
SMILEI training workshop
November	6-7,	2017

Maison	de	la	Simulation

Interface,
outputs,

post-processing

Frédéric Pérez

Interface,	outputs,	post-processing	– F.	Pérez

The	minimum	knowledge	to	use	Smilei
if	you	want	to	keep	away	from	the	code

1. Compile

2. Write	an	input	file	(a.k.a.	namelist)

3. Run	the	program

4. Read	&	post-process	the	outputs

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 2

Smilei already	does	much	of	the	work	for	you

Interface,	outputs,	post-processing	– F.	Pérez

The	minimum	knowledge	to	use	Smilei
if	you	want	to	keep	away	from	the	code

1. Compile

2. Write	an	input	file	(a.k.a.	namelist)

3. Run	the	program

4. Read	&	post-process	the	outputs

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 3

Interface,	outputs,	post-processing	– F.	Pérez

Requirements	to	compile	&	run

• C++11	compiler	(with	openMP)

• MPI,	supporting	MPI_THREAD_MULTIPLE if	openMP

• Compatible	HDF5

• Python	2.7+

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 4

Help	is	given	on	our	website

Interface,	outputs,	post-processing	– F.	Pérez

Compiling	Smilei

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 5

$ make

$ make –j 8 # compile with 8 processors

$ make clean # reset compilation

$ make doc # compile documentation

Interface,	outputs,	post-processing	– F.	Pérez

The	minimum	knowledge	to	use	Smilei
if	you	want	to	keep	away	from	the	code

1. Compile

2. Write	an	input	file	(a.k.a.	namelist)

3. Run	the	program

4. Read	&	post-process	the	outputs

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 6

Interface,	outputs,	post-processing	– F.	Pérez

The	input	file	is	written	in	python

• While	the	code	is	C++,	the	input	is	python	
• Units	are	all	normalized		(𝑐,	𝑚#,	𝑞#,	𝑚#𝑐,	𝑚#𝑐%,	𝑛',	etc.)

• Instructions	interpreted	by	Smilei only	inside	blocks

Smilei	Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 7

Main(
timestep = 0.01,
grid_length = [10., 20.],
...

)

LoadBalancing(
every = 200

)

Species(
name = "electrons1",
particles_per_cell = 1000,
...

)

DiagFields(
every = 1000,

)

Interface,	outputs,	post-processing	– F.	Pérez

The	python input	provides	flexibility
• Calculate	simulation	parameters	at	runtime

• Plasma	&	laser	profiles	are	given	as	functions

• Any	python	code	accepted
Import	modules,	read	external	files,	run	other	scripts,	etc.

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 8

omega0_SI = 2. * math.pi * 3e8 / 1.06e-6
duration_SI = 300.e-15
Main(simulation_time = duration_SI * omega0_SI, ...)

Change	units

for s in [“ion1”, “ion2”, “ion3”, “ion4”]:
DiagParticleBinning(species = [s], ...)

Loops

def f(x,y): return x*math.exp(-(y-y0)**2)
Species(number_density = f, ...)

User’s	profile

Species(number_density = gaussian(fwhm=3), ...) Built-in	profile

Interface,	outputs,	post-processing	– F.	Pérez

The	minimum	knowledge	to	use	Smilei
if	you	want	to	keep	away	from	the	code

1. Compile

2. Write	an	input	file	(a.k.a.	namelist)

3. Run	the	program

4. Read	&	post-process	the	outputs

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 9

Interface,	outputs,	post-processing	– F.	Pérez

A	test	mode	to	check	input	consistency

Runs	through	code	initialization	only.
Only	loads	one	patch.

Fast	&	convenient

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 10

$ smilei_test myinput.py

Interface,	outputs,	post-processing	– F.	Pérez

A	basic	example	to	run	a	simulation

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 11

$ mkdir mysimulation
$ cp myinput.py mysimulation
$ cp smilei mysimulation
$ cd mysimulation
$ mpirun -n 4 smilei myinput.py

Interface,	outputs,	post-processing	– F.	Pérez

The	minimum	knowledge	to	use	Smilei
if	you	want	to	keep	away	from	the	code

1. Compile

2. Write	an	input	file	(a.k.a.	namelist)

3. Run	the	program

4. Read	&	post-process	the	outputs

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 12

Interface,	outputs,	post-processing	– F.	Pérez

Outputs

• Standard	output:	lots	of	info,	warnings,	errors,	etc.
• Diagnostics
• Scalar TXT global	simulation	quantities
• Fields HDF5 direct	output	of	the	fields	arrays
• Probe HDF5 fields	interpolated	on	regular	grids
• ParticleBinning HDF5 versatile	averaged	particle	data
• Screen HDF5 time-integrated	particles	passing	through	surface
• TrackParticles HDF5 particle	trajectories	

• Migration	towards (standard	for	particle/mesh	data)

Operational	for	Fields &	TrackParticles

• Checkpoints	(≡	dumps	and	restarts)

HDF5	files	in	the	checkpoints folder	for	restarting	the	simulation

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 13

Interface,	outputs,	post-processing	– F.	Pérez

Included	python post-processing

• The	repository	includes	a	pythonmodule	happi

Limitations:	no	parallel	processing;	limited	in	memory

• Get	simulation	parameters

• Data	manipulation
basic	operations,	change	units,	slicing,	etc.

• Obtain	raw	or	processed	data

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 14

$ make happi
$ ipython
In [1]: import happi

In [2]: S = happi.Open(“path/to/my/simulation/”)
In [3]: timestep = S.namelist.Main.timestep

In [7]: S.ParticleBinning(0).getData()

Interface,	outputs,	post-processing	– F.	Pérez

Easy	visualization

• Plot	simulation	results

• Convert	to	VTK	format	(for	VisIt or	Paraview)

• The	openPMD-compliant	diagnostics	can	be	
opened	in	VisIt

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 15

In [7]: S.ParticleBinning(0, timesteps=1000).toVTK()

In [4]: S.ParticleBinning(0).plot()
In [5]: S.ParticleBinning(0).streak()
In [6]: S.ParticleBinning(0).animate()

Interface,	outputs,	post-processing	– F.	Pérez

The	minimum	knowledge	to	use	Smilei
if	you	want	to	keep	away	from	the	code

1. Compile

2. Write	an	input	file	(a.k.a.	namelist)

3. Run	the	program

4. Read	&	post-process	the	outputs

Smilei Training	Workshop	– Nov.	6-7	2017	– Maison	de	la	Simulation 16

Questions	?

