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Signature of a path
Continuous paths with finite p-variation

I Given p ≥ 1 and X ∈ C([s, t],Rd) with s < t we define

‖X‖p,[s,t] := sup
{ti}i⊂[s,t]

(∑
i

‖Xti − Xti−1‖
p

)1/p

.

I Vp([s, t],Rd) := {X ∈ C([s, t],Rd) : ‖X‖p,[s,t] <∞}.
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Signature of a path

Definition (Signature of a continuous path)

Let X ∈ V1([0,T ],Rd). The signature of X is defined as

S(X ) = (1,X 1,X 2, . . .) ∈
∞⊕
n=0

(Rd)⊗n

where

X n =

∫
. . .

∫
0<u1<u2<...<un<T

dXu1 ⊗ . . .⊗ dXun ∀n ≥ 1.
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Signature of a path

Definition (Truncated signature of a continuous path)

Similarly, we define, for n ≥ 0,

Sn(X ) := (1,X 1,X 2, . . . ,X n).
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Signature of a stream of data

Definition (Time-joined transformation)

Let {(ti ,Xti )}Ni=0 ⊂ R+ × R be a stream of data. Its time-joined
transformation is defined as the path Y : [0, 2N + 1]→ R+ × R
that is given by

Yt :=


(t0,Xt0t) for t ∈ [0, 1)

(ti + (ti+1 − ti )(t − 2i − 1),Xti ) for t ∈ [2i + 1, 2i + 2)

(ti+1,Xti + (Xi+1 − Xti )(t − 2i − 2)) for t ∈ [2i + 2, 2i + 3)

,

for 0 ≤ i ≤ N − 1.
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Signature of a stream of data

Figure: IBM stock price from
October to November 2016.

Figure: Time-joined transformation
of the path.
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Signature of a stream of data

Definition (Signature of a stream of data)

The signature of a stream of data {(ti ,Xti )}Ni=0, which with some
abuse of notation will be denoted by S({(ti ,Xti )}Ni=0), is defined as
the signature of its time-joined transformation.
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Signatures and machine learning
Supervised learning

I We have two data sets: a known set of known input-output
pairs (the training set), {(Xi ,Yi )}i , which is used to train the
model, and a set of inputs that is used for testing (the
out-of-sample set).

I Features play an important role in machine learning.
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Signatures and machine learning
Signatures as features: uniqueness

Theorem (B. Hambly, T. Lyons)

The signature of a path with bounded variation is unique up to
tree-like equivalence.
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Signatures and machine learning
Signatures as features: estimate

Theorem
Let X ∈ V1([0,T ],Rd) be a path with bounded variation. Then,
given 1 ≤ i1, i2, . . . , in ≤ d we have∥∥∥∥∥∥

∫
. . .

∫
0<u1<u2<...<un<T

dX i1
u1
. . . dX in

un

∥∥∥∥∥∥ ≤
‖X‖n1,[0,T ]

n!
.
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Signatures and machine learning
The model

I Given a training set {(Ri ,Yi )}Ni=0, of input-output pairs,
where Ri = {(tij , rij)}j is a stream of data, construct a new
set {(Xi ,Yi )}Ni=0 with Xi ∈ V1.

I Compute {(Sn(Xi ),Yi )}Ni=0 for some n ∈ N.

I Apply regression against the truncated signature.
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Application to psychiatric data
The problem
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Application to psychiatric data
The problem

I Given some information about a participant, can we tell if he
or she was diagnosed to have bipolar disorder, borderline
personality disorder or to be healthy?

I Given a participant and information about the last few days,
can we predict the mood the following day?
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Application to psychiatric data
Methodology
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Application to psychiatric data
Methodology

Figure: Normalised path for anxiety scores.
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Application to psychiatric data
Predicting if a person is healthy, has bipolar disorder or has borderline disorder

{(ti , Sti )}
19
i=0 →


(−1, 1), if the partcipant is healthy

(−1,−1), if the participant is bipolar.

(1, 0), if the participant is borderline.
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Application to psychiatric data
Predicting if a person is healthy, has bipolar disorder or has borderline disorder

Order Correct guesses

2nd 75%
3rd 70%
4th 69%

Table: Percentage of people correctly classified in the three clinical
groups.
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Application to psychiatric data
Predicting the future mood

{(ti ,Sti )}
19
i=0 → S ∈ {1, . . . , 7}6

where S is the scores of the participant the following observation.
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Application to psychiatric data
Predicting the future mood

Category Healthy Bipolar Borderline

Anxious 98% 82% 73%
Elated 89% 86% 78%
Sad 93% 84% 70%
Angry 98% 90% 70%
Irritable 97% 84% 70%
Energetic 89% 82% 75%

Table: Percentage of correct guesses for mood predictions

Rough Paths in Toulouse Signatures and psychiatric streams of data 31



Thank you!

Thank you!
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