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An implicit function theorem on Lie groups

Implicit function theorem
Regular level sets of a C' map between Euclidean spaces have a

local C' parametrization.

Problem
What happens if we replace Euclidean spaces with more general Lie groups?

We study the simplest non-trivial case: F : H ~ R® — R¥.



Structure of the talk

Introduction
Heisenberg group
LSDE: formulation
LSDE: well-posedness

Towards higher dimensional level sets
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Heisenberg group: differential structure

The group H is a non-commutative Lie group, with two generators.

m OnH = R®, x = (x', x2, x®), consider the two (horizontal) vector fields
Xi(X) =01 —x*05  Xo(X) =8+ x'0s
(X1, Xo] = [81 — X?3,8, + x' 93] = 203 (Hérmander condition).
m Dual description: contact 1-form
0=adx®+xdx' —x'd* = db=—2dx" Adx®

m Horizontal tangent at x € H is span {Xi(x), Xz(x)} = Ker 6.
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Heisenberg group: curves and distance

m A (smooth) curve n : | — H is horizontal if, for t € |,
O, (1) = 9 + e — i = 0.

m Imposing Xi(x) Xz(x) are orthonormal = CC-distance

1
dix,y) = inf{/ |7¢| - n horizontal, no = x, m1 = y.}
0

m Equivalence
d(x,y) = |yt = X'+ y? = X + [0 |2,
where a “discrete” contact form appears
Dry = (V° = x°) + X2 (v = x") = x'(y? = X°).

(Recall § = dx® + x2dx" — x" dx?).



Horizontal curve +
3 3 ! 2.1 g 1.2
Nt —Ns :/ nrﬁrdr_/ ny7y dr.
s r
If (n,nf) = (n&,n&) — ni — né = signed area.
If (n', %) are 52-Hélder continuous — horizontal lift
eﬁt(ﬁf) =0
in the sense Young integrals or in the “incremental” sense

Onene = (15 — 03) + 150 — ns) — ns(nf —n3) = o(t — 8)

If & = 0, pure area rough path
n~"/?(cos(nt),sin(nt)) N — oo.

The limit of horizontal lifts is not horizontal!
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k = 1: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, ...)
= “intrinsic graphs”, parametrized surfaces via group operation.
(Interesting connection with non-linear PDE'’s, recall talk by Katrin
Fassler).

k = 2: Magnani-Leonardi (2010) =- continuous curves, intersections of two
intrinsic surfaces.

k = 2: Kozhevnikov (2011) = B-Holder continuous curves (8 < 1/2) via a
sub-Riemannian Reifenberg-type argument.

For k = 2, parametrizations are quite implicit: is a “good calculus” missing?

Main results (Magnani-Stepanov-T., 2016): k = 2.

m Explicit “Level Set Differential Equation” (LSDE).

m Prove existence, uniqueness, and stability w.r.t. approximations for
F e C},’O‘ (o > 0) using tools from Young integration (Rough paths).

m Prove area formula and (re)-obtain a coarea formula for F € C,‘;“.
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The Euclidean ODE argument

Let F: R® — R?be C'.
m Write x = (x',x%,x%) € R%, 9, =
mF=(F' F?and

ax”’_1 2,3,

v,__:<a1/—'1 &F' OsF'

AE2 F? 03F2 ) = (V12F,V3F) with Vi2F invertible.

Differentiating F(+:) = ¢,

(3) = arton wsron

Impose 42 = 1 and solve (Peano) for (v;,~?). (Uniqueness of solutions?)



A naive approach to the LSDE



A naive approach to the LSDE

In H ~ R®, recast the ODE

( y ) —  (VaeF() " VaF ().



A naive approach to the LSDE

In H ~ R3, recast the ODE
1
(%) =~ (Ter6 " waFtnst
in terms of the horizontal derivatives Xi F, XoF (change of coordinates):

(@):—wwwm4%Hm%w¢



A naive approach to the LSDE

In H ~ R3, recast the ODE
1
(%) =~ (Ter6 " waFtnst
in terms of the horizontal derivatives Xi F, XoF (change of coordinates):

(@):—wwwm4%Hm%w¢

In analogy with 42 = 1, set 6,,(%t) = 1 = non-horizontal, (vertical), curve.

Two difficulties:



A naive approach to the LSDE

In H ~ RS, recast the ODE
1
<%>=—WMHWFVJWW.

in terms of the horizontal derivatives Xi F, XoF (change of coordinates):

(@):—wwwm*%Hm%w¢

In analogy with 42 = 1, set 6,,(%t) = 1 = non-horizontal, (vertical), curve.

Two difficulties:

The “vertical derivative” V3 F may not be defined, even if F € C"* with
O<a<.



A naive approach to the LSDE

In H ~ RS, recast the ODE
1
<%>=—WMHWFVJWW.

in terms of the horizontal derivatives Xi F, XoF (change of coordinates):

(@):—wwwm*%Hm%w¢

In analogy with 42 = 1, set 6,,(%t) = 1 = non-horizontal, (vertical), curve.

Two difficulties:
The “vertical derivative” V3 F may not be defined, even if F € C"* with
O<a<.

The intrinsic distance is 1/2-H6lder along “vertical” directions = v is
truly Hélder = 4; is not defined.
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Heuristics

Here’s a “rule of thumb” to define

( 3 ) e (VhF() VaF ()0 (e)s Oy (ir) = 1.

“Integrating” 6., (9:) = 1 gives ¥4, = t — 5,

d(vs, 1) ~ |t — s|'/? = ~ is (intrinsically) 1/2-Hélder.

Wl’itil’lg 83’: = [X1 s X2]F = X1 (XgF) — X2(X1 F) giVGS
O3F is (o — 1)-Holder.

The composition (!) 93F () is then } - (a — 1)-Holder.
Integration w.r.t. t increases regularity of “one degree” =

1 2\ . 1 _1+Ol_ N
(’y,’y)ls[§~(a—1)+1:|— 5 Hélder.

1F2-Hglder continuity is consistent with assumption 1, closing the circle.
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The “vertical” equation

We adopt the point of view of “local descriptions” by finite increments and use
physicists notation

by =~i—nt, fors telie{1,2,3}.

The equation
: -3 2-1 1.2
Oy (V) =7 + 7t — 1yt =1
becomes our vertical equation
Do = 093 + V2074 — 72075 =t — s+ o(t - s).

(Compare with horizontal lift 9, = o(t — s).)
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The “horizontal” equations

Instead of “differentiating”, we use finite differences = horizontal Taylor
expansion:

F(y) — F(x) = VaF(x) ( i; B i; ) — V3F(x)dy = Ry

Imposing F(vs) = F(vt) gives
(8981098 = = (VaF(3)) " Rory + 0t = 5).
To avoid multiplication, a better formulation is

(598:07%) = = (VF(P)) ™" (Ro, = Fipss)
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The LSDE

Definition (LSDE)
Let p be non degenerate for F: H — R?, F € C}. Wesay y: | — His a
solution to the level set differential equation (LSDE) if it is continuous and
(673, 67%) = — (VaF(P)) ™" (Rov — Rovs)
(. =t—s+o(t—>s)

forevery s, t € I.

m The “horizontal equation” yields that t — F(~;) is constant.
m The “vertical equation” gives that

d(ys, ) = clt —s'/2,

for s, t sufficiently close.
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Existence of solutions

Theorem (Existence)

Let o > 0 and p be non degenerate for F : H — R?, F € C},’“. Then, there
exists 6 > 0 and v : [—4, §] — H solving the LSDE with vo = p.

m Proof via Leray-Schauder fixed point on a subset of c'e ([-6, 3]; R3).
m Need of a > 0: use Young integral (sewing lemma) to move from

Dysye =t =5+ 0(t — 5)

to
t t
573:*/'yrzdvﬂJr/’ﬂd'yerr(f*S)-
S

s
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Surjectivity of solutions (on the level set)

“Horizontal equation” = solutions to the LSDE satisfy t — F(v:) constant.

Theorem (surjectivity)
Let p be non degenerate for F : H — R?, F € C}. Let v : | — H solve the
LSDE with 4o = p. Then, there exists £ > 0 such that

F~'(F(p)) N B:(p) = 7(/) N B-(p).

No need of C,T,’O‘ (but we do not know how to get existence. . .)

Proof is a combination of two lemmas:

m “Horizontal injectivity” (due to non degeneracy of p) = we attach a
region of injectivity (for the level set) at every ~;;

m “Smart choice of " As t varies, such regions at ~; cover a neighbourhood
of p.
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Lemma “Horizontal injectivity”
Let Vi F(p) be invertible. There exists € > 0 such that, if x, y € B-(p),

Fx)=F(y) and oy <|y' = x|+ |y’ =] = x=y.

Proof: Horizontal Taylor expansion = V,F(x)(y' — x', y? — x?) = o (d(x, y))

Lemma “Smart choice of ¢
If e > 0 is small enough, for every x € B.(p), there exists t €  with

|/l9’Ys’Yt |1/2 < ‘5’7;1

+ ’57§t

Proof: Use the “vertical” equation, 9.,,, = t — s+ o(f — s).
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Uniqueness of solutions

Lemma (Local uniqueness)

Any two solutions ~, 4 to the LSDE with v = 4, = p coincide on a
neighbourhood of t = 0.

Proof: Since both ~, ¥, parametrize F~'(F(p)), one has
Tt = Yeo(t)-
The “vertical equation” gives
t—s+0(t =) = Doy = V3 97,0) = P(1) + ¢(8) + 0o(p(t) — ©(8)).
Divide by t —sandlets — t =

g,

o = )=t



Further properties

Theorem (Area formula)
Let v : I — H solve the LSDE. Then, for every interval [a, b] C |,

S*((la, b)) = £'([a, b))

Actually we prove a more general Area formula for nice “vertical curves”.

Theorem (Coarea formula)
Let F: H — R?, F € C}'®. Then for A C H,

/AJhFd.,sﬂ3 - /RZ s° (Am F-‘(z)) d.22(2).

Proof uses area formula and blow-up argument. (Case « = 0 is open).
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Examples of level sets

Part of our arguments together with Whitney extension theorem — examples
of F € ;™ with “bad” level sets.

Theorem (Whitney (Vodopyanov '06))
Let K C H be compact, a € (0,1) and F : K — R?, F' : K — R?*2 with
F(x) = F(y) = F'(x)- (' = x",y% = x*)| < cd(x,y)"**

IF'(y) = F'(x)] < cd(x,y)".
Then there an extension F € C""® — h such that F'(x) = VnF(x) for x € K.

Strategy: for (n',7%) : | — R? 152 -Holder, “lift” »° such that
¥33=1t—85+o0(t—5).

nsn;

Then K = n(l) F(x) = 0and F'(x) = Id.
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To check that condition
F(x) = F(y)— F'(x)- (y" = x",y? = x*)| < cd(x,y)""*
holds —» x =ns, ¥y = nt

|omg] + [onZ| < cd(ns, ne)'™.
Since 1 + a > 1 and we argue on a small interval it is equivalent to prove

1 2 pEe]
[0mst| + 16ms¢t] < C[Fngn ] 2,
which is satisfied because (n',7%) are £2-Hélder continuous and

[t —s| < c|t— s+ o(t — 8)| = C|Inen,l-
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F : H x H — R*, so that we expect a 2-dimensional surface ¢s = Pst 52
Notation:
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contact forms ¢ and

By = (1° = x) + X2y —x) = X' (/2 = x°).



Lift of surfaces

Can we produce examples of higher dimension? Consider the case
F : H x H — R*, so that we expect a 2-dimensional surface ¢s = Pst 52

Notation:
1 2

x, %) =(x", X%, 3% PP eHxH
contact forms ¢ and

Dy = (1 = )+ X x) = X (2 - $).
Problem: analogue of the “vertical” condition 9,,, = t — s+ o(t — s)?
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Lift of surfaces

Can we produce examples of higher dimension? Consider the case
F : H x H — R*, so that we expect a 2-dimensional surface ¢s = Pst 52

Notation:

(x,%) = (x",x%, X3, %, %, %) e H x H

contact forms ¢ and

By = (1° = x) + X2y —x) = X' (/2 = x°).

Problem: analogue of the “vertical” condition 9,,, = t — s+ o(t — s)?

9 . a11 a12 t1 _ s1
(57””):(3;1 agz) £ _ g2 +o(t - s),
MsNt S S
How to integrate it?
Possible approach: extend calculus to

“rough” differential forms (R. Zust — Young case)
solve exterior differential systems (Frobenius theorem)



A sewing lemma for differential forms

R. Zust (2010) showed that the integral of a k-form on any cube Q C R¥
/folg1 AdgZ A ... AdgK
Q

is “robustly” defined (continuous limit w.r.t. approximations) if
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A sewing lemma for differential forms

R. Zust (2010) showed that the integral of a k-form on any cube Q C R¥
/folg1 AdgZ A ... AdgK
Q

is “robustly” defined (continuous limit w.r.t. approximations) if

feca7g1ecﬂ17~-7gkecﬁk Wltha+ﬁ1++ﬁk>k

(Joint with E. Stepanov) generalize his result as a sewing lemma for k-forms

Examples from stochastic analysis? (Brownian sheets,...)
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A Frobenius theorem in Holder classes

The (Euclidean) implicit function for F : R” — R¥ can be seen as an instance
of Frobenius theorem, for systems of differential equations.

Another example is the “Pfaff” system for a parametrized surface
p(8) = (s, 8%)

Oips = X0, (5. 05)00 6
Opps = 27:1 f’(s7 4,05)8529;,

or equivalently

Sipst = 3 F(5,15)dgk + o(t — ).

i=1

Problem: formulate (necessary) and sufficient conditions to be well-posed.

Partial positive results. In particular, g must be more than %-Hélder
continuous.
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m Relax « > 0 condition:

- compactness as a — 0,

- a.e. level set?

- other notions of integrals?



Further open problems

m Relax « > 0 condition:

- compactness as a — 0,

- a.e. level set?

- other notions of integrals?

- Splitting case F : H — R — no need of integrals!
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