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A brief introduction

Once upon a time...

Category of simplicial sets

" =
DGL 7 SSet

| 4§
Category of differential graded (over Z) Lie algebras over a field
of characteristic zero

Theorem

With the appropriate restrictions, the induced functors in the
homotopy categories are equivalences.

Ho DGL(]@ j% Ho SSet(]Q

I

Ho DGL%__JC ~s Ho SSet.j%__f




The “unrestricted’’ situation is also useful...

Example 1. mapping spaces...
Let X be a finite nilpotent CW-complex.

Let Y be a finite type nilpotent CW-complex.
Let L be a DGL model of Y.

Let C' be a finite dimensional coalgebra model of X.

In Hom(C, L) define:
lg,h]: C — L,

clcogc el

Dg=dog—|—(—1)|g|god-

Theorem Hom(C,L) is a DGL model of map(X,Y).



Consequences...

Let Y be a rational simply connected complex and a € m(Y).

Then,
mMap, (S, Y) ® Q = ker adny & coker adg

memap (S Y)2Q = m(Y) 2 Q

If m(Y)®@Q is an infinitely generated Lie algebra, then m. maps(X,Y")
is also infinitely generated.



Example 2: Deformations...
“ ..Every deformation functor is governed by a differential graded
Lie algebra...”

Let A be an associative algebra.

AllR)] = {3 fat", fn€ A}

n=>0

A deformation of the multiplication in A is a bilinear map

w1 A[] x A[[]] — A[[1]

Yo fat"x Y gnt™ =Y hat", ho = fogo-

n=>0 n=>0 n=>0

Two deformations % v %’ of the multiplication in A are equivalent
If there is an automorphism

o A[[t]} = A[[t]]
which fix the constant term of each series and

e(f*g) =¢(f)* ¢(g). fig € A



Let R be a local commutative algebra with maximal ideal 9
(R/9M = k the coeffcient field)

Let A be an associative algebra. An R-deformation of A is an
R-bilinear associative map

¥ (AQR)r(A®R) — A®R

such that, modulo 91, it reduces to the product of A.
Def(A; R) =Set of equivalence classes of R-deformations of A.
There exists a DGL L for which,

Def(A; R) &2 MC(L) =MC(L)/ ~

Let L be a DGL. z € L_7 is a Maurer-Cartan element if

[z, z].

We will denote the set of Maurer-Cartan elements in L by MC(L).

Oz = —

M|



DGL responsible for associative deformations

Let C*(A,A) be the Hochschild complex of A endowed with the
Gerstenhaber bracket.

CP(A,A) = Hom(A®P A) d: CP(A, A) — CPT1(A A)

fECP(AA), ge CUAA), fege CPTITL(A A)

(f b g)(ﬂ'lz - :ﬂp+q—l) —

Ef:l(_l)i(q-l-l}f(ﬂ'lr ey Ay g(a’i-l-l.‘- SO I:1'1'—|-i:]'):~ Ajt-q+1:---> IH‘p—|—(j‘—1)

[f,gl=feg—(—1)Pgef



Desuspend C*(A, A) to obtain a differential graded Lie algebra
concentrated in degrees < 1:

rAs — f’;’isl Ei; = Cp_l_l(ﬂaﬂ)

Given x a deformation of A, write:
a*xb=ab+ B(a,b)
B:A®A—AQM Be C?%(A,A) @M

Associativity of x translates to dB = —%[B,B]

In other words, z is a Maurer-Cartan element of £4% @ M.

It turns out that two R-deformations, = and %’ are equivalent if
and only if the corresponding Maurer-Cartan elements =z and 2/

in the DGL £4s @ M are gauge equivalent.
Def(A; R) is controlled by £As 9, that is,

Def(A: R) 2 MC(L£A5 @ M).



Goal

Develop a consistent homotopy theory in (unbounded!) DGL,
or more generally in Lo, to be able to algebraically model the

homotopy type of nhon-connected spaces.



L. algebras
(L: {Ef{f}ﬁ:zl)

L =&&,¢c7 Ln o=1,...,]: @F L - L of degree k — 2
(1) Skew-symmetry: [;1?g(1), :mg(i:.)] = *+[xq, ..., 71].
(2) Jacobi identities:

Z Z + [[;1?5(1), ,;Eg(é)],:rg(_i+1), ,;1?5(?1)} = 0.
i+j=n+1 c€S(i.n—1)

{1 = O is a differential in L.
Ola,b] = [9a,b] + (—1)ll[a, 0b].

+a, [b,c]] £ [b.[cal| £ |c. [a.8]] =

+0[a, b, c] £ [Da, b, c] £ [a,db, c] + [a, b, Oc].

A DGL is an L., algebra for which ¢, =0, k£ > 3.



Cochain and realization functor

Category of commutative
differential graded algebras

Cochain: 7

C®: Lo ~> CDGA
C®(L) = (A(sL), d) = (AV, d)

in which d is defined according to the following pairing:

d=Y"d, d;V C NV
j=1
(djv;scy A« A sxy) = £(v; s[zy, ..., x5])
Realization: CDCGA
C> ‘\,Sj )

() Lo —~——> SSet



Points, augmentations and Maurer-Cartan elements
In CDGA points correspond to augmentations:
¥ — X
AQ «— A(X)
In DGL or L. points correspond to Maurer-Cartan elements:
Let L be a DGL. 2z € L_7 is a Maurer-Cartan element if

0z = —=z[z, z].

B =

Let L be an L, algebra. z € L_1 is a Maurer-Cartan element if
o0
1
P
Z k![h,...,&] 0.

k=1

Theorem MC(L) = Aug C*>°(L)



Homotopies, cylinders and the Lawrence-Sullivan construction

In the classical 1-connected or nilpotent category, the notion
of homotopy in the algebraic categories is well known and fully
understood.

How to extended it to the non-connected case?

frg: (X, 20) — (Y,yp) are homotopic (in the based category!)
if there is a based homotopy

H: (X xI{zg} xI) — (Y,yp)

between f and g. \

H corresponds to a based map H: X AT sV
H: 1T — map(X.Y),
H(+) = ¢y, H(O) = f, H(1) = g.

Hence, a good cylinder in DGL should be a candidate for a model
of It



“"A free differential Lie algebra for the interval”
¢ = (L(a,b,),0)

L. denotes complete free Lie algebra.

a and b are Maurer-Cartan elements. ;I Bernoulli number

Ox = [x,b] + 3~ Biadi (b — a),

i=0 4!

Definition

Let L be an L algebra. Two Maurer-Cartan elements zg,z1 €
MC(L) are homotopic

if there is an Lo morphism

¢ L — L

such that MC(¢)(a) = zg and MC(¢)(b) = 21.

MC(L) = MC(L)/ ~



Localization, components and realization

Let L be an Loo algebra and z € MC(L).

T he perturbation of the bracket ¢;, by z is the new bracket
Ei‘.(ml?"' :Iﬁ:) — [mlz”':mﬁc]z — Z E-_lg-i—{—ﬁ:-(z:'?':‘z:mlz*”:mk)'
(L,{f.}) is again an L algebra.

The localization of L at ~ is the new L., algebra L(*):

L; ifi>0,
L) ={ kerez ifi=o0,
0 ifi<O.

T he brackets are induced by fi for any k£ > 1.



Theorem
Let L be an L., algebra. Then,

(L) ~U_ e ry (L(2)),
Examples

The realization of the Lawrence-Sullivan construction has the
homotopy type of SUY.

Let L the DGL which governs the infinitesimal deformations of
the abelian Lie algebra of dimension n.

(L) ~ Uy (SH° v (CP>®)".



Models of non-connected spaces
Input:
Family of nilpotent spaces of the homotopy type of finite type

CW-complexes.
Family of O-reduced DGL's of finite type.

Output:
DGL whose realization is of the homotopy type of the

rationalization of the space whose components are the
elements of the given family.

X Xt v




Given L,M € DGL we denote by L x M its coproduct. Recall
that, given free presentations L = L(U)/I, M = L(V)/J, then

Let L, M be non-negatively graded DGL's models of the path
connected spaces X and Y.

Lemma  L(w) %L is a model of X v S°.
Perturb the differential by the Maurer-Cartan element wu:
(L(w) x L, 0y,)
Ou(u) = S[u, u
Oya = da + [u,al], a€ L
Nothing has changed! (except the base point)

Indeed, (L) ~ (L.) for any = € MC(L).



Lemma (L(u) % L,d,) is a model of X+ = X U {point}.

Finally,

Theorem  (L(w)* L% M,d, x9y7) is a model of X UY.

More generally,

Theorem
Let X be a space with path components {Y,X;},c; and let

{L,L;};cy be a family of non-negatively graded DGL's, each of
which modeling the corresponding component. For each 5 € J

consider the perturbed DGL
ij — (ILI(’ILJ) * L_}" au_‘j),

1 ‘ ‘
Ou;(uj) = E[u.j,uj], O, = Ojx + [uj,z], x€L;.

T hen,

IS a model of X



Corollary

In particular, every non-connected space X has a free model
generated by a vector space concentrated in degrees greater than
or equal to —1.

Examples
Ou = %[u, u),

(IL'(“’: L, Y1, 93) 9 (3) E)-Ifn_ — [u’t I-n] ?

Oy1 =0, 9Jy3z = [y1,v1],

is a model of gn | Cp2

IS a model of U, ~q S".



All of this in:

Urtzi Buijs, Aniceto Murillo, Algebraic models of hon connected
spaces and homotopy theory of L~ algebras, Adv. in Math. 236
(2013), 50-91.
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