

Astrophysical plasma applications of SMILEI

Magnetic reconnection at the Earth's magnetopause

Jérémy Dargent, Nicolas Aunai, Benoît Lavraud & Sergio Toledo-Redondo

> Laboratory of Plasma Physics Palaiseau, France Soulouse, France

Magnetopause

Magnetic reconnection

The magnetospheric cold ions

ring current: 3-100 keV ~0.2 cm⁻³

polar wind: 10 eV - 3 keV 0.05 - 3 cm⁻³

plasmaspheric wind and plumes:

<1 eV 0.5 - 3 cm⁻³ / 3 - 40 cm⁻³

Simulations

Initialization & Characteristics

- 2D simulations
- Box size: 6400 * 5120 cells
- Boundary condition:
 Double periodic
- Computing center and machine:
 ADA at TGCC

Simulations

Without cold ions

- Domain decomposition: 512 cores (4*16 MPI process / 8 OpenMP threads)
- ~ 120 000 CPU hours
- <u>Data:</u> ~ 5 To

Simulations

With cold ions

- <u>Domain decomposition:</u> 2048 cores (16*16 MPI process / 8 OpenMP threads)
- ~ 200 000 CPU hours
- <u>Data:</u> ~ 9 To

Extended electric field

Dargent et al. (2017), JGR

without cold ions

Х

with cold ions

Extended electric field

Dargent et al. (2017), JGR

without cold ions

Х

with cold ions

Extended electric field

Dargent et al. (2017), JGR

without cold ions

with cold ions

Tips & Tricks

Statistical weight of particles can be used to discriminate populations

Results from simulation

Larmor electric field comes from magnetosheath ion dynamics

Extended electric field comes from cold ion dynamics

Other cold ion signatures

Rarefaction of cold ions in diffusion region and compression along separatrices

Other cold ion signatures

Crescent-shaped distribution function

Other cold ion signatures

Parallel heating of cold ions along magnetospheric separatrices

Second objective:

Study the far away exhaust

- 2D simulations
- Box size:
 25 600 * 10 240
 cells
- Boundary
 condition:
 Periodic along x
 Reflective along y
- Computing center and machine: Curie at IDRIS

A large simulation in 3 steps

- Domain decomposition: 16384 cores (16*128 MPI process / 8 OpenMP threads)
- ~ 14 million CPU hours
- Data: ~ 350 To

A large simulation in 3 steps

Х

A large simulation in 3 steps

Ongoing work

The plume drop the reconnection rate

Ongoing work

Impact of the plume on plasmoids growth &

Cold ion distribution in structures

Ongoing work

Observation of firehose instability &

Impact of the plume on this unsteadiness

Conclusion

- SMILEI allowed unprecedented works in magnetic reconnection domain
- It can be used for light simulation as well as very heavy ones
- The possibility to easily define various populations was very useful for me