On level sets in the Heisenberg group

Dario Trevisan *

UNIVERSITÀ DEGLI STUDI DI PISA

Toulouse, October 19, 2017

^{*} Joint work with V. Magnani (UNIPI) and E. Stepanov (S.Pb UNIV. & STEKLOV)

Implicit function theorem

Regular level sets of a C^1 map between Euclidean spaces have a

local C^1 parametrization.

Problem

What happens if we replace Euclidean spaces with more general Lie groups?

We study the simplest non-trivial case: $F : \mathbb{H} \approx \mathbb{R}^3 \to \mathbb{R}^k$.

Implicit function theorem

Regular level sets of a C^1 map between Euclidean spaces have a

local C^1 parametrization.

Problem

What happens if we replace Euclidean spaces with more general Lie groups?

We study the simplest non-trivial case: $F : \mathbb{H} \approx \mathbb{R}^3 \to \mathbb{R}^k$.

- 2 Heisenberg group
- 3 LSDE: formulation
- 4 LSDE: well-posedness
- 5 Towards higher dimensional level sets

The group $\mathbb H$ is a non-commutative Lie group, with two generators.

• On $\mathbb{H} = \mathbb{R}^3$, $x = (x^1, x^2, x^3)$, consider the two (horizontal) vector fields $X_1(x) := \partial_1 - x^2 \partial_3$ $X_2(x) := \partial_2 + x^1 \partial_3$

 $[X_1, X_2] = [\partial_1 - x^2 \partial_3, \partial_2 + x^1 \partial_3] = 2\partial_3$ (Hörmander condition).

Dual description: contact 1-form

$$\theta = dx^3 + x^2 dx^1 - x^1 dx^2 \quad \Rightarrow \quad d\theta = -2dx^1 \wedge dx^2$$

The group \mathbb{H} is a non-commutative Lie group, with two generators.

• On $\mathbb{H} = \mathbb{R}^3$, $x = (x^1, x^2, x^3)$, consider the two (horizontal) vector fields $X_1(x) := \partial_1 - x^2 \partial_3$ $X_2(x) := \partial_2 + x^1 \partial_3$ $[X_1, X_2] = [\partial_1 - x^2 \partial_3, \partial_2 + x^1 \partial_3] = 2\partial_3$ (Hörmander condition). • Dual description: contact 1-form $\theta = dx^3 + x^2 dx^1 - x^1 dx^2 \implies d\theta = -2dx^1 \wedge dx^2$

The group \mathbb{H} is a non-commutative Lie group, with two generators.

• On $\mathbb{H} = \mathbb{R}^3$, $x = (x^1, x^2, x^3)$, consider the two (horizontal) vector fields

$$X_1(x) := \partial_1 - x^2 \partial_3 \qquad X_2(x) := \partial_2 + x^1 \partial_3$$

 $[X_1, X_2] = [\partial_1 - x^2 \partial_3, \partial_2 + x^1 \partial_3] = 2\partial_3$ (Hörmander condition).

Dual description: contact 1-form

$$\theta = dx^3 + x^2 dx^1 - x^1 dx^2 \quad \Rightarrow \quad d\theta = -2dx^1 \wedge dx^2$$

The group \mathbb{H} is a non-commutative Lie group, with two generators.

• On $\mathbb{H} = \mathbb{R}^3$, $x = (x^1, x^2, x^3)$, consider the two (horizontal) vector fields

$$X_1(x) := \partial_1 - x^2 \partial_3$$
 $X_2(x) := \partial_2 + x^1 \partial_3$

 $[X_1, X_2] = [\partial_1 - x^2 \partial_3, \partial_2 + x^1 \partial_3] = 2\partial_3 \quad (\text{Hörmander condition}).$

Dual description: contact 1-form

$$\theta = dx^3 + x^2 dx^1 - x^1 dx^2 \quad \Rightarrow \quad d\theta = -2dx^1 \wedge dx^2$$

A (smooth) curve $\eta: I \to \mathbb{H}$ is horizontal if, for $t \in I$,

$$\theta_{\eta_t}(\dot{\eta}_t) = \dot{\eta}_t^3 + \eta_t^2 \dot{\eta}_t^1 - \eta_t^1 \dot{\eta}_t^2 = 0.$$

Imposing $X_1(x) X_2(x)$ are orthonormal \Rightarrow CC-distance

$$d(x, y) := \inf \left\{ \int_0^1 |\dot{\eta}_t| : \eta \text{ horizontal}, \eta_0 = x, \eta_1 = y. \right\}$$

Equivalence

$$d(x,y) \approx |y^1 - x^1| + |y^2 - x^2| + |\vartheta_{xy}|^{1/2},$$

where a "discrete" contact form appears

$$\vartheta_{xy} := (y^3 - x^3) + x^2(y^1 - x^1) - x^1(y^2 - x^2)$$

Recall $\theta = dx^3 + x^2 dx^1 - x^1 dx^2$.

Heisenberg group: curves and distance

■ A (smooth) curve $\eta : I \to \mathbb{H}$ is horizontal if, for $t \in I$,

$$\theta_{\eta_t}(\dot{\eta}_t) = \dot{\eta}_t^3 + \eta_t^2 \dot{\eta}_t^1 - \eta_t^1 \dot{\eta}_t^2 = 0.$$

Imposing $X_1(x) X_2(x)$ are orthonormal \Rightarrow CC-distance

$$d(x,y) := \inf \left\{ \int_0^1 |\dot{\eta}_t| : \ \eta \text{ horizontal}, \ \eta_0 = x, \ \eta_1 = y. \right\}$$

Equivalence

$$d(x,y) \approx |y^1 - x^1| + |y^2 - x^2| + |\vartheta_{xy}|^{1/2}$$

where a "discrete" contact form appears

$$\vartheta_{xy} := (y^3 - x^3) + x^2(y^1 - x^1) - x^1(y^2 - x^2).$$

Recall $\theta = dx^3 + x^2 dx^1 - x^1 dx^2).$

Examples

1 Horizontal curve \leftrightarrow

$$\eta_t^3 - \eta_s^3 = \int_s^t \eta_r^2 \dot{\eta}_r^1 \,\mathrm{d}r - \int_r^r \eta_r^1 \dot{\eta}_r^2 \,\mathrm{d}r.$$

If $(\eta_t^1, \eta_t^2) = (\eta_s^1, \eta_s^2) \rightarrow \eta_t^3 - \eta_s^3 = \text{signed area.}$

2 If (η^1, η^2) are $\frac{1+\alpha}{2}$ -Hölder continuous \rightarrow horizontal lift

$$\theta_{\eta_t}(\dot{\eta}_t) = 0$$

in the sense Young integrals or in the "incremental" sense

$$\vartheta_{\eta_s\eta_t} = (\eta_t^3 - \eta_s^3) + \eta_s^2(\eta_t^1 - \eta_s^1) - \eta_s^1(\eta_t^2 - \eta_s^2) = o(t - s)$$

3 If $\alpha = 0$, pure area rough path

$$n^{-1/2}(\cos(nt),\sin(nt))$$
 $n\to\infty$.

The limit of horizontal lifts is not horizontal!

 $\nabla_h F(x) := (X_1 F(x), X_2 F(x)).$

 $p \in \mathbb{H}$ is non degenerate for *F* if $\nabla_h F(p)$ has maximum rank

For $\alpha \in (0, 1)$, $F \in C_h^{1,\alpha}$ if $x \mapsto \nabla_h F(x)$ is (well-defined and) α -Hölder continuous, (w.r.t. *d*). ($F \in C_h^1$ if just continuous).

Fact: There are $F \in C^{1,\alpha}$ nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

 $\nabla_h F(x) := (X_1 F(x), X_2 F(x)).$

 $p \in \mathbb{H}$ is non degenerate for F if $\nabla_h F(p)$ has maximum rank

For $\alpha \in (0, 1)$, $F \in C_h^{1,\alpha}$ if $x \mapsto \nabla_h F(x)$ is (well-defined and) α -Hölder continuous, (w.r.t. d). ($F \in C_h^1$ if just continuous).

Fact: There are $F \in C^{1,\alpha}$ nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

$$\nabla_h F(x) := (X_1 F(x), X_2 F(x)).$$

 $p \in \mathbb{H}$ is non degenerate for F if $\nabla_h F(p)$ has maximum rank

For α ∈ (0, 1), F ∈ C^{1,α}_h if x ↦ ∇_hF(x) is (well-defined and) α-Hölder continuous, (w.r.t. d). (F ∈ C¹_h if just continuous).

■ Fact: There are F ∈ C^{1, α} nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

$$\nabla_h F(x) := (X_1 F(x), X_2 F(x)).$$

 $p \in \mathbb{H}$ is non degenerate for F if $\nabla_h F(p)$ has maximum rank

For α ∈ (0, 1), F ∈ C^{1,α}_h if x ↦ ∇_hF(x) is (well-defined and) α-Hölder continuous, (w.r.t. d). (F ∈ C¹_h if just continuous).

■ Fact: There are F ∈ C^{1, α} nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

$$\nabla_h F(x) := (X_1 F(x), X_2 F(x)).$$

 $p \in \mathbb{H}$ is non degenerate for F if $\nabla_h F(p)$ has maximum rank

For α ∈ (0, 1), F ∈ C^{1,α}_h if x ↦ ∇_hF(x) is (well-defined and) α-Hölder continuous, (w.r.t. d). (F ∈ C¹_h if just continuous).

■ Fact: There are F ∈ C^{1, α} nowhere (Euclidean) differentiable on a set of positive Lebesgue measure.

Problem

- k = 1: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, ...)
 ⇒ "intrinsic graphs", parametrized surfaces via group operation. (Interesting connection with non-linear PDE's, recall talk by Katrin Fässler).
- k = 2: Magnani-Leonardi (2010) \Rightarrow continuous curves, intersections of two intrinsic surfaces.
- k = 2: Kozhevnikov (2011) $\Rightarrow \beta$ -Hölder continuous curves ($\beta < 1/2$) via a sub-Riemannian Reifenberg-type argument.

For k = 2, parametrizations are quite implicit: is a "good calculus" missing?

Main results (Magnani-Stepanov-T., 2016): k = 2.

Explicit "Level Set Differential Equation" (LSDE).

- Prove existence, uniqueness, and stability w.r.t. approximations for $F \in C_h^{1,\alpha}$ ($\alpha > 0$) using tools from Young integration (Rough paths).
- Prove area formula and (re)-obtain a coarea formula for $F \in C_b^{1,\alpha}$.

- k = 1: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, ...)
 ⇒ "intrinsic graphs", parametrized surfaces via group operation. (Interesting connection with non-linear PDE's, recall talk by Katrin Fässler).
- k = 2: Magnani-Leonardi (2010) \Rightarrow continuous curves, intersections of two intrinsic surfaces.
- k = 2: Kozhevnikov (2011) $\Rightarrow \beta$ -Hölder continuous curves ($\beta < 1/2$) via a sub-Riemannian Reifenberg-type argument.

For k = 2, parametrizations are quite implicit: is a "good calculus" missing?

Main results (Magnani-Stepanov-T., 2016): k = 2.

Explicit "Level Set Differential Equation" (LSDE).

- Prove existence, uniqueness, and stability w.r.t. approximations for $F \in C_b^{1,\alpha}$ ($\alpha > 0$) using tools from Young integration (Rough paths).
- Prove area formula and (re)-obtain a coarea formula for $F \in C_h^{1,\alpha}$.

- k = 1: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, ...)
 ⇒ "intrinsic graphs", parametrized surfaces via group operation. (Interesting connection with non-linear PDE's, recall talk by Katrin Fässler).
- k = 2: Magnani-Leonardi (2010) \Rightarrow continuous curves, intersections of two intrinsic surfaces.
- k = 2: Kozhevnikov (2011) ⇒ β-Hölder continuous curves (β < 1/2) via a sub-Riemannian Reifenberg-type argument.

For k = 2, parametrizations are quite implicit: is a "good calculus" missing?

Main results (Magnani-Stepanov-T., 2016): k = 2.

Explicit "Level Set Differential Equation" (LSDE).

Prove existence, uniqueness, and stability w.r.t. approximations for $F \in C_h^{1,\alpha}$ ($\alpha > 0$) using tools from Young integration (Rough paths).

Prove area formula and (re)-obtain a coarea formula for $F \in C_h^{1,\alpha}$.

- k = 1: algebraic splitting phenomenon (Ambrosio-SerraCassano-Vittone, ...)
 ⇒ "intrinsic graphs", parametrized surfaces via group operation. (Interesting connection with non-linear PDE's, recall talk by Katrin Fässler).
- k = 2: Magnani-Leonardi (2010) \Rightarrow continuous curves, intersections of two intrinsic surfaces.
- k = 2: Kozhevnikov (2011) ⇒ β-Hölder continuous curves (β < 1/2) via a sub-Riemannian Reifenberg-type argument.

For k = 2, parametrizations are quite implicit: is a "good calculus" missing?

Main results (Magnani-Stepanov-T., 2016): k = 2.

- Explicit "Level Set Differential Equation" (LSDE).
- Prove existence, uniqueness, and stability w.r.t. approximations for $F \in C_h^{1,\alpha}$ ($\alpha > 0$) using tools from Young integration (Rough paths).
- Prove area formula and (re)-obtain a coarea formula for $F \in C_h^{1,\alpha}$.

Let
$$F : \mathbb{R}^3 \to \mathbb{R}^2$$
 be C^1 .
• Write $x = (x^1, x^2, x^3) \in \mathbb{R}^3$, $\partial_i = \frac{\partial}{\partial x^i}$, $i = 1, 2, 3$,
• $F = (F^1, F^2)$ and
 $\nabla F = \begin{pmatrix} \partial_1 F^1 & \partial_2 F^1 & \partial_3 F^1 \\ \partial_1 F^2 & \partial_2 F^2 & \partial_3 F^2 \end{pmatrix} = (\nabla_{12}F, \nabla_3F)$ with $\nabla_{12}F$ invertible.
Differentiating $F(\gamma_t) = c$,
 $\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -(\nabla_{12}F(\gamma_t))^{-1} \nabla_3 F(\gamma_t) \dot{\gamma}_t^3$.

Let
$$F : \mathbb{R}^3 \to \mathbb{R}^2$$
 be C^1 .
• Write $x = (x^1, x^2, x^3) \in \mathbb{R}^3$, $\partial_i = \frac{\partial}{\partial x^i}$, $i = 1, 2, 3$,
• $F = (F^1, F^2)$ and
 $\nabla F = \begin{pmatrix} \partial_1 F^1 & \partial_2 F^1 & \partial_3 F^1 \\ \partial_1 F^2 & \partial_2 F^2 & \partial_3 F^2 \end{pmatrix} = (\nabla_{12}F, \nabla_3F)$ with $\nabla_{12}F$ invertible.
Differentiating $F(\gamma_t) = c$,

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_{12}F(\gamma_t)\right)^{-1}\nabla_3F(\gamma_t)\dot{\gamma}_t^3.$$

Let
$$F : \mathbb{R}^3 \to \mathbb{R}^2$$
 be C^1 .
• Write $x = (x^1, x^2, x^3) \in \mathbb{R}^3$, $\partial_i = \frac{\partial}{\partial x^i}$, $i = 1, 2, 3$,
• $F = (F^1, F^2)$ and
 $\nabla F = \begin{pmatrix} \partial_1 F^1 & \partial_2 F^1 & \partial_3 F^1 \\ \partial_1 F^2 & \partial_2 F^2 & \partial_3 F^2 \end{pmatrix} = (\nabla_{12}F, \nabla_3F)$ with $\nabla_{12}F$ invertible.

Differentiating $F(\gamma_t) = c$,

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_{12}F(\gamma_t)\right)^{-1}\nabla_3F(\gamma_t)\dot{\gamma}_t^3$$

Let
$$F : \mathbb{R}^3 \to \mathbb{R}^2$$
 be C^1 .
• Write $x = (x^1, x^2, x^3) \in \mathbb{R}^3$, $\partial_i = \frac{\partial}{\partial x^i}$, $i = 1, 2, 3$,
• $F = (F^1, F^2)$ and
 $\nabla F = \begin{pmatrix} \partial_1 F^1 & \partial_2 F^1 & \partial_3 F^1 \\ \partial_1 F^2 & \partial_2 F^2 & \partial_3 F^2 \end{pmatrix} = (\nabla_{12}F, \nabla_3F)$ with $\nabla_{12}F$ invertible.

Differentiating $F(\gamma_t) = c$,

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_{12}F(\gamma_t)\right)^{-1}\nabla_3F(\gamma_t)\dot{\gamma}_t^3.$$

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_{12}F(\gamma_t)\right)^{-1}\nabla_3F(\gamma_t)\dot{\gamma}_t^3.$$

in terms of the horizontal derivatives X_1F , X_2F (change of coordinates):

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).$$

In analogy with $\dot{\gamma}_t^3 = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow$ non-horizontal, (vertical), curve.

- The "vertical derivative" $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.
- **2** The intrinsic distance is 1/2-Hölder along "vertical" directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_{12}F(\gamma_t)\right)^{-1}\nabla_3F(\gamma_t)\dot{\gamma}_t^3.$$

in terms of the horizontal derivatives X_1F , X_2F (change of coordinates):

$$\begin{pmatrix} \dot{\gamma}_t^1\\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).$$

In analogy with $\dot{\gamma}_t^3 = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow$ non-horizontal, (vertical), curve.

- The "vertical derivative" $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.
- **2** The intrinsic distance is 1/2-Hölder along "vertical" directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_{12}F(\gamma_t)\right)^{-1}\nabla_3F(\gamma_t)\dot{\gamma}_t^3.$$

in terms of the horizontal derivatives X_1F , X_2F (change of coordinates):

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).$$

In analogy with $\dot{\gamma}_t^3 = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow$ non-horizontal, (vertical), curve.

- The "vertical derivative" $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.
- **2** The intrinsic distance is 1/2-Hölder along "vertical" directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_{12}F(\gamma_t)\right)^{-1}\nabla_3F(\gamma_t)\dot{\gamma}_t^3.$$

in terms of the horizontal derivatives X_1F , X_2F (change of coordinates):

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).$$

In analogy with $\dot{\gamma}_t^3 = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow$ non-horizontal, (vertical), curve.

- The "vertical derivative" $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.
- The intrinsic distance is 1/2-Hölder along "vertical" directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_{12}F(\gamma_t)\right)^{-1}\nabla_3F(\gamma_t)\dot{\gamma}_t^3.$$

in terms of the horizontal derivatives X_1F , X_2F (change of coordinates):

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).$$

In analogy with $\dot{\gamma}_t^3 = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow$ non-horizontal, (vertical), curve.

- The "vertical derivative" $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.
- 2 The intrinsic distance is 1/2-Hölder along "vertical" directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_{12}F(\gamma_t)\right)^{-1}\nabla_3F(\gamma_t)\dot{\gamma}_t^3.$$

in terms of the horizontal derivatives X_1F , X_2F (change of coordinates):

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t).$$

In analogy with $\dot{\gamma}_t^3 = 1$, set $\theta_{\gamma_t}(\dot{\gamma}_t) = 1 \Rightarrow$ non-horizontal, (vertical), curve.

- The "vertical derivative" $\nabla_3 F$ may not be defined, even if $F \in C^{1,\alpha}$ with $0 < \alpha < 1$.
- 2 The intrinsic distance is 1/2-Hölder along "vertical" directions $\Rightarrow \gamma$ is truly Hölder $\Rightarrow \dot{\gamma}_t$ is not defined.

Here's a "rule of thumb" to define

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.$$

1 "Integrating" $heta_{\gamma_t}(\dot{\gamma}_t) = 1$ gives $artheta_{\gamma_s\gamma_t} = t - s$,

 $d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma$ is (intrinsically) 1/2-Hölder.

Writing $\partial_3 F = [X_1, X_2]F = X_1(X_2F) - X_2(X_1F)$ gives $\partial_3 F$ is $(\alpha - 1)$ -Hölder.

B The composition (!) $\partial_3 F(\gamma_t)$ is then $\frac{1}{2} \cdot (\alpha - 1)$ -Hölder. **I** Integration w.r.t. *t* increases regularity of "one degree" =

$$\left(\gamma^{1},\gamma^{2}\right)$$
 is $\left[\frac{1}{2}\cdot\left(\alpha-1\right)+1\right]=\frac{1+\alpha}{2}$ -Hölder

Here's a "rule of thumb" to define

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.$$

1 "Integrating" $heta_{\gamma_t}(\dot{\gamma}_t) = 1$ gives $artheta_{\gamma_s\gamma_t} = t - s$,

 $d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma$ is (intrinsically) 1/2-Hölder.

2 Writing
$$\partial_3 F = [X_1, X_2]F = X_1(X_2F) - X_2(X_1F)$$
 gives
 $\partial_3 F$ is $(\alpha - 1)$ -Hölder.

The composition (!) $\partial_3 F(\gamma_t)$ is then $\frac{1}{2} \cdot (\alpha - 1)$ -Hölder.

$$\left(\gamma^{1},\gamma^{2}\right)$$
 is $\left[\frac{1}{2}\cdot\left(\alpha-1\right)+1\right]=\frac{1+\alpha}{2}$ -Hölder

Here's a "rule of thumb" to define

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.$$

1 "Integrating" $\theta_{\gamma_t}(\dot{\gamma}_t) = 1$ gives $\vartheta_{\gamma_s \gamma_t} = t - s$,

 $d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma$ is (intrinsically) 1/2-Hölder.

Writing
$$\partial_3 F = [X_1, X_2]F = X_1(X_2F) - X_2(X_1F)$$
 gives
 $\partial_3 F$ is $(\alpha - 1)$ -Hölder.

3 The composition (!) $\partial_3 F(\gamma_t)$ is then $\frac{1}{2} \cdot (\alpha - 1)$ -Hölder. **4** Integration w.r.t. *t* increases regularity of "one degree" \Rightarrow

$$\left(\gamma^{1},\gamma^{2}\right)$$
 is $\left[\frac{1}{2}\cdot\left(\alpha-1\right)+1\right]=\frac{1+\alpha}{2}$ -Hölder

Here's a "rule of thumb" to define

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.$$

¹ "Integrating"
$$\theta_{\gamma_t}(\dot{\gamma}_t) = 1$$
 gives $\vartheta_{\gamma_s \gamma_t} = t - s$,
 $d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma$ is (intrinsically) 1/2-Hölder.

2 Writing
$$\partial_3 F = [X_1, X_2]F = X_1(X_2F) - X_2(X_1F)$$
 gives
 $\partial_3 F$ is $(\alpha - 1)$ -Hölder.

3 The composition (!) $\partial_3 F(\gamma_t)$ is then $\frac{1}{2} \cdot (\alpha - 1)$ -Hölder.

Integration w.r.t. t increases regularity of "one degree" \Rightarrow

$$\left(\gamma^{1},\gamma^{2}\right)$$
 is $\left[\frac{1}{2}\cdot\left(\alpha-1\right)+1\right]=\frac{1+\alpha}{2}$ -Hölder.

Here's a "rule of thumb" to define

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.$$

¹ "Integrating"
$$\theta_{\gamma_t}(\dot{\gamma}_t) = 1$$
 gives $\vartheta_{\gamma_s \gamma_t} = t - s$,
 $d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma$ is (intrinsically) 1/2-Hölder.

2 Writing
$$\partial_3 F = [X_1, X_2]F = X_1(X_2F) - X_2(X_1F)$$
 gives
 $\partial_3 F$ is $(\alpha - 1)$ -Hölder.

3 The composition (!) ∂₃F(γ_t) is then ½ · (α − 1)-Hölder.
 a Integration w.r.t. *t* increases regularity of "one degree" ⇒

$$\left(\gamma^{1},\gamma^{2}\right)$$
 is $\left[\frac{1}{2}\cdot\left(\alpha-1\right)+1\right]=\frac{1+\alpha}{2}$ -Hölder.

Here's a "rule of thumb" to define

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.$$

¹ "Integrating"
$$\theta_{\gamma_t}(\dot{\gamma}_t) = 1$$
 gives $\vartheta_{\gamma_s \gamma_t} = t - s$,
 $d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma$ is (intrinsically) 1/2-Hölder.

2 Writing
$$\partial_3 F = [X_1, X_2]F = X_1(X_2F) - X_2(X_1F)$$
 gives
 $\partial_3 F$ is $(\alpha - 1)$ -Hölder.

3 The composition (!) ∂₃F(γ_t) is then ¹/₂ · (α − 1)-Hölder.
 4 Integration w.r.t. *t* increases regularity of "one degree" ⇒

$$\left(\gamma^{1},\gamma^{2}\right)$$
 is $\left[\frac{1}{2}\cdot(\alpha-1)+1\right]=\frac{1+lpha}{2}$ -Hölder.
Heuristics

Here's a "rule of thumb" to define

$$\begin{pmatrix} \dot{\gamma}_t^1 \\ \dot{\gamma}_t^2 \end{pmatrix} = -\left(\nabla_h F(\gamma_t)\right)^{-1} \nabla_3 F(\gamma_t) \theta_{\gamma_t}(\dot{\gamma}_t), \quad \theta_{\gamma_t}(\dot{\gamma}_t) = 1.$$

¹ "Integrating"
$$\theta_{\gamma_t}(\dot{\gamma}_t) = 1$$
 gives $\vartheta_{\gamma_s \gamma_t} = t - s$,
 $d(\gamma_s, \gamma_t) \approx |t - s|^{1/2} \Rightarrow \gamma$ is (intrinsically) 1/2-Hölder.

2 Writing
$$\partial_3 F = [X_1, X_2]F = X_1(X_2F) - X_2(X_1F)$$
 gives
 $\partial_3 F$ is $(\alpha - 1)$ -Hölder.

3 The composition (!) ∂₃F(γ_t) is then ¹/₂ ⋅ (α − 1)-Hölder.
4 Integration w.r.t. *t* increases regularity of "one degree" ⇒

$$\left(\gamma^{1},\gamma^{2}\right)$$
 is $\left[\frac{1}{2}\cdot(\alpha-1)+1\right]=\frac{1+\alpha}{2}$ -Hölder.

5 $\frac{1+\alpha}{2}$ -Hölder continuity is consistent with assumption 1, closing the circle.

We adopt the point of view of "local descriptions" by finite increments and use physicists notation

$$\delta \gamma_{st}^i = \gamma_t^i - \gamma_s^i$$
, for $s, t \in I, i \in \{1, 2, 3\}$.

The equation

$$\theta_{\gamma_t}(\dot{\gamma_t}) = \dot{\gamma}^3 + \gamma_t^2 \dot{\gamma}_t^1 - \gamma_t^1 \dot{\gamma}_t^2 = 1$$

becomes our vertical equation

$$\vartheta_{\gamma_s\gamma_t} = \delta\gamma_{st}^3 + \gamma_s^2\delta\gamma_{st}^1 - \gamma_s^2\delta\gamma_{st}^2 = t - s + o(t - s).$$

(Compare with horizontal lift $\vartheta_{\gamma_s \gamma_t} = o(t - s)$.)

We adopt the point of view of "local descriptions" by finite increments and use physicists notation

$$\delta \gamma_{st}^i = \gamma_t^i - \gamma_s^i$$
, for $s, t \in I, i \in \{1, 2, 3\}$.

The equation

$$\theta_{\gamma_t}(\dot{\gamma_t}) = \dot{\gamma}^3 + \gamma_t^2 \dot{\gamma}_t^1 - \gamma_t^1 \dot{\gamma}_t^2 = 1$$

becomes our vertical equation

$$\vartheta_{\gamma_s\gamma_t} = \delta\gamma_{st}^3 + \gamma_s^2\delta\gamma_{st}^1 - \gamma_s^2\delta\gamma_{st}^2 = t - s + o(t - s).$$

(Compare with horizontal lift $\vartheta_{\gamma_s \gamma_t} = o(t - s)$.)

We adopt the point of view of "local descriptions" by finite increments and use physicists notation

$$\delta \gamma_{st}^i = \gamma_t^i - \gamma_s^i$$
, for $s, t \in I, i \in \{1, 2, 3\}$.

The equation

$$\theta_{\gamma_t}(\dot{\gamma_t}) = \dot{\gamma}^3 + \gamma_t^2 \dot{\gamma}_t^1 - \gamma_t^1 \dot{\gamma}_t^2 = 1$$

becomes our vertical equation

$$\vartheta_{\gamma_s\gamma_t} = \delta\gamma_{st}^3 + \gamma_s^2\delta\gamma_{st}^1 - \gamma_s^2\delta\gamma_{st}^2 = t - s + o(t - s).$$

(Compare with horizontal lift $\vartheta_{\gamma_s \gamma_t} = o(t - s)$.)

Instead of "differentiating", we use finite differences \Rightarrow horizontal Taylor expansion:

$$F(y) - F(x) - \nabla_h F(x) \begin{pmatrix} y^1 - x^1 \\ y^2 - x^2 \end{pmatrix} - \nabla_3 F(x) \vartheta_{xy} = R_{xy}.$$

Imposing $F(\gamma_s) = F(\gamma_t)$ gives

$$\left(\delta\gamma_{st}^{1},\delta\gamma_{st}^{2}\right)=-\left(\nabla_{h}F(\gamma_{s})\right)^{-1}R_{\gamma_{s}\gamma_{t}}+o(t-s).$$

To avoid multiplication, a better formulation is

$$\left(\delta\gamma_{st}^1,\delta\gamma_{st}^2
ight)=-\left(
abla_hF(p)
ight)^{-1}\left(R_{p\gamma_t}-R_{p\gamma_s}
ight).$$

Instead of "differentiating", we use finite differences \Rightarrow horizontal Taylor expansion:

$$F(y) - F(x) - \nabla_h F(x) \begin{pmatrix} y^1 - x^1 \\ y^2 - x^2 \end{pmatrix} - \nabla_3 F(x) \vartheta_{xy} = R_{xy}.$$

Imposing $F(\gamma_s) = F(\gamma_t)$ gives

$$\left(\delta\gamma_{st}^1,\delta\gamma_{st}^2\right) = -\left(\nabla_h F(\gamma_s)\right)^{-1} R_{\gamma_s \gamma_t} + o(t-s).$$

To avoid multiplication, a better formulation is

$$\left(\delta\gamma_{st}^1,\delta\gamma_{st}^2\right) = -\left(\nabla_h F(p)\right)^{-1} \left(R_{p\gamma_t} - R_{p\gamma_s}\right)$$

Instead of "differentiating", we use finite differences \Rightarrow horizontal Taylor expansion:

$$F(y) - F(x) - \nabla_h F(x) \begin{pmatrix} y^1 - x^1 \\ y^2 - x^2 \end{pmatrix} - \nabla_3 F(x) \vartheta_{xy} = R_{xy}.$$

Imposing $F(\gamma_s) = F(\gamma_t)$ gives

$$\left(\delta\gamma_{st}^1,\delta\gamma_{st}^2\right) = -\left(\nabla_h F(\gamma_s)\right)^{-1} R_{\gamma_s \gamma_t} + o(t-s).$$

To avoid multiplication, a better formulation is

$$\left(\delta\gamma_{st}^{1},\delta\gamma_{st}^{2}
ight)=-\left(
abla_{h}F(p)
ight)^{-1}\left(R_{p\gamma_{t}}-R_{p\gamma_{s}}
ight).$$

Let *p* be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^1$. We say $\gamma : I \to \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

$$\begin{bmatrix} \left(\delta\gamma_{st}^{1},\delta\gamma_{st}^{2}\right) &= -\left(\nabla_{h}F(p)\right)^{-1}\left(R_{p\gamma_{t}}-R_{p\gamma_{s}}\right)\\ \vartheta_{\gamma_{s}\gamma_{t}} &= t-s+o(t-s) \end{bmatrix}$$

for every $s, t \in I$.

The "horizontal equation" yields that $t \mapsto F(\gamma_t)$ is constant.

The "vertical equation" gives that

$$d(\gamma_s,\gamma_t)\geq c\,|t-s|^{1/2}\,,$$

Let *p* be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^1$. We say $\gamma : I \to \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

$$\begin{cases} \left(\delta\gamma_{st}^{1},\delta\gamma_{st}^{2}\right) = -\left(\nabla_{h}F(p)\right)^{-1}\left(R_{p\gamma_{t}}-R_{p\gamma_{s}}\right)\\ \psi_{\gamma_{s}\gamma_{t}} = t-s+o(t-s)\end{cases}$$

for every $s, t \in I$.

The "horizontal equation" yields that $t \mapsto F(\gamma_t)$ is constant.

The "vertical equation" gives that

$$d(\gamma_s,\gamma_t)\geq c\,|t-s|^{1/2}\,,$$

Let *p* be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^1$. We say $\gamma : I \to \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

$$\left(egin{array}{cc} \left(\delta\gamma_{st}^1,\delta\gamma_{st}^2
ight)&=-\left(
abla_hF(p)
ight)^{-1}\left(R_{p\gamma_t}-R_{p\gamma_s}
ight)\ artheta_{\gamma_s\gamma_t}&=t-s+o(t-s) \end{array}
ight.$$

for every $s, t \in I$.

The "horizontal equation" yields that $t \mapsto F(\gamma_t)$ is constant.

The "vertical equation" gives that

$$d(\gamma_s,\gamma_t)\geq c\,|t-s|^{1/2}\,,$$

Let *p* be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^1$. We say $\gamma : I \to \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

$$\left\{ egin{array}{ll} \left(\delta\gamma_{st}^1,\delta\gamma_{st}^2
ight)&=-\left(
abla_hF(p)
ight)^{-1}\left(R_{p\gamma_t}-R_{p\gamma_s}
ight)\ artheta_{\gamma_s\gamma_t}&=t-s+o(t-s) \end{array}
ight.$$

for every $s, t \in I$.

The "horizontal equation" yields that $t \mapsto F(\gamma_t)$ is constant.

The "vertical equation" gives that

 $d(\gamma_s,\gamma_t)\geq c\,|t-s|^{1/2}\,,$

Let *p* be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^1$. We say $\gamma : I \to \mathbb{H}$ is a solution to the level set differential equation (LSDE) if it is continuous and

$$\left\{ egin{array}{ll} \left(\delta\gamma_{st}^1,\delta\gamma_{st}^2
ight)&=-\left(
abla_hF(p)
ight)^{-1}\left(R_{p\gamma_t}-R_{p\gamma_s}
ight)\ artheta_{\gamma_s\gamma_t}&=t-s+o(t-s) \end{array}
ight.$$

for every $s, t \in I$.

- The "horizontal equation" yields that $t \mapsto F(\gamma_t)$ is constant.
- The "vertical equation" gives that

$$d(\gamma_s,\gamma_t)\geq c\,|t-s|^{1/2}\,,$$

Theorem (Existence)

Let $\alpha > 0$ and p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^{1,\alpha}$. Then, there exists $\delta > 0$ and $\gamma : [-\delta, \delta] \to \mathbb{H}$ solving the LSDE with $\gamma_0 = p$.

Proof via Leray-Schauder fixed point on a subset of C^{1+α}/2 ([-δ, δ]; R³).
 Need of α > 0: use Young integral (sewing lemma) to move from

$$\vartheta_{\gamma_{s}\gamma_{t}} = t - s + o(t - s)$$

to

$$\delta \gamma_{st}^3 = -\int_s^t \gamma_r^2 \,\mathrm{d}\gamma_r^1 + \int_s^t \gamma_r^1 \,\mathrm{d}\gamma_r^2 + (t-s).$$

Theorem (Existence)

Let $\alpha > 0$ and p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^{1,\alpha}$. Then, there exists $\delta > 0$ and $\gamma : [-\delta, \delta] \to \mathbb{H}$ solving the LSDE with $\gamma_0 = p$.

Proof via Leray-Schauder fixed point on a subset of C^{1+α}/₂ ([-δ, δ]; ℝ³).
 Need of α > 0: use Young integral (sewing lemma) to move from

$$\vartheta_{\gamma_s\gamma_t} = t - s + o(t - s)$$

to

$$\delta \gamma_{st}^3 = -\int_s^t \gamma_r^2 \, \mathrm{d} \gamma_r^1 + \int_s^t \gamma_r^1 \, \mathrm{d} \gamma_r^2 + (t-s).$$

Surjectivity of solutions (on the level set)

"Horizontal equation" \Rightarrow solutions to the LSDE satisfy $t \mapsto F(\gamma_t)$ constant.

Theorem (surjectivity)

Let *p* be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^1$. Let $\gamma : I \to \mathbb{H}$ solve the LSDE with $\gamma_0 = p$. Then, there exists $\varepsilon > 0$ such that

 $F^{-1}(F(p)) \cap B_{\varepsilon}(p) = \gamma(I) \cap B_{\varepsilon}(p).$

No need of $C_h^{1,\alpha}$ (but we do not know how to get existence...)

- "Horizontal injectivity" (due to non degeneracy of p) \Rightarrow we attach a region of injectivity (for the level set) at every γ_t ;

Surjectivity of solutions (on the level set)

"Horizontal equation" \Rightarrow solutions to the LSDE satisfy $t \mapsto F(\gamma_t)$ constant.

Theorem (surjectivity)

Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^1$. Let $\gamma : I \to \mathbb{H}$ solve the LSDE with $\gamma_0 = p$. Then, there exists $\varepsilon > 0$ such that

 $F^{-1}(F(p)) \cap B_{\varepsilon}(p) = \gamma(I) \cap B_{\varepsilon}(p).$

No need of $C_h^{1,\alpha}$ (but we do not know how to get existence...)

- "Horizontal injectivity" (due to non degeneracy of p) \Rightarrow we attach a region of injectivity (for the level set) at every γ_t ;
- "Smart choice of t" As t varies, such regions at γt cover a neighbourhood of p.

Surjectivity of solutions (on the level set)

"Horizontal equation" \Rightarrow solutions to the LSDE satisfy $t \mapsto F(\gamma_t)$ constant.

Theorem (surjectivity)

Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^1$. Let $\gamma : I \to \mathbb{H}$ solve the LSDE with $\gamma_0 = p$. Then, there exists $\varepsilon > 0$ such that

 $F^{-1}(F(p)) \cap B_{\varepsilon}(p) = \gamma(I) \cap B_{\varepsilon}(p).$

No need of $C_h^{1,\alpha}$ (but we do not know how to get existence...)

- "Horizontal injectivity" (due to non degeneracy of p) \Rightarrow we attach a region of injectivity (for the level set) at every γ_t ;
- "Smart choice of t" As t varies, such regions at γ_t cover a neighbourhood of p.

"Horizontal equation" \Rightarrow solutions to the LSDE satisfy $t \mapsto F(\gamma_t)$ constant.

```
Theorem (surjectivity)
```

Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^1$. Let $\gamma : I \to \mathbb{H}$ solve the LSDE with $\gamma_0 = p$. Then, there exists $\varepsilon > 0$ such that

 $F^{-1}(F(p)) \cap B_{\varepsilon}(p) = \gamma(I) \cap B_{\varepsilon}(p).$

No need of $C_h^{1,\alpha}$ (but we do not know how to get existence...)

- "Horizontal injectivity" (due to non degeneracy of p) \Rightarrow we attach a region of injectivity (for the level set) at every γ_t ;
- "Smart choice of t" As t varies, such regions at γ_t cover a neighbourhood of p.

"Horizontal equation" \Rightarrow solutions to the LSDE satisfy $t \mapsto F(\gamma_t)$ constant.

```
Theorem (surjectivity)
```

Let p be non degenerate for $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^1$. Let $\gamma : I \to \mathbb{H}$ solve the LSDE with $\gamma_0 = p$. Then, there exists $\varepsilon > 0$ such that

 $F^{-1}(F(p)) \cap B_{\varepsilon}(p) = \gamma(I) \cap B_{\varepsilon}(p).$

No need of $C_h^{1,\alpha}$ (but we do not know how to get existence...)

- "Horizontal injectivity" (due to non degeneracy of p) \Rightarrow we attach a region of injectivity (for the level set) at every γ_t ;
- "Smart choice of t" As t varies, such regions at γt cover a neighbourhood of p.

Let $\nabla_h F(p)$ be invertible. There exists $\varepsilon > 0$ such that, if $x, y \in B_{\varepsilon}(p)$,

$$F(x) = F(y)$$
 and $|\vartheta_{xy}|^{1/2} \leq |y^1 - x^1| + |y^2 - x^2| \Rightarrow x = y.$

Proof: Horizontal Taylor expansion $\Rightarrow \nabla_h F(x)(y^1 - x^1, y^2 - x^2) = o(d(x, y))$

Lemma "Smart choice of t"

If $\varepsilon > 0$ is small enough, for every $x \in B_{\varepsilon}(\rho)$, there exists $t \in I$ with

 $\left|\vartheta_{\gamma_{s}\gamma_{t}}\right|^{1/2} \leq \left|\delta\gamma_{st}^{1}\right| + \left|\delta\gamma_{st}^{2}\right|$

Let $\nabla_h F(p)$ be invertible. There exists $\varepsilon > 0$ such that, if $x, y \in B_{\varepsilon}(p)$,

$$F(x) = F(y)$$
 and $|\vartheta_{xy}|^{1/2} \le |y^1 - x^1| + |y^2 - x^2| \Rightarrow x = y.$

Proof: Horizontal Taylor expansion $\Rightarrow \nabla_h F(x)(y^1 - x^1, y^2 - x^2) = o(d(x, y))$

Lemma "Smart choice of t"

If $\varepsilon > 0$ is small enough, for every $x \in B_{\varepsilon}(\rho)$, there exists $t \in I$ with

 $\left|\vartheta_{\gamma_{s}\gamma_{t}}\right|^{1/2} \leq \left|\delta\gamma_{st}^{1}\right| + \left|\delta\gamma_{st}^{2}\right|$

Let $\nabla_h F(p)$ be invertible. There exists $\varepsilon > 0$ such that, if $x, y \in B_{\varepsilon}(p)$,

$$F(x) = F(y)$$
 and $\left|\vartheta_{xy}\right|^{1/2} \leq \left|y^1 - x^1\right| + \left|y^2 - x^2\right| \Rightarrow x = y.$

Proof: Horizontal Taylor expansion $\Rightarrow \nabla_h F(x)(y^1 - x^1, y^2 - x^2) = o(d(x, y))$

Lemma "Smart choice of t"

If $\varepsilon > 0$ is small enough, for every $x \in B_{\varepsilon}(p)$, there exists $t \in I$ with

$$\left|\vartheta_{\gamma_{s}\gamma_{t}}\right|^{1/2} \leq \left|\delta\gamma_{st}^{1}\right| + \left|\delta\gamma_{st}^{2}\right|$$

Let $\nabla_h F(p)$ be invertible. There exists $\varepsilon > 0$ such that, if $x, y \in B_{\varepsilon}(p)$,

$$F(x) = F(y)$$
 and $|\vartheta_{xy}|^{1/2} \leq |y^1 - x^1| + |y^2 - x^2| \Rightarrow x = y.$

Proof: Horizontal Taylor expansion $\Rightarrow \nabla_h F(x)(y^1 - x^1, y^2 - x^2) = o(d(x, y))$

Lemma "Smart choice of t"

If $\varepsilon > 0$ is small enough, for every $x \in B_{\varepsilon}(p)$, there exists $t \in I$ with

$$\left|\vartheta_{\gamma_{s}\gamma_{t}}\right|^{1/2} \leq \left|\delta\gamma_{st}^{1}\right| + \left|\delta\gamma_{st}^{2}\right|$$

Any two solutions γ , $\bar{\gamma}$ to the LSDE with $\gamma_0 = \bar{\gamma}_0 = p$ coincide on a neighbourhood of t = 0.

Proof: Since both γ , $\overline{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$\gamma_t = \bar{\gamma}_{\varphi(t)}.$$

The "vertical equation" gives

$$t - s + o(t - s) = \vartheta_{\gamma_s \gamma_t} = \vartheta_{\bar{\gamma}_{\varphi(s)}\bar{\gamma}_{\varphi(t)}} = \varphi(t) + \varphi(s) + o(\varphi(t) - \varphi(s)).$$

$$\frac{d\varphi}{dt} = 1 \quad \Rightarrow \quad \varphi(t) = t.$$

Any two solutions γ , $\bar{\gamma}$ to the LSDE with $\gamma_0 = \bar{\gamma}_0 = p$ coincide on a neighbourhood of t = 0.

Proof: Since both γ , $\overline{\gamma}$, parametrize $F^{-1}(F(p))$, one has

 $\gamma_t = \bar{\gamma}_{\varphi(t)}.$

The "vertical equation" gives

$$t - s + o(t - s) = \vartheta_{\gamma_s \gamma_t} = \vartheta_{\bar{\gamma}_{\varphi(s)} \bar{\gamma}_{\varphi(t)}} = \varphi(t) + \varphi(s) + o(\varphi(t) - \varphi(s)).$$

$$\frac{d\varphi}{dt} = 1 \quad \Rightarrow \quad \varphi(t) = t.$$

Any two solutions γ , $\bar{\gamma}$ to the LSDE with $\gamma_0 = \bar{\gamma}_0 = p$ coincide on a neighbourhood of t = 0.

Proof: Since both γ , $\overline{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$\gamma_t = \bar{\gamma}_{\varphi(t)}.$$

The "vertical equation" gives

$$t - s + o(t - s) = \vartheta_{\gamma_{s}\gamma_{t}} = \vartheta_{\bar{\gamma}_{\varphi(s)}\bar{\gamma}_{\varphi(t)}} = \varphi(t) + \varphi(s) + o(\varphi(t) - \varphi(s)).$$

$$\frac{d\varphi}{dt} = 1 \quad \Rightarrow \quad \varphi(t) = t.$$

Any two solutions γ , $\bar{\gamma}$ to the LSDE with $\gamma_0 = \bar{\gamma}_0 = p$ coincide on a neighbourhood of t = 0.

Proof: Since both γ , $\overline{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$\gamma_t = \bar{\gamma}_{\varphi(t)}.$$

The "vertical equation" gives

$$t - s + o(t - s) = \vartheta_{\gamma_s \gamma_t} = \vartheta_{\bar{\gamma}_{\varphi(s)} \bar{\gamma}_{\varphi(t)}} = \varphi(t) + \varphi(s) + o(\varphi(t) - \varphi(s)).$$

$$\frac{d\varphi}{dt} = 1 \quad \Rightarrow \quad \varphi(t) = t.$$

Any two solutions γ , $\bar{\gamma}$ to the LSDE with $\gamma_0 = \bar{\gamma}_0 = p$ coincide on a neighbourhood of t = 0.

Proof: Since both γ , $\overline{\gamma}$, parametrize $F^{-1}(F(p))$, one has

$$\gamma_t = \bar{\gamma}_{\varphi(t)}.$$

The "vertical equation" gives

$$t - s + o(t - s) = \vartheta_{\gamma_s \gamma_t} = \vartheta_{\bar{\gamma}_{\varphi(s)} \bar{\gamma}_{\varphi(t)}} = \varphi(t) + \varphi(s) + o(\varphi(t) - \varphi(s)).$$

$$\frac{d\varphi}{dt}=1 \quad \Rightarrow \quad \varphi(t)=t.$$

Theorem (Area formula)

Let $\gamma: I \to \mathbb{H}$ solve the LSDE. Then, for every interval $[a, b] \subseteq I$,

$$S^2(\gamma([a,b])) = \mathcal{L}^1([a,b]).$$

Actually we prove a more general Area formula for nice "vertical curves".

Theorem (Coarea formula) Let $F : \mathbb{H} \to \mathbb{R}^2$, $F \in C_h^{1,\alpha}$. Then for $A \subseteq \mathbb{H}$, $\int_A J_h F \, \mathrm{d}\mathscr{L}^3 = \int_{\mathbb{R}^2} S^2 \left(A \cap F^{-1}(z)\right) \mathrm{d}\mathscr{L}^2(z).$

Proof uses area formula and blow-up argument. (Case $\alpha = 0$ is open).

Part of our arguments together with Whitney extension theorem \rightarrow examples of $F \in C_h^{1,\alpha}$ with "bad" level sets.

Theorem (Whitney (Vodopyanov '06))

Let $K \subseteq \mathbb{H}$ be compact, $\alpha \in (0, 1)$ and $F : K \to \mathbb{R}^2$, $F' : K \to \mathbb{R}^{2 \times 2}$ with

$$|F(x) - F(y) - F'(x) \cdot (y^1 - x^1, y^2 - x^2)| \le cd(x, y)^{1+c}$$

 $|F'(y) - F'(x)| \le c \mathsf{d}(x, y)^{\alpha}.$

Then there an extension $F \in C^{1,\alpha} - h$ such that $F'(x) = \nabla_h F(x)$ for $x \in K$.

Strategy: for (η^1, η^2) : $I \to \mathbb{R}^2 \frac{1+\alpha}{2}$ -Hölder, "lift" η^3 such that

$$\vartheta_{\eta_s^3\eta_t^3} = t - s + o(t - s).$$

Then $K = \eta(I) F(x) = 0$ and F'(x) = Id.

Part of our arguments together with Whitney extension theorem \rightarrow examples of $F \in C_h^{1,\alpha}$ with "bad" level sets.

Theorem (Whitney (Vodopyanov '06))

Let $K \subseteq \mathbb{H}$ be compact, $\alpha \in (0, 1)$ and $F : K \to \mathbb{R}^2$, $F' : K \to \mathbb{R}^{2 \times 2}$ with

$$|F(x) - F(y) - F'(x) \cdot (y^1 - x^1, y^2 - x^2)| \le cd(x, y)^{1+c}$$

 $|F'(y) - F'(x)| \leq c \mathsf{d}(x, y)^{\alpha}.$

Then there an extension $F \in C^{1,\alpha} - h$ such that $F'(x) = \nabla_h F(x)$ for $x \in K$.

Strategy: for (η^1, η^2) : $I \to \mathbb{R}^2 \frac{1+\alpha}{2}$ -Hölder, "lift" η^3 such that

$$\vartheta_{\eta_s^3\eta_t^3} = t - s + o(t - s).$$

Then $K = \eta(I) F(x) = 0$ and F'(x) = Id.

Part of our arguments together with Whitney extension theorem \rightarrow examples of $F \in C_h^{1,\alpha}$ with "bad" level sets.

Theorem (Whitney (Vodopyanov '06))

Let $K \subseteq \mathbb{H}$ be compact, $\alpha \in (0, 1)$ and $F : K \to \mathbb{R}^2$, $F' : K \to \mathbb{R}^{2 \times 2}$ with

$$|F(x) - F(y) - F'(x) \cdot (y^1 - x^1, y^2 - x^2)| \le cd(x, y)^{1+c}$$

 $|F'(y) - F'(x)| \leq cd(x, y)^{\alpha}.$

Then there an extension $F \in C^{1,\alpha} - h$ such that $F'(x) = \nabla_h F(x)$ for $x \in K$.

Strategy: for (η^1, η^2) : $I \to \mathbb{R}^2 \frac{1+\alpha}{2}$ -Hölder, "lift" η^3 such that

$$\vartheta_{\eta_s^3\eta_t^3} = t - s + o(t - s).$$

Then $K = \eta(I) F(x) = 0$ and F'(x) = Id.

To check that condition

$$\left|F(x) - F(y) - F'(x) \cdot (y^{1} - x^{1}, y^{2} - x^{2})\right| \leq cd(x, y)^{1+\alpha}$$

holds $\rightarrow x = \eta_s$, $y = \eta_t$

 $|\delta\eta_{st}^{1}| + |\delta\eta_{st}^{2}| \leq cd(\eta_{s},\eta_{t})^{1+\alpha}.$

Since $1 + \alpha > 1$ and we argue on a small interval it is equivalent to prove

$$|\delta\eta_{st}^{1}| + |\delta\eta_{st}^{2}| \leq C |\vartheta_{\eta_{s}\eta_{t}}|^{\frac{1+\alpha}{2}},$$

which is satisfied because (η^1, η^2) are $\frac{1+\alpha}{2}$ -Hölder continuous and

$$|t-s| \leq c|t-s+o(t-s)| = c|\vartheta_{\eta_s\eta_t}|.$$

To check that condition

$$\left|F(x) - F(y) - F'(x) \cdot (y^{1} - x^{1}, y^{2} - x^{2})\right| \leq cd(x, y)^{1+\alpha}$$

holds $\rightarrow x = \eta_s$, $y = \eta_t$

$$|\delta\eta_{st}^1| + |\delta\eta_{st}^2| \leq \mathsf{cd}(\eta_s, \eta_t)^{1+\alpha}.$$

Since $1 + \alpha > 1$ and we argue on a small interval it is equivalent to prove

$$|\delta\eta_{st}^{1}| + |\delta\eta_{st}^{2}| \leq \mathbf{C} |\vartheta_{\eta_{s}\eta_{t}}|^{\frac{1+\alpha}{2}},$$

which is satisfied because (η^1, η^2) are $\frac{1+\alpha}{2}$ -Hölder continuous and

$$|t-s| \leq c|t-s+o(t-s)| = c|\vartheta_{\eta_s\eta_t}|.$$

To check that condition

$$\left|F(x) - F(y) - F'(x) \cdot (y^{1} - x^{1}, y^{2} - x^{2})\right| \leq cd(x, y)^{1+\alpha}$$

holds $\rightarrow x = \eta_s$, $y = \eta_t$

$$|\delta\eta_{st}^1| + |\delta\eta_{st}^2| \leq \mathsf{cd}(\eta_s, \eta_t)^{1+\alpha}.$$

Since $1 + \alpha > 1$ and we argue on a small interval it is equivalent to prove

$$|\delta\eta_{st}^{1}| + |\delta\eta_{st}^{2}| \leq \mathbf{C} |\vartheta_{\eta_{s}\eta_{t}}|^{\frac{1+\alpha}{2}},$$

which is satisfied because (η^1, η^2) are $\frac{1+\alpha}{2}$ -Hölder continuous and

$$|t-s| \leq c|t-s+o(t-s)| = c|\vartheta_{\eta_s\eta_t}|.$$
Lift of surfaces

Can we produce examples of higher dimension? Consider the case $F : \mathbb{H} \times \mathbb{H} \to \mathbb{R}^4$, so that we expect a 2-dimensional surface $\varphi_s = \varphi_{s^1,s^2}$. Notation:

$$(x, \tilde{x}) = (x^1, x^2, x^3, \tilde{x}^1, \tilde{x}^2, \tilde{x}^3) \in \mathbb{H} \times \mathbb{H}$$

contact forms ϑ and $\tilde\vartheta$

$$\vartheta_{xy} := (y^3 - x^3) + x^2(y^1 - x^1) - x^1(y^2 - x^2).$$

Problem: analogue of the "vertical" condition $\vartheta_{\eta_s\eta_t} = t - s + o(t - s)$?

$$\left(egin{array}{c} artheta_{\eta_{S}\eta_{t}} \ \widetilde{artheta}_{\eta_{S}\eta_{t}} \end{array}
ight)=\left(egin{array}{c} a_{s}^{11} & a_{s}^{12} \ a_{s}^{22} \ a_{s}^{22} \end{array}
ight)\left(egin{array}{c} t^{1}-s^{1} \ t^{2}-s^{2} \end{array}
ight)+o(t-s),$$

How to integrate it?

Possible approach: extend calculus to

- **1** "rough" differential forms (R. Zust \rightarrow Young case)
- z solve exterior differential systems (Frobenius theorem)

Can we produce examples of higher dimension? Consider the case $F : \mathbb{H} \times \mathbb{H} \to \mathbb{R}^4$, so that we expect a 2-dimensional surface $\varphi_s = \varphi_{s^1,s^2}$. Notation:

$$(x, \tilde{x}) = (x^1, x^2, x^3, \tilde{x}^1, \tilde{x}^2, \tilde{x}^3) \in \mathbb{H} \times \mathbb{H}$$

contact forms ϑ and $\tilde{\vartheta}$

$$\vartheta_{xy} := (y^3 - x^3) + x^2(y^1 - x^1) - x^1(y^2 - x^2).$$

Problem: analogue of the "vertical" condition $\vartheta_{\eta_s\eta_t} = t - s + o(t - s)$?

$$\left(egin{array}{c} \vartheta_{\eta_s\eta_t} \ \widetilde{artheta}_{\eta_s\eta_t} \end{array}
ight) = \left(egin{array}{c} a_s^{11} & a_s^{12} \ a_s^{21} & a_s^{22} \end{array}
ight) \left(egin{array}{c} t^1 - s^1 \ t^2 - s^2 \end{array}
ight) + o(t-s),$$

How to integrate it?

Possible approach: extend calculus to

- 1 "rough" differential forms (R. Zust ightarrow Young case)
- solve exterior differential systems (Frobenius theorem)

Can we produce examples of higher dimension? Consider the case $F : \mathbb{H} \times \mathbb{H} \to \mathbb{R}^4$, so that we expect a 2-dimensional surface $\varphi_s = \varphi_{s^1,s^2}$. Notation:

$$(x, \tilde{x}) = (x^1, x^2, x^3, \tilde{x}^1, \tilde{x}^2, \tilde{x}^3) \in \mathbb{H} \times \mathbb{H}$$

contact forms ϑ and $\tilde{\vartheta}$

$$\vartheta_{xy} := (y^3 - x^3) + x^2(y^1 - x^1) - x^1(y^2 - x^2).$$

Problem: analogue of the "vertical" condition $\vartheta_{\eta_s\eta_t} = t - s + o(t - s)$?

$$\left(\begin{array}{c}\vartheta_{\eta_s\eta_t}\\\tilde{\vartheta}_{\eta_s\eta_t}\end{array}\right) = \left(\begin{array}{c}a_s^{11}&a_s^{12}\\a_s^{21}&a_s^{22}\end{array}\right) \left(\begin{array}{c}t^1-s^1\\t^2-s^2\end{array}\right) + o(t-s),$$

How to integrate it?

Possible approach: extend calculus to

- **1** "rough" differential forms (R. Zust \rightarrow Young case)
- 2 solve exterior differential systems (Frobenius theorem)

R. Zust (2010) showed that the integral of a *k*-form on any cube $Q \subseteq \mathbb{R}^k$

$$\int_Q f \, \mathrm{d} g^1 \wedge \mathrm{d} g^2 \wedge \ldots \wedge \mathrm{d} g^k$$

is "robustly" defined (continuous limit w.r.t. approximations) if

$$f \in C^{\alpha}, g^1 \in C^{\beta_1}, \ldots, g^k \in C^{\beta_k}$$
 with $\alpha + \beta_1 + \ldots + \beta_k > k$.

(Joint with E. Stepanov) generalize his result as a sewing lemma for k-forms

Examples from stochastic analysis? (Brownian sheets,...)

R. Zust (2010) showed that the integral of a *k*-form on any cube $Q \subseteq \mathbb{R}^k$

$$\int_Q f \, \mathrm{d} g^1 \wedge \mathrm{d} g^2 \wedge \ldots \wedge \mathrm{d} g^k$$

is "robustly" defined (continuous limit w.r.t. approximations) if

$$f \in C^{\alpha}, g^1 \in C^{\beta_1}, \ldots, g^k \in C^{\beta_k}$$
 with $\alpha + \beta_1 + \ldots + \beta_k > k$.

(Joint with E. Stepanov) generalize his result as a sewing lemma for k-forms

Examples from stochastic analysis? (Brownian sheets,...)

R. Zust (2010) showed that the integral of a *k*-form on any cube $Q \subseteq \mathbb{R}^k$

$$\int_Q f \, \mathrm{d} g^1 \wedge \mathrm{d} g^2 \wedge \ldots \wedge \mathrm{d} g^k$$

is "robustly" defined (continuous limit w.r.t. approximations) if

$$f \in C^{\alpha}, g^1 \in C^{\beta_1}, \ldots, g^k \in C^{\beta_k}$$
 with $\alpha + \beta_1 + \ldots + \beta_k > k$.

(Joint with E. Stepanov) generalize his result as a sewing lemma for k-forms Examples from stochastic analysis? (Brownian sheets,...)

Another example is the "Pfaff" system for a parametrized surface $arphi(s)=arphi(s^1,s^2)$

$$\begin{cases} \partial_{s^1}\varphi_s &= \sum_{i=1}^n f^i(s,\varphi_s)\partial_{s^1}g^i_s\\ \partial_{s^2}\varphi_s &= \sum_{i=1}^n f^i(s,\varphi_s)\partial_{s^2}g^i_s, \end{cases}$$

or equivalently

$$\delta \varphi_{st} = \sum_{i=1}^{n} f^{i}(s, \eta_{s}) \delta g^{i}_{st} + o(t-s).$$

Problem: formulate (necessary) and sufficient conditions to be well-posed.

Another example is the "Pfaff" system for a parametrized surface $\varphi(s) = \varphi(s^1, s^2)$

$$\begin{cases} \partial_{s^1}\varphi_s &= \sum_{i=1}^n f^i(\boldsymbol{s},\varphi_s)\partial_{s^1}\boldsymbol{g}_s^i\\ \partial_{s^2}\varphi_s &= \sum_{i=1}^n f^i(\boldsymbol{s},\varphi_s)\partial_{s^2}\boldsymbol{g}_s^i, \end{cases}$$

or equivalently

$$\delta \varphi_{st} = \sum_{i=1}^{n} f^{i}(s, \eta_{s}) \delta g^{i}_{st} + o(t-s).$$

Problem: formulate (necessary) and sufficient conditions to be well-posed.

Another example is the "Pfaff" system for a parametrized surface $\varphi(s) = \varphi(s^1, s^2)$

$$\begin{cases} \partial_{s^1}\varphi_s &= \sum_{i=1}^n f^i(\boldsymbol{s},\varphi_s)\partial_{s^1}\boldsymbol{g}_s^i\\ \partial_{s^2}\varphi_s &= \sum_{i=1}^n f^i(\boldsymbol{s},\varphi_s)\partial_{s^2}\boldsymbol{g}_s^i, \end{cases}$$

or equivalently

$$\delta \varphi_{st} = \sum_{i=1}^{n} f^{i}(s, \eta_{s}) \delta g^{i}_{st} + o(t-s).$$

Problem: formulate (necessary) and sufficient conditions to be well-posed.

Another example is the "Pfaff" system for a parametrized surface $\varphi(s) = \varphi(s^1, s^2)$

$$\begin{cases} \partial_{s^1}\varphi_s &= \sum_{i=1}^n f^i(\boldsymbol{s},\varphi_s)\partial_{s^1}\boldsymbol{g}_s^i\\ \partial_{s^2}\varphi_s &= \sum_{i=1}^n f^i(\boldsymbol{s},\varphi_s)\partial_{s^2}\boldsymbol{g}_s^i, \end{cases}$$

or equivalently

$$\delta \varphi_{st} = \sum_{i=1}^{n} f^{i}(s, \eta_{s}) \delta g^{i}_{st} + o(t-s).$$

Problem: formulate (necessary) and sufficient conditions to be well-posed.

- **Relax** $\alpha > 0$ condition:
- compactness as $\alpha \rightarrow 0$,
- a.e. level set?
- other notions of integrals?
- Splitting case $F : \mathbb{H} \to \mathbb{R}$ no need of integrals!

- **Relax** $\alpha > 0$ condition:
- compactness as $\alpha \rightarrow 0$,
- a.e. level set?
- other notions of integrals?
- Splitting case $F : \mathbb{H} \to \mathbb{R}$ no need of integrals!