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These notes grew out of talks given at the university of Hamburg on May 16th 2012, the university
of Besancon on September 27th 2012, and the REGA seminar at the IHP in Paris on October
10th 2012. The main reference for the statements below is [J].

We permit ourselves to occasionally be slightly informal for the sake of exposition.

1 Introduction

Let K be a number field and let X be a (smooth projective geometrically connected) curve over
K.

The aim of this talk is to show that each Arakelov invariant of X is bounded by a polynomial
in the Belyi degree of X.

This is the main result of [J].

To motivate the reader, we mention three applications:

1. The Couveignes-Edixhoven-Bruin algorithm for ”computing coefficients of modular forms”
runs in polynomial time under GRH. This was known for certain congruence subgroups
before; see Theorem 5.0.1 in [J] for a precise statement.

2. The Edixhoven-de Jong-Schepers conjecture on the Faltings height of a cover of P1
Z is true.

We will be more precise later in this talk; see Section 5.

3. Szpiro’s small points conjecture holds for curves which are cyclic covers of P1. We make a
precise statement in Section 6.

2 The Belyi degree

Theorem 2.0.1. Let X be a smooth projective connected curve over C. The following assertions
are equivalent.

1. The curve X can be defined over a number field.

2. There exists a finite morphism X → P1
C ramified over precisely three points. (We call such

a morphism a Belyi map.)

Belyi proved that (1) implies (2). Grothendieck (and in fact Weil) already proved that (2) implies
(1).
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Example 2.0.2. Let Γ ⊂ SL2(Z) be a finite index subgroup. Then the compactification XΓ of
the Riemann surface Γ\H (obtained by adding cusps) can be defined over a number field. This
follows from the implication (2) =⇒ (1). In fact, the morphism XΓ → X(1) ∼= P1

C of degree
[SL2(Z) : Γ] is ramified over precisely three points. (The isomorphism X(1) ∼= P1(C) is given by
the j-invariant.)

Example 2.0.3. Let F (n) be the curve xn + yn = zn in P2
Q

. Then the morphism F (n) → P1
Q

defined as (x : y : z) 7→ (xn : zn) is ramified over precisely three points. We note that this finite
morphism is of degree n2.

Definition 2.0.4. Let X be a smooth projective connected curve over Q. Then the Belyi degree
of X, denoted by degBelyi(X), is defined as the minimal degree of a finite morphism X → P1

Q

ramified over precisely three points. (This is well-defined by the above theorem.)

The Belyi degree is very hard to compute in practice. Nevertheless, it is easy to bound the Belyi
degree in general in practice.

Example 2.0.5. The Belyi degree of the curve XΓ is bounded by the index of Γ in SL2(Z).

Example 2.0.6. The Belyi degree of the Fermat curve F (n) is bounded by n2.

The Belyi degree of a curve has the following remarkable ”Northcott” property.

Proposition 2.0.7. Let C be a real number. The set of Q-isomorphism classes of smooth pro-
jective connected curves X such that degBelyi(X) ≤ C is finite.

Proof. The proof is based on a purely topological argument. In fact, it suffices to note that the
fundamental group of the Riemann sphere minus three points is finitely generated. The proof
follows from a standard argument involving Galois theory.

3 Arakelov geometry

Let X be a smooth projective geometrically connected curve over a number field K.

We can do two things.

1. We can consider the arithmetic geometry of X over the ring of integers OK , i.e., study the
arithmetic surfaces attached to X.

2. We can consider the analytic geometry of X over the complex numbers for each embedding
K → C, i.e., study the Riemann surfaces attached to X.

Roughly speaking, Arakelov geometry does these two geometries simultaneously.

One can use Arakelov geometry to define Arakelov invariants of X. We mention three of these.

1. The (absolute stable) Faltings height hFal(X) of X. This invariant plays a key role in Faltings
proof of the Mordell conjecture (1983).

2. The discriminant ∆(X) of X. This invariant measures in some sense the bad reduction of
the curve; see below for a precise definition.

3. The self-intersection of the relative dualizing sheaf e(X) of X. This invariant is related to
the Bogomolov conjecture for curves (Szpiro).

ii



Let us briefly explain how ∆(X) measures the bad reduction.

Let L/K be a finite field extension such that XL has semi-stable reduction. Let p : X → SpecOL
be the semi-stable minimal regular model of XL. The discriminant of X is defined as

∆(X) =

∑
p⊂OL δp log #k(p)

[L : Q]
.

Here the sum runs over the maximal ideals p of OL and δp is the number of singularities in the
geometric fibre of p over p. Note that ∆(X) ≥ 0 and that ∆(X) = 0 if and only if X has potentially
good reduction over OK .

We omit the definition of e(X) and hFal(X) for the sake of brevity. We don’t need them.

4 Main result

Definition 4.0.8. Let X be a smooth projective geometrically connected curve over a number
field K. The Belyi degree of X, denoted by degB(X), is the Belyi degree of XQ for some K ⊂ Q.

It is easy to show that g ≤ degB(X) using the Riemann-Hurwitz theorem, where g is the genus of
X.

We now state our main theorem.

Theorem 4.0.9. Let X be a smooth projective geometrically connected curve over a number field
K of genus g. Then

hFal(X) ≤ 13 · 106g degB(X)5,

∆(X) ≤ 5 · 108g2 degB(X)5,

e(X) ≤ 3 · 107(g − 1) degB(X)5.

Remark 4.0.10. Note that the lefthandside is an Arakelov invariant and that the righthandside
is a polynomial in the Belyi degree.

5 Application: The Edixhoven-de Jong-Schepers conjec-
ture

We were first led to investigate this problem by a conjecture of Edixhoven, de Jong and Schepers
[EdJoSc, Conjecture 5.1]. The following theorem implies this conjecture.

Theorem 5.0.11. Let B ⊂ P1(Q) be a finite set with complement U in P1
Q

. Then, for any finite

morphism π : X → P1
Q

with X a smooth projective connected curve over Q, we have

hFal(X) ≤ 1025c(B)(deg π)7, ∆(X) ≤ 1025c(B)(deg π)7,

where c(B) is an explicit constant depending only on B. We can take

c(B) = (4NHB)45N32N−2N !.

Proof. This follows from the proof of Belyi’s theorem. Let us be more precise. Belyi proved
that, for all finite subsets B ⊂ P1(Q), there exists a rational function R : P1 → P1 étale
over P1 − B such that R(B) = {0, 1,∞}. Khadjavi showed that one can take R such that

degR ≤ (4NHB)9N32N−2N !. Now, composing π with R we obtain a Belyi map R ◦ π : X → P1.
Therefore, degB(X) ≤ degR deg π. Substituting this into the main result gives the theorem.
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Remark 5.0.12. We were first led to investigate this problem by a conjecture of Edixhoven, de
Jong and Schepers on the Faltings height. Their conjecture follows from the above corollary. We
do not state this conjecture. A precise formulation can be found in [EdJoSc, Conjecture 5.1]. We
do explain the ”context” in which this conjecture plays a key role.

Remark 5.0.13. (Computing étale cohomology) Let S be a smooth projective geometrically
connected surface over Q. In view of our main result and results of Edixhoven et al., it seems
reasonable to suspect that, following a strategy of Edixhoven, there is an algorithm that on
input a prime p computes, for i = 0, . . . , 4, the cohomology groups Hi(SQ,et,Fp) with their

Gal(Q/Q)-action, in time polynomial in p.

Such an algorithm (polynomial or not) doesn’t exist at the present time. If such an algorithm is
devised following Edixhoven’s strategy it will be polynomial because of our main result.

6 Application 2: Szpiro’s small points conjecture

We state three very similar Diophantine conjectures.

Conjecture 6.0.14. (Belyi degree) Let K be a number field, S a finite set of finite places of
K and g ≥ 2 an integer. Then there exists an explicit real number c(K,S, g) such that, for any
smooth projective geometrically connected curve X over K of genus g with good reduction outside
S, the inequality

degB(X) ≤ c(K,S, g)

holds.

Conjecture 6.0.15. (Effective Shafarevich) Let K be a number field, S a finite set of finite
places of K and g ≥ 2 an integer. Then there exists an explicit real number c(K,S, g) such that,
for any smooth projective geometrically connected curve X over K of genus g with good reduction
outside S, the inequality

hFal(X) ≤ c(K,S, g)

holds.

For x ∈ X(Q), we let h(x) be the ”Arakelov height” of x. This is a non-negative real number with
the property that, for any real number C and integer d ≥ 1, the set

{x ∈ X(Q) : [Q(x) : Q] ≤ d, h(x) ≤ C}

is finite.

Conjecture 6.0.16. (Szpiro’s small points conjecture) Let K be a number field, S a finite
set of finite places of K and g ≥ 2 an integer. Then there exists an explicit real number c(K,S, g)
such that, for any smooth projective geometrically connected curve X over K of genus g with good
reduction outside S, there exists a point x ∈ X(Q) with

h(x) ≤ c(K,S, g).

Proposition 6.0.17. The Belyi conjecture implies the effective Shafarevich conjecture and Szpiro’s
small points conjecture.

Proof. This follows from the main result and its proof. (One can also combine the main result
with the arithmetic Faltings-Riemann-Roch theorem.)

Remark 6.0.18. The above conjectures are theorems if you remove ”explicit” from the state-
ments.
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Theorem 6.0.19. The three above conjectures hold for cyclic covers. Let us be more precise. Let
S be a finite set of places of K. Let X be a smooth projective geometrically connected curve over
a number field K of genus g ≥ 2 with good reduction outside S. Assume XK is a cyclic cover of
the projective line of prime degree. Then, there exists an explicit real number c(K,S, g) depending
only on K, S and g, and x ∈ X(Q) such that

degB(X) ≤ c(K,S, g), hFal(X) ≤ c(K,S, g), h(x) ≤ c(K,S, g).

Proof. It suffices to prove the inequality for degB(X). The idea is to use Khadjavi’s bound. That
is, for π : X → P1 a rational function etale over P1 −B, we have

degB(X) ≤ (4NHB)92N−2N3N !.

Thus, it suffices to find a rational function with deg π ≤ c(K,S, g), N ≤ c(K,S, g) and HB ≤
c(K,S, g). It is easy to find a function π : X → P1 such that deg π ≤ g + 1 and N ≤ 4g[K : Q]
using Riemann-Roch and Riemann-Hurwitz. It is difficult to bound HB explicitly in terms of K,
S and g in general. But, if π : X → P1 is a cyclic cover (geometrically), then one can use Baker’s
theory of logarithmic forms to obtain an explicit bound on HB in terms of K, S and g.

Remark 6.0.20. It would be interesting to prove the above conjectures in their full generality.
In fact, this would imply an effective version of the Mordell conjecture.

7 How does one prove Theorem 4.0.9

We sketch the proof of Theorem 4.0.9. Let X/Q be a curve of genus g ≥ 1. To simplify the
exposition, we will restrict ourselves to proving the following inequality:

e(X) ≤ 3 · 107(g − 1) degB(X)5.

The first step is provided by Faltings’ bound for e(X) which he derived from the arithmetic Hodge
index theorem.

Theorem 7.0.21. (Faltings) For all x in X(Q), the inequality e(X) ≤ 4g(g − 1)h(x) holds.

We will give a formula for h(x) later. It is clear that Faltings’ theorem shows that it suffices to
prove the following result.

Theorem 7.0.22. There exists a point x in X(Q) such that

h(x) ≤ 3 · 107

4g
degB(X)5.

Let a ∈ P1(Q) and let π : X → P1
Q

be a Belyi map. We will show that, for all x ∈ π−1(a), the

inequality

h(x) ≤ 3 · 107

4g
deg(π)5

holds. This will finish the proof.

We assume X has a semi-stable minimal regular model Xmin over OK and that x is K-rational.
(This can be obtained by replacing K with a finite extension.)

We consider dπ as a rational section of ωXmin/OK . Let KXmin be the (usual) Cartier divisor of dπ
on Xmin. Let ‖ ·‖Ar be the Arakelov norm function on Ω1

X(C) and let (·, ·) be the usual intersection
pairing on Xmin.
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Lemma 7.0.23. For all x such that π(x) 6∈ P1 − {0, 1,∞}, we have

[K : Q]h(x) = (KXmin , x) +
∑

σ:K→C

− log ‖dπσ‖Ar(x).

(Here we let x also denote the induced section of Xmin → SpecOK .)

This lemma implies that, to prove our main result, it suffices to prove the following theorem.

Theorem 7.0.24. Let a = −1 in P1(Q). For all x ∈ π−1(a), the following inequalities hold.

Arithmetic: We have
(KXmin , x) ≤ 2 degB(X)3[K : Q];

Analytic: We have ∑
σ:K→C

− log ‖dπσ‖Ar(x) ≤ 7 · 106

g
degB(X)5[K : Q].

8 The arithmetic part

We want to show that (KXmin , x) ≤ 2 degB(X)3[K : Q]. We proceed in six steps.

1. Let p : X → P1
OK

be the normalization of P1
OK

in the function field of X. Then

(KXmin , x) ≤ (KX , x).

The proof uses birational geometry of arithmetic surfaces.

2. The (generalized) Riemann-Hurwitz formula states that KX = π∗KP1
OK

+R as Weil divisors

on X , where R is the ramification divisor of p : X → P1
OK

and KP1
OK

is the canonical divisor

on P1
OK

associated to the tautological section. We note that R is supported on π−1(D),
where D is the branch locus of p. Moreover, if D′ is an irreducible component of π−1(D),
then the multiplicity of R along D′ is the valuation of the different ideal of OD′ over Op(D′).

3. We deduce, using the projection formula, that

(KX , x) ≤ (a, p∗R).

We recall that a = −1.

4. The fourth step consists of proving Lenstra’s generalization of Dedekind’s discriminant con-
jecture.

Lemma 8.0.25. (Lenstra) Let A be a discrete valuation ring of characteristic zero with
fraction field K. Let L/K be a finite field extension of degree n, and let B be the integral
closure of A in L. Then, for any prime ideal β of B, the exponent of β in the different ideal
DB/A is less or equal to eβ − 1 + eβordA(n), where eβ is the ramification index of β and
ordA is the valuation on A.

Proof. We may and do assume that B is a discrete valuation ring. Let x be a uniformizer
of A. The trace of y := 1

nx is 1
x . Since 1/x is not in A, this implies that the inverse different

D−1
B/A is strictly contained in the fractional ideal yB. In particular, the different DB/A

strictly contains the fractional ideal (nx).
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5. Now, using Lenstra’s result, we deduce that

(a, p∗R) ≤ 2(deg π)2(D, a).

6. The final step consists of bounding (D, a). The idea is that D = Dhor + Dver. It is not
hard to show that (Dhor, a) = 0 (because a = −1). Thus, we reduce to bounding (Dver, a).
This can be achieved by applying Abhyankar’s lemma ([SGA1, Exposé X, Lemme 3.6]) to
eliminate tame ramification. We obtain that (D, a) ≤ deg π[K : Q]. In fact, (Dver, a) is
simply the number of vertical components of D. We can get rid of all the vertical components
lying over primes p such that char(k(p)) ≥ deg π. Then, we bound the number of maximal
ideals p ⊂ OK such that char(k(p)) ≤ deg π by deg π[K : Q].

To summarize: we have

(KXmin , x) ≤1 (KX , x) ≤2,3 (a, p∗R) ≤4,5 2d2 ≤6 3(deg π)3[K : Q]

9 The analytic part

Let X be a compact connected Riemann surface of genus g. Let π : X → P1 be a Belyi map. To
finish the proof we want to show that

sup
X
− log ‖dπ‖Ar ≤

7 · 106

g
(deg π)5.

The main ingredient is the following result of Merkl and Bruin.

Theorem 9.0.26 (Merkl-Bruin). Let ({(Uj , zj)}nj=1, r1,M, c1) be a ”Merkl atlas” for X. Then,
for all j = 1, . . . , n,

sup
Uj

− log ‖dzj‖Ar ≤
330n

(1− r1)3/2
log

1

1− r1
+ 13.2nc1 + (n− 1) logM.

Merkl proved this theorem without explicit constants and without the dependence on r1. A proof
of the theorem in a more explicit form was given by P. Bruin in his master’s thesis. This proof is
reproduced, with minor modifications, in the appendix of [J].

For the sake of completeness, we give the definition of a Merkl atlas for X. Let µ denote the
Arakelov (1, 1)-form on X.

Definition 9.0.27. A Merkl atlas forX is a quadruple ({(Uj , zj)}nj=1, r1,M, c1), where {(Uj , zj)}nj=1

is a finite atlas for X, 1
2 < r1 < 1, M ≥ 1 and c1 > 0 are real numbers such that the following

properties are satisfied.

1. Each zjUj is the open unit disc.

2. The open sets Ur1j := {x ∈ Uj : |zj(x)| < r1} with 1 ≤ j ≤ n cover X.

3. For all 1 ≤ j, j′ ≤ n, the function |dzj/dzj′ | on Uj ∩ Uj′ is bounded from above by M .

4. For 1 ≤ j ≤ n, write µAr = iFjdzj ∧ dzj on Uj . Then 0 ≤ Fj(x) ≤ c1 for all x ∈ Uj .
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10 How to construct a Merkl atlas

It’s clear that we need to construct a Merkl atlas. We won’t get into too much details. We will
just explain how one constructs an atlas for X in a ”controlled” manner. If the reader is interested
in showing the atlas we construct below is a Merkl atlas with ”controlled” parameters he or she
may look at Section 3 of [J].

We have already mentioned the isomorphism X(1) ∼= P1(C) given by the j-invariant. There is
also an isomorphism X(2) ∼= P1(C) given by the λ-invariant. We replace P1 with X(2).

One can define charts at each cusp of X(2):

(B0, z0), (B1, z1), (B∞, z∞).

This gives an atlas for X(2). Also, these charts have the property that zκ : Bκ → B(0, 1) is an
isomorphism, where B(0, 1) is the open unit disc in C. Also, each Bκ contains precisely one cusp:
κ.

Now, we ”lift” the atlas to an atlas {(Vy, wy)}y∈V , where we write V for π−1(P1 − {0, 1,∞}), as
follows.

Let κ be a cusp ofX(2). The branched cover π−1(Bκ) −→ Bκ restricts to a finite degree topological
cover π−1(Ḃκ) −→ Ḃκ. In particular, the composed morphism

π−1Ḃκ
// Ḃκ

∼
zκ|Ḃκ

// Ḃ(0, 1)

is a finite degree topological cover of Ḃ(0, 1).

Recall that the fundamental group of Ḃ(0, 1) is isomorphic to Z. More precisely, for any connected
topological cover of V → Ḃ(0, 1), there is a unique integer e ≥ 1 such that V → Ḃ(0, 1) is
isomorphic to the cover Ḃ(0, 1) −→ Ḃ(0, 1) given by x 7→ xe.

For every cusp y of Y lying over κ, let V̇y be the unique connected component of π−1Ḃκ whose
closure Vy in π−1(Bκ) contains y. Then, for any cusp y, there is a positive integer ey and an

isomorphism wy : V̇y
∼ // Ḃ(0, 1) such that w

ey
y = zκ ◦ π|V̇y . The isomorphism wy : V̇y −→

Ḃ(0, 1) extends to an isomorphism wy : Vy −→ B(0, 1) such that w
ey
y = zκ ◦π|Vy . This shows that

ey is the ramification index of y over κ. Note that we have constructed an atlas {(Vy, wy)} for Y ,
where y runs over the cusps of Y .

Showing this atlas is a Merkl atlas is essentially an elementary (but tedious) computation. The
only non-trivial result we use is a result of Jorgenson-Kramer-Bruin on the Arakelov (1,1)-form
and the hyperbolic (1,1)-form.
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