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The	minimum	knowledge	to	use	Smilei
if	you	want	to	keep	away	from	the	code

1. Compile

2. Write	an	input	file	(a.k.a.	namelist)

3. Run	the	program

4. Read	&	post-process	the	outputs
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Smilei already	does	much	of	the	work	for	you
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Requirements	to	compile	&	run

• C++11	compiler	(with	openMP)

• MPI,	supporting	MPI_THREAD_MULTIPLE if	openMP

• Compatible	HDF5

• Python	2.7+
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Help	is	given	on	our	website
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Compiling	Smilei
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$ make

$ make –j 8     # compile with 8 processors

$ make clean    # reset compilation

$ make doc      # compile documentation
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The	input	file	is	written	in	python

• While	the	code	is	C++,	the	input	is	python	
• Units	are	all	normalized		(	𝑐,	𝑚#,	𝑞#,	𝑚#𝑐,	𝑚#𝑐%,	𝑛',	etc.	)

• Instructions	interpreted	by	Smilei only	inside	blocks
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Main(
timestep = 0.01,
grid_length = [10., 20.],
...

)

LoadBalancing(
every = 200

)

Species(
name = "electrons1",
particles_per_cell = 1000,
...

)

DiagFields(
every = 1000,

)
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The	python input	provides	flexibility
• Calculate	simulation	parameters	at	runtime

• Plasma	&	laser	profiles	are	given	as	functions

• Any	python	code	accepted
Import	modules,	read	external	files,	run	other	scripts,	etc.
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omega0_SI   = 2. * math.pi * 3e8 / 1.06e-6
duration_SI = 300.e-15
Main( simulation_time = duration_SI * omega0_SI, ... )

Change	units

for s in [“ion1”, “ion2”, “ion3”, “ion4”]:
DiagParticleBinning( species = [s], ... )

Loops

def f(x,y): return x*math.exp(-(y-y0)**2)
Species( number_density = f, ... )

User’s	profile

Species( number_density = gaussian(fwhm=3), ... ) Built-in	profile
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A	test	mode	to	check	input	consistency

Runs	through	code	initialization	only.
Only	loads	one	patch.

Fast	&	convenient
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$ smilei_test myinput.py
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A	basic	example	to	run	a	simulation
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$ mkdir mysimulation
$ cp myinput.py mysimulation
$ cp smilei mysimulation
$ cd mysimulation
$ mpirun -n 4 smilei myinput.py
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Outputs

• Standard	output:	lots	of	info,	warnings,	errors,	etc.
• Diagnostics
• Scalar TXT global	simulation	quantities
• Fields HDF5 direct	output	of	the	fields	arrays
• Probe HDF5 fields	interpolated	on	regular	grids
• ParticleBinning HDF5 versatile	averaged	particle	data
• Screen HDF5 time-integrated	particles	passing	through	surface
• TrackParticles HDF5 particle	trajectories	

• Migration	towards (standard	for	particle/mesh	data)

Operational	for	Fields &	TrackParticles

• Checkpoints	(	≡	dumps	and	restarts	)

HDF5	files	in	the	checkpoints folder	for	restarting	the	simulation
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Included	python post-processing

• The	repository	includes	a	pythonmodule	happi

Limitations:	no	parallel	processing;	limited	in	memory

• Get	simulation	parameters

• Data	manipulation
basic	operations,	change	units,	slicing,	etc.

• Obtain	raw	or	processed	data
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$ make happi
$ ipython
In [1]: import happi

In [2]: S = happi.Open(“path/to/my/simulation/”)
In [3]: timestep = S.namelist.Main.timestep

In [7]: S.ParticleBinning(0).getData()
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Easy	visualization

• Plot	simulation	results

• Convert	to	VTK	format	(for	VisIt or	Paraview)

• The	openPMD-compliant	diagnostics	can	be	
opened	in	VisIt
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In [7]: S.ParticleBinning(0, timesteps=1000).toVTK()

In [4]: S.ParticleBinning(0).plot()
In [5]: S.ParticleBinning(0).streak()
In [6]: S.ParticleBinning(0).animate()
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Questions	?


