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An implicit function theorem on Lie groups

Implicit function theorem

Regular level sets of a C1 map between Euclidean spaces have a

local C1 parametrization.

Problem
What happens if we replace Euclidean spaces with more general Lie groups?

We study the simplest non-trivial case: F : H ≈ R3 → Rk .
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Heisenberg group: differential structure

The group H is a non-commutative Lie group, with two generators.

On H = R3, x = (x1, x2, x3), consider the two (horizontal) vector fields

X1(x) := ∂1 − x2∂3 X2(x) := ∂2 + x1∂3

[X1,X2] = [∂1 − x2∂3, ∂2 + x1∂3] = 2∂3 (Hörmander condition).

Dual description: contact 1-form

θ = dx3 + x2dx1 − x1dx2 ⇒ dθ = −2dx1 ∧ dx2

Horizontal tangent at x ∈ H is span {X1(x),X2(x)} = Ker θx .
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Heisenberg group: curves and distance

A (smooth) curve η : I → H is horizontal if, for t ∈ I,

θηt (η̇t ) = η̇3
t + η2

t η̇
1
t − η1

t η̇
2
t = 0.

Imposing X1(x) X2(x) are orthonormal⇒ CC-distance

d(x , y) := inf
{∫ 1

0
|η̇t | : η horizontal, η0 = x , η1 = y .

}
Equivalence

d(x , y) ≈ |y1 − x1|+ |y2 − x2|+ |ϑxy |1/2 ,

where a “discrete” contact form appears

ϑxy := (y3 − x3) + x2(y1 − x1)− x1(y2 − x2).

(Recall θ = dx3 + x2 dx1 − x1 dx2).
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Examples

1 Horizontal curve↔

η3
t − η3

s =

∫ t

s
η2

r η̇
1
r dr −

∫ r

r
η1

r η̇
2
r dr .

If (η1
t , η

2
t ) = (η1

s , η
2
s )→ η3

t − η3
s = signed area.

2 If (η1, η2) are 1+α
2 -Hölder continuous→ horizontal lift

θηt (η̇t ) = 0

in the sense Young integrals or in the “incremental” sense

ϑηsηt = (η3
t − η3

s ) + η2
s (η1

t − η1
s )− η1

s (η2
t − η2

s ) = o(t − s)

3 If α = 0, pure area rough path

n−1/2(cos(nt), sin(nt)) n→∞.

The limit of horizontal lifts is not horizontal!



Heisenberg group: regular maps

We “measure” regularity of F : H→ Rk in terms of horizontal derivatives

∇hF (x) := (X1F (x),X2F (x)) .

p ∈ H is non degenerate for F if ∇hF (p) has maximum rank

For α ∈ (0, 1), F ∈ C1,α
h if x 7→ ∇hF (x) is (well-defined and) α-Hölder

continuous, (w.r.t. d). (F ∈ C1
h if just continuous).

Fact: There are F ∈ C1,α nowhere (Euclidean) differentiable on a set of
positive Lebesgue measure.

Problem
Locally parametrize F−1(F (p)) for F ∈ C1

h for non degenerate p’s.
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Literature on level sets in Heisenberg group, F : H → Rk

k = 1: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, . . . )
⇒ “intrinsic graphs”, parametrized surfaces via group operation.
(Interesting connection with non-linear PDE’s, recall talk by Katrin
Fässler).

k = 2: Magnani-Leonardi (2010)⇒ continuous curves, intersections of two
intrinsic surfaces.

k = 2: Kozhevnikov (2011)⇒ β-Hölder continuous curves (β < 1/2) via a
sub-Riemannian Reifenberg-type argument.

For k = 2, parametrizations are quite implicit: is a “good calculus” missing?

Main results (Magnani-Stepanov-T., 2016): k = 2.

Explicit “Level Set Differential Equation” (LSDE).

Prove existence, uniqueness, and stability w.r.t. approximations for
F ∈ C1,α

h (α > 0) using tools from Young integration (Rough paths).

Prove area formula and (re)-obtain a coarea formula for F ∈ C1,α
h .
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The Euclidean ODE argument

Let F : R3 → R2 be C1.

Write x = (x1, x2, x3) ∈ R3, ∂i = ∂
∂x i , i = 1, 2, 3,

F = (F 1,F 2) and

∇F =

(
∂1F 1 ∂2F 1 ∂3F 1

∂1F 2 ∂2F 2 ∂3F 2

)
= (∇12F ,∇3F ) with ∇12F invertible.

Differentiating F (γt ) = c,(
γ̇1

t

γ̇2
t

)
= − (∇12F (γt ))−1∇3F (γt )γ̇

3
t .

Impose γ̇3
t = 1 and solve (Peano) for (γ1

t , γ
2
t ). (Uniqueness of solutions?)
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A naive approach to the LSDE

In H ∼ R3, recast the ODE(
γ̇1

t

γ̇2
t

)
= − (∇12F (γt ))−1∇3F (γt )γ̇

3
t .

in terms of the horizontal derivatives X1F , X2F (change of coordinates):(
γ̇1

t

γ̇2
t

)
= − (∇hF (γt ))−1∇3F (γt )θγt (γ̇t ).

In analogy with γ̇3
t = 1, set θγt (γ̇t ) = 1⇒ non-horizontal, (vertical), curve.

Two difficulties:

1 The “vertical derivative” ∇3F may not be defined, even if F ∈ C1,α with
0 < α < 1.

2 The intrinsic distance is 1/2-Hölder along “vertical” directions⇒ γ is
truly Hölder⇒ γ̇t is not defined.
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Heuristics

Here’s a “rule of thumb” to define(
γ̇1

t

γ̇2
t

)
= − (∇hF (γt ))−1∇3F (γt )θγt (γ̇t ), θγt (γ̇t ) = 1.

1 “Integrating” θγt (γ̇t ) = 1 gives ϑγsγt = t − s,

d(γs, γt ) ≈ |t − s|1/2 ⇒ γ is (intrinsically) 1/2-Hölder.

2 Writing ∂3F = [X1,X2]F = X1(X2F )− X2(X1F ) gives

∂3F is (α− 1)-Hölder.

3 The composition (!) ∂3F (γt ) is then 1
2 · (α− 1)-Hölder.

4 Integration w.r.t. t increases regularity of “one degree”⇒(
γ1, γ2

)
is
[

1
2
· (α− 1) + 1

]
=

1 + α

2
-Hölder.

5 1+α
2 -Hölder continuity is consistent with assumption 1, closing the circle.
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5 1+α
2 -Hölder continuity is consistent with assumption 1, closing the circle.



Heuristics

Here’s a “rule of thumb” to define(
γ̇1

t

γ̇2
t
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The “vertical” equation

We adopt the point of view of “local descriptions” by finite increments and use
physicists notation

δγ i
st = γ i

t − γ i
s, for s, t ∈ I, i ∈ {1, 2, 3}.

The equation
θγt (γ̇t ) = γ̇3 + γ2

t γ̇
1
t − γ1

t γ̇
2
t = 1

becomes our vertical equation

ϑγsγt = δγ3
st + γ2

s δγ
1
st − γ2

s δγ
2
st = t − s + o(t − s).

(Compare with horizontal lift ϑγsγt = o(t − s).)
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The “horizontal” equations

Instead of “differentiating”, we use finite differences⇒ horizontal Taylor
expansion:

F (y)− F (x)−∇hF (x)

(
y1 − x1

y2 − x2

)
−∇3F (x)ϑxy = Rxy .

Imposing F (γs) = F (γt ) gives(
δγ1

st , δγ
2
st

)
= − (∇hF (γs))−1 Rγsγt + o(t − s).

To avoid multiplication, a better formulation is(
δγ1

st , δγ
2
st

)
= − (∇hF (p))−1 (Rpγt − Rpγs ) .
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The LSDE

Definition (LSDE)

Let p be non degenerate for F : H→ R2, F ∈ C1
h . We say γ : I → H is a

solution to the level set differential equation (LSDE) if it is continuous and{ (
δγ1

st , δγ
2
st
)

= − (∇hF (p))−1 (Rpγt − Rpγs )
ϑγsγt = t − s + o(t − s)

for every s, t ∈ I.

The “horizontal equation” yields that t 7→ F (γt ) is constant.

The “vertical equation” gives that

d(γs, γt ) ≥ c |t − s|1/2 ,

for s, t sufficiently close.
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Existence of solutions

Theorem (Existence)

Let α > 0 and p be non degenerate for F : H→ R2, F ∈ C1,α
h . Then, there

exists δ > 0 and γ : [−δ, δ]→ H solving the LSDE with γ0 = p.

Proof via Leray-Schauder fixed point on a subset of C
1+α

2 ([−δ, δ];R3).

Need of α > 0: use Young integral (sewing lemma) to move from

ϑγsγt = t − s + o(t − s)

to

δγ3
st = −

∫ t

s
γ2

r dγ1
r +

∫ t

s
γ1

r dγ2
r + (t − s).
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Surjectivity of solutions (on the level set)

“Horizontal equation”⇒ solutions to the LSDE satisfy t 7→ F (γt ) constant.

Theorem (surjectivity)

Let p be non degenerate for F : H→ R2, F ∈ C1
h . Let γ : I → H solve the

LSDE with γ0 = p. Then, there exists ε > 0 such that

F−1(F (p)) ∩ Bε(p) = γ(I) ∩ Bε(p).

No need of C1,α
h (but we do not know how to get existence. . . )

Proof is a combination of two lemmas:

“Horizontal injectivity” (due to non degeneracy of p)⇒ we attach a
region of injectivity (for the level set) at every γt ;

“Smart choice of t” As t varies, such regions at γt cover a neighbourhood
of p.
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Lemma “Horizontal injectivity”

Let ∇hF (p) be invertible. There exists ε > 0 such that, if x , y ∈ Bε(p),

F (x) = F (y) and |ϑxy |1/2 ≤
∣∣∣y1 − x1

∣∣∣+
∣∣∣y2 − x2

∣∣∣ ⇒ x = y .

Proof: Horizontal Taylor expansion⇒∇hF (x)(y1 − x1, y2 − x2) = o (d(x , y))

Lemma “Smart choice of t”
If ε > 0 is small enough, for every x ∈ Bε(p), there exists t ∈ I with

|ϑγsγt |
1/2 ≤

∣∣∣δγ1
st

∣∣∣+
∣∣∣δγ2

st

∣∣∣
Proof: Use the “vertical” equation, ϑγsγt = t − s + o(t − s).
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Uniqueness of solutions

Lemma (Local uniqueness)

Any two solutions γ, γ̄ to the LSDE with γ0 = γ̄0 = p coincide on a
neighbourhood of t = 0.

Proof: Since both γ, γ̄, parametrize F−1(F (p)), one has

γt = γ̄ϕ(t).

The “vertical equation” gives

t − s + o(t − s) = ϑγsγt = ϑγ̄ϕ(s)γ̄ϕ(t) = ϕ(t) + ϕ(s) + o(ϕ(t)− ϕ(s)).

Divide by t − s and let s → t ⇒

dϕ
dt

= 1 ⇒ ϕ(t) = t .
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Further properties

Theorem (Area formula)

Let γ : I → H solve the LSDE. Then, for every interval [a, b] ⊆ I,

S2(γ([a, b])) = L1([a, b]).

Actually we prove a more general Area formula for nice “vertical curves”.

Theorem (Coarea formula)

Let F : H→ R2, F ∈ C1,α
h . Then for A ⊆ H,∫

A
JhF dL 3 =

∫
R2
S2
(

A ∩ F−1(z)
)

dL 2(z).

Proof uses area formula and blow-up argument. (Case α = 0 is open).



Examples of level sets

Part of our arguments together with Whitney extension theorem→ examples
of F ∈ C1,α

h with “bad” level sets.

Theorem (Whitney (Vodopyanov ’06))

Let K ⊆ H be compact, α ∈ (0, 1) and F : K → R2, F ′ : K → R2×2 with∣∣∣F (x)− F (y)− F ′(x) · (y1 − x1, y2 − x2)
∣∣∣ ≤ cd(x , y)1+α

|F ′(y)− F ′(x)| ≤ cd(x , y)α.

Then there an extension F ∈ C1,α − h such that F ′(x) = ∇hF (x) for x ∈ K .

Strategy: for (η1, η2) : I → R2 1+α
2 -Hölder, “lift” η3 such that

ϑη3
sη

3
t

= t − s + o(t − s).

Then K = η(I) F (x) = 0 and F ′(x) = Id.
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To check that condition∣∣∣F (x)− F (y)− F ′(x) · (y1 − x1, y2 − x2)
∣∣∣ ≤ cd(x , y)1+α

holds→ x = ηs, y = ηt

|δη1
st |+ |δη2

st | ≤ cd(ηs, ηt )
1+α.

Since 1 + α > 1 and we argue on a small interval it is equivalent to prove

|δη1
st |+ |δη2

st | ≤ c|ϑηsηt |
1+α

2 ,

which is satisfied because (η1, η2) are 1+α
2 -Hölder continuous and

|t − s| ≤ c|t − s + o(t − s)| = c|ϑηsηt |.
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st |+ |δη2

st | ≤ c|ϑηsηt |
1+α

2 ,

which is satisfied because (η1, η2) are 1+α
2 -Hölder continuous and

|t − s| ≤ c|t − s + o(t − s)| = c|ϑηsηt |.



Lift of surfaces

Can we produce examples of higher dimension? Consider the case
F : H×H→ R4, so that we expect a 2-dimensional surface ϕs = ϕs1,s2 .
Notation:

(x , x̃) = (x1, x2, x3, x̃1, x̃2, x̃3) ∈ H×H

contact forms ϑ and ϑ̃

ϑxy := (y3 − x3) + x2(y1 − x1)− x1(y2 − x2).

Problem: analogue of the “vertical” condition ϑηsηt = t − s + o(t − s)?(
ϑηsηt

ϑ̃ηsηt

)
=

(
a11

s a12
s

a21
s a22

s

)(
t1 − s1

t2 − s2

)
+ o(t − s),

How to integrate it?
Possible approach: extend calculus to

1 “rough” differential forms (R. Zust→ Young case)

2 solve exterior differential systems (Frobenius theorem)
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A sewing lemma for differential forms

R. Zust (2010) showed that the integral of a k -form on any cube Q ⊆ Rk∫
Q

f dg1 ∧ dg2 ∧ . . . ∧ dgk

is “robustly” defined (continuous limit w.r.t. approximations) if

f ∈ Cα, g1 ∈ Cβ1 , . . . , gk ∈ Cβk with α + β1 + . . .+ βk > k .

(Joint with E. Stepanov) generalize his result as a sewing lemma for k -forms

Examples from stochastic analysis? (Brownian sheets,. . . )
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A Frobenius theorem in Hölder classes

The (Euclidean) implicit function for F : Rn → Rk can be seen as an instance
of Frobenius theorem, for systems of differential equations.

Another example is the “Pfaff” system for a parametrized surface
ϕ(s) = ϕ(s1, s2) {

∂s1ϕs =
∑n

i=1 f i (s, ϕs)∂s1 g i
s

∂s2ϕs =
∑n

i=1 f i (s, ϕs)∂s2 g i
s,

or equivalently

δϕst =
n∑

i=1

f i (s, ηs)δg i
st + o(t − s).

Problem: formulate (necessary) and sufficient conditions to be well-posed.

Partial positive results. In particular, g must be more than 2
3 -Hölder

continuous.
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Further open problems

Relax α > 0 condition:

- compactness as α→ 0,

- a.e. level set?

- other notions of integrals?

- Splitting case F : H→ R – no need of integrals!
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