view of "local descriptions" by finite increments and use physicists notation

$$
\delta \gamma_{s t}^{i}=\gamma_{t}^{i}-\gamma_{s}^{i}, \quad \text { for } s, t \in I, i \in\{1,2,3\}
$$

The equation

$$
\theta_{\gamma_{t}}\left(\dot{\gamma}_{t}\right)=\dot{\gamma}^{3}+\gamma_{t}^{2} \dot{\gamma}_{t}^{1}-\gamma_{t}^{1} \dot{\gamma}_{t}^{2}=1
$$

becomes our vertical equation

$$
\vartheta_{\gamma_{s} \gamma_{t}}=\delta \gamma_{s t}^{3}+\gamma_{s}^{2} \delta \gamma_{s t}^{1}-\gamma_{s}^{2} \delta \gamma_{s t}^{2}=t-s+o(t-s)
$$

(Compare with horizontal lift $\vartheta_{\gamma_{s} \gamma_{t}}=O(t-s)$.)

The "horizontal" equations

Instead of "differentiating", we use finite differences \Rightarrow horizontal Taylor expansion:

$$
F(y)-F(x)-\nabla_{h} F(x)\binom{y^{1}-x^{1}}{y^{2}-x^{2}}-\nabla_{3} F(x) \vartheta_{x y}=R_{x y}
$$

To avoid multiplication, a better formulation is

The "horizontal" equations

Instead of "differentiating", we use finite differences \Rightarrow horizontal Taylor expansion:

$$
F(y)-F(x)-\nabla_{h} F(x)\binom{y^{1}-x^{1}}{y^{2}-x^{2}}-\nabla_{3} F(x) \vartheta_{x y}=R_{x y}
$$

Imposing $F\left(\gamma_{s}\right)=F\left(\gamma_{t}\right)$ gives

$$
\left(\delta \gamma_{s t}^{1}, \delta \gamma_{s t}^{2}\right)=-\left(\nabla_{h} F\left(\gamma_{s}\right)\right)^{-1} R_{\gamma_{s} \gamma_{t}}+o(t-s)
$$

The "horizontal" equations

Instead of "differentiating", we use finite differences \Rightarrow horizontal Taylor expansion:

$$
F(y)-F(x)-\nabla_{h} F(x)\binom{y^{1}-x^{1}}{y^{2}-x^{2}}-\nabla_{3} F(x) \vartheta_{x y}=R_{x y}
$$

Imposing $F\left(\gamma_{s}\right)=F\left(\gamma_{t}\right)$ gives

$$
\left(\delta \gamma_{s t}^{1}, \delta \gamma_{s t}^{2}\right)=-\left(\nabla_{h} F\left(\gamma_{s}\right)\right)^{-1} R_{\gamma_{s} \gamma_{t}}+o(t-s)
$$

To avoid multiplication, a better formulation is

$$
\left(\delta \gamma_{s t}^{1}, \delta \gamma_{s t}^{2}\right)=-\left(\nabla_{h} F(p)\right)^{-1}\left(R_{p \gamma_{t}}-R_{p \gamma_{s}}\right)
$$

The LSDE

Definition (LSDE)

Let p be non degenerate for $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1}$.

The LSDE

Definition (LSDE)

Let p be non degenerate for $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1}$. We say $\gamma: I \rightarrow \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

$$
\left\{\left(\delta \gamma_{s t}^{1}, \delta \gamma_{s t}^{2}\right)=-\left(\nabla_{h} F(p)\right)^{-1}\left(R_{p \gamma_{t}}-R_{p \gamma_{s}}\right)\right.
$$

The LSDE

Definition (LSDE)

Let p be non degenerate for $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1}$. We say $\gamma: I \rightarrow \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

$$
\begin{cases}\left(\delta \gamma_{s t}^{1}, \delta \gamma_{s t}^{2}\right) & =-\left(\nabla_{h} F(p)\right)^{-1}\left(R_{p \gamma_{t}}-R_{p \gamma_{s}}\right) \\ \vartheta_{\gamma s \gamma_{t}} & =t-s+o(t-s)\end{cases}
$$

for every $s, t \in I$.
for s, t sufficiently close.

The LSDE

Definition (LSDE)

Let p be non degenerate for $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1}$. We say $\gamma: I \rightarrow \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

$$
\begin{cases}\left(\delta \gamma_{s t}^{1}, \delta \gamma_{s t}^{2}\right) & =-\left(\nabla_{h} F(p)\right)^{-1}\left(R_{p \gamma_{t}}-R_{p \gamma_{s}}\right) \\ \vartheta_{\gamma_{s} \gamma_{t}} & =t-s+o(t-s)\end{cases}
$$

for every $s, t \in I$.
■ The "horizontal equation" yields that $t \mapsto F\left(\gamma_{t}\right)$ is constant.
for s, t sufficiently close.

The LSDE

Definition (LSDE)

Let p be non degenerate for $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1}$. We say $\gamma: I \rightarrow \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

$$
\begin{cases}\left(\delta \gamma_{s t}^{1}, \delta \gamma_{s t}^{2}\right) & =-\left(\nabla_{h} F(p)\right)^{-1}\left(R_{p \gamma_{t}}-R_{p \gamma_{s}}\right) \\ \vartheta_{\gamma s \gamma_{t}} & =t-s+o(t-s)\end{cases}
$$

for every $s, t \in I$.
■ The "horizontal equation" yields that $t \mapsto F\left(\gamma_{t}\right)$ is constant.
■ The "vertical equation" gives that

$$
d\left(\gamma_{s}, \gamma_{t}\right) \geq c|t-s|^{1 / 2}
$$

for s, t sufficiently close.

Existence of solutions

Theorem (Existence)
Let $\alpha>0$ and p be non degenerate for $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1, \alpha}$. Then, there exists $\delta>0$ and $\gamma:[-\delta, \delta] \rightarrow \mathbb{H}$ solving the LSDE with $\gamma_{0}=p$.

- Proof via Leray-Schauder fixed point on a subset of $C^{\frac{1+\alpha}{2}}([-\delta, \delta]$;
Need of $\alpha>0$: use Young integral (sewing lemma) to move from

Existence of solutions

Theorem (Existence)

Let $\alpha>0$ and p be non degenerate for $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1, \alpha}$. Then, there exists $\delta>0$ and $\gamma:[-\delta, \delta] \rightarrow \mathbb{H}$ solving the LSDE with $\gamma_{0}=p$.

- Proof via Leray-Schauder fixed point on a subset of $C^{\frac{1+\alpha}{2}}\left([-\delta, \delta] ; \mathbb{R}^{3}\right)$.
- Need of $\alpha>0$: use Young integral (sewing lemma) to move from

$$
\vartheta_{\gamma_{s} \gamma_{t}}=t-s+o(t-s)
$$

to

$$
\delta \gamma_{s t}^{3}=-\int_{s}^{t} \gamma_{r}^{2} \mathrm{~d} \gamma_{r}^{1}+\int_{s}^{t} \gamma_{r}^{1} \mathrm{~d} \gamma_{r}^{2}+(t-s) .
$$

Surjectivity of solutions (on the level set)

"Horizontal equation" \Rightarrow solutions to the LSDE satisfy $t \mapsto F\left(\gamma_{t}\right)$ constant.

Surjectivity of solutions (on the level set)

"Horizontal equation" \Rightarrow solutions to the LSDE satisfy $t \mapsto F\left(\gamma_{t}\right)$ constant.

Theorem (surjectivity)

Let p be non degenerate for $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1}$. Let $\gamma: I \rightarrow \mathbb{H}$ solve the LSDE with $\gamma_{0}=p$. Then, there exists $\varepsilon>0$ such that

$$
F^{-1}(F(p)) \cap B_{\varepsilon}(p)=\gamma(I) \cap B_{\varepsilon}(p) .
$$

[^1]Proo' is a combination of two lemmas:

Surjectivity of solutions (on the level set)

"Horizontal equation" \Rightarrow solutions to the LSDE satisfy $t \mapsto F\left(\gamma_{t}\right)$ constant.

Theorem (surjectivity)

Let p be non degenerate for $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1}$. Let $\gamma: I \rightarrow \mathbb{H}$ solve the LSDE with $\gamma_{0}=p$. Then, there exists $\varepsilon>0$ such that

$$
F^{-1}(F(p)) \cap B_{\varepsilon}(p)=\gamma(I) \cap B_{\varepsilon}(p) .
$$

No need of $C_{h}^{1, \alpha}$ (but we do not know how to get existence...)
Proof is a combination of two lemmas:
(due to non degeneracy of p) \Rightarrow we attach a region of injectivity 'for the level set) at every

Surjectivity of solutions (on the level set)

"Horizontal equation" \Rightarrow solutions to the LSDE satisfy $t \mapsto F\left(\gamma_{t}\right)$ constant.

Theorem (surjectivity)

Let p be non degenerate for $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1}$. Let $\gamma: I \rightarrow \mathbb{H}$ solve the LSDE with $\gamma_{0}=p$. Then, there exists $\varepsilon>0$ such that

$$
F^{-1}(F(p)) \cap B_{\varepsilon}(p)=\gamma(I) \cap B_{\varepsilon}(p) .
$$

No need of $C_{h}^{1, \alpha}$ (but we do not know how to get existence...)
Proof is a combination of two lemmas:
■ "Horizontal injectivity" (due to non degeneracy of p) \Rightarrow we attach a region of injectivity (for the level set) at every γ_{t};

Surjectivity of solutions (on the level set)

"Horizontal equation" \Rightarrow solutions to the LSDE satisfy $t \mapsto F\left(\gamma_{t}\right)$ constant.

Theorem (surjectivity)

Let p be non degenerate for $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1}$. Let $\gamma: I \rightarrow \mathbb{H}$ solve the LSDE with $\gamma_{0}=p$. Then, there exists $\varepsilon>0$ such that

$$
F^{-1}(F(p)) \cap B_{\varepsilon}(p)=\gamma(I) \cap B_{\varepsilon}(p) .
$$

No need of $C_{h}^{1, \alpha}$ (but we do not know how to get existence...)
Proof is a combination of two lemmas:
■ "Horizontal injectivity" (due to non degeneracy of p) \Rightarrow we attach a region of injectivity (for the level set) at every γ_{t};
■ "Smart choice of t " As t varies, such regions at γ_{t} cover a neighbourhood of p.

Lemma "Horizontal injectivity"
Let $\nabla_{h} F(p)$ be invertible. There exists $\varepsilon>0$ such that, if $x, y \in B_{\varepsilon}(p)$,

$$
F(x)=F(y) \quad \text { and } \quad\left|\vartheta_{x y}\right|^{1 / 2} \leq\left|y^{1}-x^{1}\right|+\left|y^{2}-x^{2}\right| \quad \Rightarrow \quad x=y .
$$

Lemma "Horizontal injectivity"

Let $\nabla_{h} F(p)$ be invertible. There exists $\varepsilon>0$ such that, if $x, y \in B_{\varepsilon}(p)$,

$$
F(x)=F(y) \quad \text { and } \quad\left|\vartheta_{x y}\right|^{1 / 2} \leq\left|y^{1}-x^{1}\right|+\left|y^{2}-x^{2}\right| \quad \Rightarrow \quad x=y .
$$

Proof: Horizontal Taylor expansion $\Rightarrow \nabla_{h} F(x)\left(y^{1}-x^{1}, y^{2}-x^{2}\right)=o(d(x, y))$

Lemma "Horizontal injectivity"

Let $\nabla_{h} F(p)$ be invertible. There exists $\varepsilon>0$ such that, if $x, y \in B_{\varepsilon}(p)$,

$$
F(x)=F(y) \quad \text { and } \quad\left|\vartheta_{x y}\right|^{1 / 2} \leq\left|y^{1}-x^{1}\right|+\left|y^{2}-x^{2}\right| \quad \Rightarrow \quad x=y .
$$

Proof: Horizontal Taylor expansion $\Rightarrow \nabla_{h} F(x)\left(y^{1}-x^{1}, y^{2}-x^{2}\right)=o(d(x, y))$

Lemma "Smart choice of t "

If $\varepsilon>0$ is small enough, for every $x \in B_{\varepsilon}(p)$, there exists $t \in I$ with

$$
\left|\vartheta_{\gamma_{s} \gamma_{t}}\right|^{1 / 2} \leq\left|\delta \gamma_{s t}^{1}\right|+\left|\delta \gamma_{s t}^{2}\right|
$$

Lemma "Horizontal injectivity"

Let $\nabla_{h} F(p)$ be invertible. There exists $\varepsilon>0$ such that, if $x, y \in B_{\varepsilon}(p)$,

$$
F(x)=F(y) \quad \text { and } \quad\left|\vartheta_{x y}\right|^{1 / 2} \leq\left|y^{1}-x^{1}\right|+\left|y^{2}-x^{2}\right| \quad \Rightarrow \quad x=y .
$$

Proof: Horizontal Taylor expansion $\Rightarrow \nabla_{h} F(x)\left(y^{1}-x^{1}, y^{2}-x^{2}\right)=o(d(x, y))$

Lemma "Smart choice of t "

If $\varepsilon>0$ is small enough, for every $x \in B_{\varepsilon}(p)$, there exists $t \in I$ with

$$
\left|\vartheta_{\gamma_{s} \gamma_{t}}\right|^{1 / 2} \leq\left|\delta \gamma_{s t}^{1}\right|+\left|\delta \gamma_{s t}^{2}\right|
$$

Proof: Use the "vertical" equation, $\vartheta_{\gamma_{s} \gamma_{t}}=t-s+o(t-s)$.

Uniqueness of solutions

Lemma (Local uniqueness)
 Any two solutions - to the 'SrE with $\mathrm{n}_{0}=\mathrm{h}_{0}=\mathrm{p}$ coincide on a neighbourhood of $t=0$

Since both $\gamma, \bar{\gamma}$, parametrize $F^{-1}(F(p))$, one has

Uniqueness of solutions

Lemma (Local uniqueness)
Any two solutions $\gamma, \bar{\gamma}$ to the LSDE with $\gamma_{0}=\bar{\gamma}_{0}=p$ coincide on a neighbourhood of $t=0$.

The "vertical equation" gives

Uniqueness of solutions

Lemma (Local uniqueness)
Any two solutions $\gamma, \bar{\gamma}$ to the LSDE with $\gamma_{0}=\bar{\gamma}_{0}=p$ coincide on a neighbourhood of $t=0$.

Proof: Since both $\gamma, \bar{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$
\gamma_{t}=\bar{\gamma}_{\varphi(t)} .
$$

The "vertical equation" gives

Divide by t

Uniqueness of solutions

Lemma (Local uniqueness)

Any two solutions $\gamma, \bar{\gamma}$ to the LSDE with $\gamma_{0}=\bar{\gamma}_{0}=p$ coincide on a neighbourhood of $t=0$.

Proof: Since both $\gamma, \bar{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$
\gamma_{t}=\bar{\gamma}_{\varphi(t)} .
$$

The "vertical equation" gives

$$
t-s+o(t-s)=\vartheta_{\gamma_{s} \gamma_{t}}=\vartheta_{\bar{\gamma}_{\varphi}(s)} \bar{\gamma}_{\varphi(t)}=\varphi(t)+\varphi(s)+o(\varphi(t)-\varphi(s)) .
$$

Uniqueness of solutions

Lemma (Local uniqueness)

Any two solutions $\gamma, \bar{\gamma}$ to the LSDE with $\gamma_{0}=\bar{\gamma}_{0}=p$ coincide on a neighbourhood of $t=0$.

Proof: Since both $\gamma, \bar{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$
\gamma_{t}=\bar{\gamma}_{\varphi(t)} .
$$

The "vertical equation" gives

$$
t-s+o(t-s)=\vartheta_{\gamma_{s} \gamma_{t}}=\vartheta_{\bar{\gamma}_{\varphi(s)} \bar{\gamma}_{\varphi(t)}}=\varphi(t)+\varphi(s)+o(\varphi(t)-\varphi(s)) .
$$

Divide by $t-s$ and let $s \rightarrow t \Rightarrow$

$$
\frac{d \varphi}{d t}=1 \quad \Rightarrow \quad \varphi(t)=t
$$

Further properties

Theorem (Area formula)

Let $\gamma: I \rightarrow \mathbb{H}$ solve the LSDE. Then, for every interval $[a, b] \subseteq I$,

$$
\mathcal{S}^{2}(\gamma([a, b]))=\mathcal{L}^{1}([a, b]) .
$$

Actually we prove a more general Area formula for nice "vertical curves".
Theorem (Coarea formula)
Let $F: \mathbb{H} \rightarrow \mathbb{R}^{2}, F \in C_{h}^{1, \alpha}$. Then for $A \subseteq \mathbb{H}$,

$$
\int_{A} J_{h} F \mathrm{~d} \mathscr{L}^{3}=\int_{\mathbb{R}^{2}} \mathcal{S}^{2}\left(A \cap F^{-1}(z)\right) \mathrm{d} \mathscr{L}^{2}(z) .
$$

Proof uses area formula and blow-up argument. (Case $\alpha=0$ is open).

Examples of level sets

Part of our arguments together with Whitney extension theorem \rightarrow examples of $F \in C_{h}^{1, \alpha}$ with "bad" level sets.

Then there an extension $F \in C^{1, \alpha}-h$ such that $F^{\prime}(x)=\nabla_{h} F(x)$ for $x \in K$. Then $K=\eta(I) F(x)=0$ and $F^{\prime}(x)=I d$.

Examples of level sets

Part of our arguments together with Whitney extension theorem \rightarrow examples of $F \in C_{h}^{1, \alpha}$ with "bad" level sets.

Theorem (Whitney (Vodopyanov '06))

Let $K \subseteq \mathbb{H}$ be compact, $\alpha \in(0,1)$ and $F: K \rightarrow \mathbb{R}^{2}, F^{\prime}: K \rightarrow \mathbb{R}^{2 \times 2}$ with

$$
\begin{gathered}
\left|F(x)-F(y)-F^{\prime}(x) \cdot\left(y^{1}-x^{1}, y^{2}-x^{2}\right)\right| \leq c \mathrm{~d}(x, y)^{1+\alpha} \\
\left|F^{\prime}(y)-F^{\prime}(x)\right| \leq c \mathrm{~d}(x, y)^{\alpha} .
\end{gathered}
$$

Then there an extension $F \in C^{1, \alpha}-h$ such that $F^{\prime}(x)=\nabla_{h} F(x)$ for $x \in K$.

Examples of level sets

Part of our arguments together with Whitney extension theorem \rightarrow examples of $F \in C_{h}^{1, \alpha}$ with "bad" level sets.

Theorem (Whitney (Vodopyanov '06))

Let $K \subseteq \mathbb{H}$ be compact, $\alpha \in(0,1)$ and $F: K \rightarrow \mathbb{R}^{2}, F^{\prime}: K \rightarrow \mathbb{R}^{2 \times 2}$ with

$$
\begin{gathered}
\left|F(x)-F(y)-F^{\prime}(x) \cdot\left(y^{1}-x^{1}, y^{2}-x^{2}\right)\right| \leq \operatorname{cd}(x, y)^{1+\alpha} \\
\left|F^{\prime}(y)-F^{\prime}(x)\right| \leq c \mathrm{~d}(x, y)^{\alpha} .
\end{gathered}
$$

Then there an extension $F \in C^{1, \alpha}-h$ such that $F^{\prime}(x)=\nabla_{h} F(x)$ for $x \in K$.
Strategy: for $\left(\eta^{1}, \eta^{2}\right): I \rightarrow \mathbb{R}^{2} \frac{1+\alpha}{2}$-Hölder, "lift" η^{3} such that

$$
\vartheta_{\eta_{s}^{3} \eta_{t}^{3}}=t-s+o(t-s) .
$$

Then $K=\eta(I) F(x)=0$ and $F^{\prime}(x)=\mathrm{Id}$.

To check that condition

$$
\left|F(x)-F(y)-F^{\prime}(x) \cdot\left(y^{1}-x^{1}, y^{2}-x^{2}\right)\right| \leq c \mathrm{~d}(x, y)^{1+\alpha}
$$

holds $\rightarrow x=\eta_{s}, y=\eta_{t}$

Since $1+\alpha>1$ and we argue on a small interval it is equivalent to prove
which is satisfied because $\left(\eta^{1}, \eta^{2}\right)$ are $\frac{1+\alpha}{2}$-Hölder continuous and

To check that condition

$$
\left|F(x)-F(y)-F^{\prime}(x) \cdot\left(y^{1}-x^{1}, y^{2}-x^{2}\right)\right| \leq c \mathrm{~d}(x, y)^{1+\alpha}
$$

holds $\rightarrow x=\eta_{s}, y=\eta_{t}$

$$
\left|\delta \eta_{s t}^{1}\right|+\left|\delta \eta_{s t}^{2}\right| \leq c \mathrm{c}\left(\eta_{s}, \eta_{t}\right)^{1+\alpha} .
$$

Since $1+\alpha>1$ and we argue on a small interval it is equivalent to prove

$$
\left|\delta \eta_{s t}^{1}\right|+\left|\delta \eta_{s t}^{2}\right| \leq c\left|\vartheta_{\eta_{s} \eta_{t}}\right|^{\frac{1+\alpha}{2}},
$$

which is satisfied because $\left(\eta^{1}, \eta^{2}\right)$ are $\frac{1+\alpha}{2}-H$ ölder continuous and

To check that condition

$$
\left|F(x)-F(y)-F^{\prime}(x) \cdot\left(y^{1}-x^{1}, y^{2}-x^{2}\right)\right| \leq \operatorname{cd}(x, y)^{1+\alpha}
$$

holds $\rightarrow x=\eta_{s}, y=\eta_{t}$

$$
\left|\delta \eta_{s t}^{1}\right|+\left|\delta \eta_{s t}^{2}\right| \leq c \mathrm{~d}\left(\eta_{s}, \eta_{t}\right)^{1+\alpha} .
$$

Since $1+\alpha>1$ and we argue on a small interval it is equivalent to prove

$$
\left|\delta \eta_{s t}^{1}\right|+\left|\delta \eta_{s t}^{2}\right| \leq c\left|\vartheta_{\eta_{s} \eta_{t}}\right|^{\frac{1+\alpha}{2}},
$$

which is satisfied because $\left(\eta^{1}, \eta^{2}\right)$ are $\frac{1+\alpha}{2}$-Hölder continuous and

$$
|t-s| \leq c|t-s+o(t-s)|=c\left|\vartheta_{\eta_{s} \eta_{t}}\right| .
$$

Lift of surfaces

Can we produce examples of higher dimension? Consider the case $F: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}^{4}$, so that we expect a 2-dimensional surface $\varphi_{s}=\varphi_{s^{1}, s^{2}}$. Notation:

$$
(x, \tilde{x})=\left(x^{1}, x^{2}, x^{3}, \tilde{x}^{1}, \tilde{x}^{2}, \tilde{x}^{3}\right) \in \mathbb{H} \times \mathbb{H}
$$

contact forms ϑ and $\tilde{\vartheta}$

$$
\vartheta_{x y}:=\left(y^{3}-x^{3}\right)+x^{2}\left(y^{1}-x^{1}\right)-x^{1}\left(y^{2}-x^{2}\right) .
$$

How to integrate it?
Possible approach: ex end calculus to
1 "rough" differential forms (R. Zust \rightarrow Young case)
2 solve exterior differential systems (Frobenius theorem)

Lift of surfaces

Can we produce examples of higher dimension? Consider the case $F: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}^{4}$, so that we expect a 2-dimensional surface $\varphi_{s}=\varphi_{s^{1}, s^{2}}$. Notation:

$$
(x, \tilde{x})=\left(x^{1}, x^{2}, x^{3}, \tilde{x}^{1}, \tilde{x}^{2}, \tilde{x}^{3}\right) \in \mathbb{H} \times \mathbb{H}
$$

contact forms ϑ and $\tilde{\vartheta}$

$$
\vartheta_{x y}:=\left(y^{3}-x^{3}\right)+x^{2}\left(y^{1}-x^{1}\right)-x^{1}\left(y^{2}-x^{2}\right) .
$$

Problem: analogue of the "vertical" condition $\vartheta_{\eta_{s} \eta_{t}}=t-s+o(t-s)$?

$$
\binom{\vartheta_{\eta_{s} \eta_{t}}}{\tilde{\vartheta}_{s s} \eta_{t}}=\left(\begin{array}{ll}
a_{s}^{11} & a_{s}^{12} \\
a_{s}^{21} & a_{s}^{22}
\end{array}\right)\binom{t^{1}-s^{1}}{t^{2}-s^{2}}+o(t-s),
$$

How to integrate it?
[1] "rough" differential forms (R. Zust \rightarrow Young case)
[0. solve exterior differential systems (Frobenius theorem)

Lift of surfaces

Can we produce examples of higher dimension? Consider the case $F: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}^{4}$, so that we expect a 2 -dimensional surface $\varphi_{s}=\varphi_{s^{1}, s^{2}}$. Notation:

$$
(x, \tilde{x})=\left(x^{1}, x^{2}, x^{3}, \tilde{x}^{1}, \tilde{x}^{2}, \tilde{x}^{3}\right) \in \mathbb{H} \times \mathbb{H}
$$

contact forms ϑ and $\tilde{\vartheta}$

$$
\vartheta_{x y}:=\left(y^{3}-x^{3}\right)+x^{2}\left(y^{1}-x^{1}\right)-x^{1}\left(y^{2}-x^{2}\right) .
$$

Problem: analogue of the "vertical" condition $\vartheta_{\eta_{s} \eta_{t}}=t-s+o(t-s)$?

$$
\binom{\vartheta_{\eta_{s \eta_{t}}}}{\tilde{\vartheta}_{s s} \eta_{t}}=\left(\begin{array}{cc}
a_{s}^{11} & a_{s}^{12} \\
a_{s}^{21} & a_{s}^{22}
\end{array}\right)\binom{t^{1}-s^{1}}{t^{2}-s^{2}}+o(t-s),
$$

How to integrate it?
Possible approach: extend calculus to
[1 "rough" differential forms (R. Zust \rightarrow Young case)
[solve exterior differential systems (Frobenius theorem)

A sewing lemma for differential forms

R. Zust (2010) showed that the integral of a k-form on any cube $Q \subseteq \mathbb{R}^{k}$

$$
\int_{Q} f \mathrm{~d} g^{1} \wedge \mathrm{~d} g^{2} \wedge \ldots \wedge \mathrm{~d} g^{k}
$$

is "robustly" defined (continuous limit w.r.t. approximations) if

$$
f \in C^{\alpha}, g^{1} \in C^{\beta_{1}}, \ldots, g^{k} \in C^{\beta_{k}} \quad \text { with } \alpha+\beta_{1}+\ldots+\beta_{k}>k .
$$

(Joint with E. Stepanov) generalize his result as a sewing lemma for k-forms
Fxamnles from stochastic analysic? (Rrownian shoets,

A sewing lemma for differential forms

R. Zust (2010) showed that the integral of a k-form on any cube $Q \subseteq \mathbb{R}^{k}$

$$
\int_{Q} f \mathrm{~d} g^{1} \wedge \mathrm{~d} g^{2} \wedge \ldots \wedge \mathrm{~d} g^{k}
$$

is "robustly" defined (continuous limit w.r.t. approximations) if

$$
f \in C^{\alpha}, g^{1} \in C^{\beta_{1}}, \ldots, g^{k} \in C^{\beta_{k}} \quad \text { with } \alpha+\beta_{1}+\ldots+\beta_{k}>k .
$$

(Joint with E. Stepanov) generalize his result as a sewing lemma for k-forms
Examples from stochastic analysis? (Brownian sheets,

A sewing lemma for differential forms

R. Zust (2010) showed that the integral of a k-form on any cube $Q \subseteq \mathbb{R}^{k}$

$$
\int_{Q} f \mathrm{~d} g^{1} \wedge \mathrm{~d} g^{2} \wedge \ldots \wedge \mathrm{~d} g^{k}
$$

is "robustly" defined (continuous limit w.r.t. approximations) if

$$
f \in C^{\alpha}, g^{1} \in C^{\beta_{1}}, \ldots, g^{k} \in C^{\beta_{k}} \quad \text { with } \alpha+\beta_{1}+\ldots+\beta_{k}>k .
$$

(Joint with E. Stepanov) generalize his result as a sewing lemma for k-forms
Examples from stochastic analysis? (Brownian sheets,...)

A Frobenius theorem in Hölder classes

The (Euclidean) implicit function for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ can be seen as an instance of Frobenius theorem, for systems of differential equations.

Another example is the "Pfaff" system for a parametrized surface or equivalently Problem: formulate (necessary) and sufficient conditions to be well-posed.

A Frobenius theorem in Hölder classes

The (Euclidean) implicit function for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ can be seen as an instance of Frobenius theorem, for systems of differential equations.

Another example is the "Pfaff" system for a parametrized surface $\varphi(s)=\varphi\left(s^{1}, s^{2}\right)$

$$
\left\{\begin{array}{l}
\partial_{s^{1}} \varphi_{s}=\sum_{i=1}^{n} f^{i}\left(s, \varphi_{s}\right) \partial_{s^{1}} g_{s}^{i} \\
\partial_{s^{2}} \varphi_{s}=\sum_{i=1}^{n} f^{i}\left(s, \varphi_{s}\right) \partial_{s^{2}} g_{s}^{i},
\end{array}\right.
$$

or equivalently

$$
\delta \varphi_{s t}=\sum_{i=1}^{n} f^{i}\left(s, \eta_{s}\right) \delta g_{s t}^{i}+o(t-s) .
$$

A Frobenius theorem in Hölder classes

The (Euclidean) implicit function for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ can be seen as an instance of Frobenius theorem, for systems of differential equations.

Another example is the "Pfaff" system for a parametrized surface
$\varphi(s)=\varphi\left(s^{1}, s^{2}\right)$

$$
\left\{\begin{array}{l}
\partial_{s^{1}} \varphi_{s}=\sum_{i=1}^{n} f^{i}\left(s, \varphi_{s}\right) \partial_{s^{1}} g_{s}^{i} \\
\partial_{s^{2}} \varphi_{s}=\sum_{i=1}^{n} f^{i}\left(s, \varphi_{s}\right) \partial_{s^{2}} g_{s}^{i},
\end{array}\right.
$$

or equivalently

$$
\delta \varphi_{s t}=\sum_{i=1}^{n} f^{i}\left(s, \eta_{s}\right) \delta g_{s t}^{i}+o(t-s) .
$$

Problem: formulate (necessary) and sufficient conditions to be well-posed.
Partial positive results. In particular, g must be more than $\frac{2}{3}$-Hölder continuous.

A Frobenius theorem in Hölder classes

The (Euclidean) implicit function for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ can be seen as an instance of Frobenius theorem, for systems of differential equations.

Another example is the "Pfaff" system for a parametrized surface
$\varphi(s)=\varphi\left(s^{1}, s^{2}\right)$

$$
\left\{\begin{array}{l}
\partial_{s^{1}} \varphi_{s}=\sum_{i=1}^{n} f^{i}\left(s, \varphi_{s}\right) \partial_{s^{1}} g_{s}^{i} \\
\partial_{s^{2}} \varphi_{s}=\sum_{i=1}^{n} f^{i}\left(s, \varphi_{s}\right) \partial_{s^{2}} g_{s}^{i},
\end{array}\right.
$$

or equivalently

$$
\delta \varphi_{s t}=\sum_{i=1}^{n} f^{i}\left(s, \eta_{s}\right) \delta g_{s t}^{i}+o(t-s) .
$$

Problem: formulate (necessary) and sufficient conditions to be well-posed.
Partial positive results. In particular, g must be more than $\frac{2}{3}$-Hölder continuous.

Further open problems

- Relax $\alpha>0$ condition:
- compactness as $\alpha \rightarrow 0$,
- a.e. level set?
- other notions of integrals?

Splitting case $F: \mathbb{H} \rightarrow \mathbb{R}$ - no need of integrals!

Further open problems

- Relax $\alpha>0$ condition:
- compactness as $\alpha \rightarrow 0$,
- a.e. level set?
- other notions of integrals?
- Splitting case $F: \mathbb{H} \rightarrow \mathbb{R}$ - no need of integrals!

[^0]: *Joint work with V. Magnani (UNIPI) and E. Stepanov (S.Pb UNIV. \& STEKLOV)

[^1]: No need of $C_{h}^{1, \alpha}$ (but we do not know how to get existence

