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The model

X(t):X0+/O b(X(s))der/O o(X(s))dB(s) (1)

where B is a fractional Brownian motion.

Sense of the stochastic integral specified later.



Introduction

How to constrain X to stay in a convex subset of R¢ ?

If B is a Brownian motion, in It6’s calculus framework:
e Invariance condition on (b, o).

e Skorokhod reflection problem.
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Objectives

If B is a fractional Brownian motion, to extend the previous
methods in the pathwise stochastic calculus framework.
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References: invariance condition
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in the fractional calculus framework:
e Ciotir & Rascanu (2009)
e Nie & Rascanu (2011)
e Melnikov & al. (2015)
In the rough paths framework:
e Coutin & NM (2017) «+
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References: reflection in the rough paths framework

Existence with a constant constraint set:
e Aida (2015,2016)

Existence and uniqueness with a constant constraint set:
e Besalu & al. (2012): nonnegative constraints.
e Deya & al. (2016): one-dimensional constraint set.

Existence and uniqueness with time-dependent constraint sets:
e Falkowski & Slominski (2015):

1
He ] 2 1 [ and time-dependent cuboid contraints.

e Castaing, NM and Raynaud de Fitte (2017) «+



Rough invariance theorem

Invariance theorem for rough differential equations
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Invariant sets
A subset K of R€ is invariant by (1) if and only if

VXp € K, VX solution of (1), X(2 x [0,7]) C K.



Introduction

Rough invariance theorem

The rough perturbed sweeping process

Tangent and normal cones to a closed convex set K at x

Ni(z) :={s:Vye K, (s,y — )

Tk (x) := {0 :Vs € Ng(x), (s,0)

DA
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The rough perturbed sweeping process

Rough invariance theorem

Coutin & NM (2017)

If (1) has solutions, then K is invariant by (1) if and only if
C(OK) :

Vo € OK, Yk € [1,€], b(x), o i(z) € Tk(z).

Figure: f =b; +o 4
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Rough invariance theorem

Example: K is a vector subspace

Since

0K =K

and
Tk(z) = K ; Vz € 0K,

¢€(0K) is equivalent to

b(K) C K and 0_,(K) C K 2)
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Example: K is a half-space

Since
0K ={z: (v,z —a) =0}
and
Tk (x) ={d:(0,v) <0} ; Vx € 0K,
¢€(OK) is equivalent to

(v,b0(z)) <0 and (v,0 k(z)) =0; Vo € OK (3)

sweeping process
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Example: K is the unit ball

Since
OK ={z: ||z|]| = 1}
and
Tk(x)={d:(0,x) <0} ; Vo € 0K,
¢€(0K) is equivalent to

(,b(x)) <0 and (x,0 (z)) =0; Ve € OK (4)

sweeping process
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Sufficient condition: sketch of proof

Consider

Xo(t) = Xo + /0 b(Xn(s))ds + /0 o (Xn(5)dBu(s)  (5)

Steps: K is invariant by
1. (5) under €(R®) by proving that

lim di (X (t + hu))? — dg (X, (1))?

<0.
h—0t,u—1 h =
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Sufficient condition: sketch of proof

Consider

X (1) = Xo 4+ /0 b(Xon(s))ds + /0 (X (5))dB(s)

Steps: K is invariant by
1. (5) under €(R®) by proving that

lim di (Xn(t + hu))? — dr (X, (t))?

< 0.
h—0t,u—1 h

2. (5) under €(0K) by replacing (b, o) by (b, o) o px in (5).
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Sufficient condition: sketch of proof

Consider

Xo(t) = Xo + /0 b(Xn(s))ds + /0 (X (s))dBy(s)

Steps: K is invariant by
1. (5) under €(R®) by proving that

i A (Xn(t 4+ hu))? — dg (X0 (t))?

< 0.
h—01t u—1 h

2. (5) under €(0K) by replacing (b,o) by (b,0) o px in (5).
3. (1) under €(0OK) because K is closed.



Rough invariance theorem

Necessary condition: sketch of proof

Steps: If K is invariant by (1), then €(0K) is true by
considering successively

1. a hyperplane K,
2. a half-space K,

3. a closed and convex set K.



The rough perturbed sweeping process

Skorokhod reflection problem with time-dependent
constraint sets
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The unperturbed sweeping process

Defined by the differential inclusion

—#(t) € New)(z(t)) a.
{ 2(0) = afooe)C(O) (6)

where C': [0, 7] = R€ is a convex compact valued multifunction,
continuous for the Hausdorft distance.



The rough perturbed sweeping process

The unperturbed sweeping process: some pictures

Three situations:
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The Monteiro-Marques theorem
If there exist a € R® and r > 0 such that
Be(a,r) C C(t) ; Vt € [0,T],

then (6) has a unique continuous solution of finite 1-variation.
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The rough perturbed sweeping process

Defined by

where
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A continuity theorem
(Castaing et al. (2014))

Consider a continuous function A : [0, 7] — R® and
on(t) = () +w(t)
—wh(t) S NC(t)fh(t) (wh(t)) a.e. (9)
wp(0) = xg € C(0)
For every sequence of continuous functions (hy,)nen, if

hy, — h uniformly,

then
(vh,,, wh,, ) = (vn, wp,) uniformly.
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Existence of solutions to (7)-(8)
(Castaing, NM and Raynaud de Fitte (2017))

If there exists a continuous function ~ : [0, 7] — R® such that
Be(v(t),r) C C(t) ; V€ [0,T7,

then (7)-(8) has at least one solution of finite p-variation with

€|+
p 7R .
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Existence of solutions to (7)-(8): sketch of proof
Consider the Picard scheme:

Hy,(t) :/0 b(Xn_l(u))du—i—/D o (Xp—1(u))dB(u) .
—Yn(t) € NC(t)an(t) (Yo(t)) a.e. with Y;,,(0) = X

The continuity theorem allows to prove that (X,,,Y,,),en has a
converging subsequence.

Its limit is a solution to (7)-(8).
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Uniqueness of the solution to (7)-(8): preliminary

Consider the smooth perturbed sweeping process

z(t) = h(t) +y(?)

ht) = [ f(x(u)du (10)
—5(t) € Ne@-nin (y(t) ae. with y(0) = Xo



The rough perturbed sweeping process

Uniqueness of the solution to (7)-(8): preliminary
Consider two solutions (z,y) and (z*,y*) to (10).

Since z +— N¢(r)(2) is monotone,

r—az2 _<ec Txu—x*u, — ") (w)) <
u HW</O<<> (w),d(y — ) () < 0

with ¢, 7 > 0.
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Uniqueness of the solution to (7)-(8): sufficient condition
(Castaing, NM and Raynaud de Fitte (2017))

Consider two solutions (X,Y) and (X*,Y™) to (7)-(8).

The monotonicity of the normal cone is not sufficient to prove
that
X = X*|[pvar,r = 0.

It is true if

/ (Rx(s,1) — R+ (s,u),d(Y — Y*)(u)) <0 (1)
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Uniqueness of the solution to (7)-(8)
(Castaing, NM and Raynaud de Fitte (2017))

Assume that for any solution (X,Y") to (7)-(8),
Int{t € [0,7] : X(t) € 0C(t)} = 0.
Then (7)-(8) has a unique solution.

For instance, if C' is a time-dependent convex polyhedron and o
is constant, then

Int{t € [0,T]: X(¢t) € 0C(t)} = 0.
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Thank you for your attention !
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