The Milnor-Thurston determinant and the Ruelle transfer operator

Hans Henrik Rugh
mailto:Hans-Henrik.Rugh@math.u-psud.fr

Angers 2017

Motivation and set-up

We consider (I, f), a piecewise continuous and strictly monotone map of a 1 dimensional space. We may take I to be an Interval:

Analytic structures related to $h_{\text {top }}(f)$

The dynamical system (I, f) has a topological entropy $h_{\text {top }}(f)$. We are interested in related analytic structures. Here is the zoo:

- $\mathrm{L}(t)$: Lap number generating function.
- $D(t)$: Milnor-Thurston kneading determinant.
- $\zeta_{A M}(t)$: Artin-Mazur topological zeta-function.
- \mathcal{L} : Ruelle transfer operator for (I, f).
- $\zeta_{R}(t)$: Ruelle dynamical zeta-function.

Backward iterates of critical points

$$
\operatorname{Crit}(f)=\left\{c_{0}, c_{1}, c_{2}\right\}
$$

"Partition" into open intervals:

$$
\begin{gathered}
I_{1}=\left(c_{0}, c_{1}\right), I_{2}=\left(c_{1}, c_{2}\right) \\
Z_{1}=\left\{I_{1}, I_{2}\right\}
\end{gathered}
$$

Backward iterates of critical points

$$
\operatorname{Crit}(f)=\left\{c_{0}, c_{1}, c_{2}\right\}
$$

"Partition" into open intervals:

$$
\begin{gathered}
I_{1}=\left(c_{0}, c_{1}\right), I_{2}=\left(c_{1}, c_{2}\right) \\
Z_{1}=\left\{I_{1}, I_{2}\right\}
\end{gathered}
$$

Refinement by backward iteration of critical points:

2

$$
Z_{2}=f^{-1} Z_{1} \vee Z_{1}
$$

$$
Z_{2}=\left\{I_{11}, I_{12}, I_{22}, I_{21}\right\}
$$

Backward iterates of critical points

$$
Z_{n}=f^{-(n-1)} Z_{1} \vee \cdots \vee Z_{1}
$$

Misiurewicz and Szlenk:

$$
h_{\text {top }}=\lim _{n \rightarrow \infty} \frac{1}{n} \log \# Z_{n}
$$

Lap number generating function:

$$
L(t)=\sum_{n \geq 0} t^{n} \# Z_{n} \in \mathbb{Z}_{+}[[t]]
$$

An a priori simple analytic structure of the Lap generating function, example:

$$
L(t)=1+2 t+4 t^{2}+8 t^{3}+14 t^{4}+\ldots
$$

Coefficients are non-negative integers.

- L analytic for: $|t|<t_{*}=e^{-h_{\text {top }}}$
- L diverges for $t>t_{*}=e^{-h_{\text {top }}}$

Analytic structures related to $h_{\text {top }}(f)$

Returning to the zoo:

- $L(t)$: Lap number generating function.
- $D(t)$: Milnor-Thurston kneading determinant.
- $\zeta_{A M}(t)$: Artin-Mazur topological zeta-function.
- $\mathcal{L}: \quad$ Ruelle transfer operator for (I, f).
- $\zeta_{R}(t)$: Ruelle dynamical zeta-function.

Dual picture: Forward iterates of critical points

$$
c_{0}<c_{1}<\cdots c_{d}<c_{d+1}
$$

Intervals of monot.: $I_{k}=\left(c_{k}, c_{k+1}\right)$,

$$
f_{k}: I_{k} \rightarrow I=\left(c_{0}, c_{d+1}\right)
$$

is strictly monotone and continuous.
Need not be defined at c_{k} and c_{k+1}.
But $f\left(c_{k}^{+}\right)$and $f\left(c_{k+1}^{-}\right)$are well-defined.

Introduce "directed" points to keep track of directed limits:

$$
x^{+}=(x,+1), x^{-}=(x,-1)
$$

Lifting the map to a directed point map

A directed point \widehat{x} denotes either $(x,+1)$ or $(x,-1)$ (limit from the right/left).

On each directed interval $\left[c_{k}^{+}, c_{k+1}^{-}\right]$the map either preserves or reverses orientation, also at endpoints. Set:

- $s(f, \widehat{x})=+1$ if f preserves the orientation at \widehat{x},
- $s(f, \widehat{x})=-1$ if f reverses the orientation at \widehat{x}.

We "lift" f to a map on the space of directed points:

$$
\widehat{f}(\widehat{x})=\widehat{f}((x, \epsilon))=\left(\lim _{t \rightarrow 0^{+}} f(x+\epsilon t), \quad s(f, \widehat{x}) \epsilon\right)
$$

Kneading invariant

When $x<y$, declare $x<x^{+}<y^{-}<y$ and for $\hat{x} \in \widehat{I}$ and $u \in \mathbb{R}$:

$$
\sigma(\widehat{x}, u)= \begin{cases}+1 / 2 & \text { if } \hat{x}<u \\ -1 / 2 & \text { if } \hat{x}>u\end{cases}
$$

and for $c \in \operatorname{Crit}(f)$ the kneading invariant (coefficients $= \pm \frac{1}{2}$):

$$
\theta_{c}(\widehat{x}, t)=\sum_{n \geq 0} t^{n} s\left(f^{n}, \widehat{x}\right) \sigma\left(\widehat{f}^{n}(\widehat{x}), c\right)
$$

The kneading "determinant" (in our unimodal case):

$$
D(t)=\theta_{c_{1}}\left(c_{1}^{+}, t\right)-\theta_{c_{1}}\left(c_{1}^{-}, t\right) .
$$

Recall: The lap generating function

$$
L(t)=1+2 t+4 t^{2}+8 t^{3}+14 t^{4}+\ldots
$$

diverges for $t>t_{*}=e^{-h_{\text {top }}}$
while $D(t)$ is analytic in $\mathbb{D}=\{|t|<1\}$ since coefficients are in $\{-1,0,1\}$.

Cancellations of backward and forward orbit contributions: $D(t) \times L(t)$ is analytic in \mathbb{D} with no roots!

- $e^{-h_{\text {top }}}$ is a pole of $L(t)$.
- $e^{-h_{\text {top }}}$ is the smallest root of $D(t)$.

With d critical points, $\operatorname{Crit}(f)=\left\{c_{0}, \ldots, c_{d+1}\right\}$ one may introduce a $(d+1) \times(d+1)$ kneading matrix:

$$
R_{j k}(t)=\left\{\begin{array}{lll}
\theta_{c_{k}}\left(c_{0}^{+}, t\right)+\theta_{c_{k}}\left(c_{d+1}^{-}, t\right) & , & j=0 \\
\theta_{c_{k}}\left(c_{j}^{+}, t\right)-\theta_{c_{k}}\left(c_{j}^{-}, t\right) & , & 1 \leq j \leq d
\end{array}\right.
$$

and a Milnor-Thurston kneading determinant:

$$
D(t)=\operatorname{det} R_{j k}(t)
$$

Again a magic property (much harder to prove): $D(t) L(t)$ is analytic in \mathbb{D} and has no roots for $|t|<e^{-h_{\text {top }}}$. Once again:

- $t_{*}=e^{-h_{\text {top }}}$ is the smallest root of $D(t)$.

Analytic structures related to $h_{\text {top }}(f)$

Back at the zoo ...:

- $L(t)$: Lap number generating function.
- $D(t)$: Milnor-Thurston kneading determinant.
- $\zeta_{A M}(t)$: Artin-Mazur topological zeta-function.
- \mathcal{L} : Ruelle transfer operator for (I, f).
- $\zeta_{R}(t)$: Ruelle dynamical zeta-function.

The Artin-Mazur topological zeta-function (tacitly assuming finitely many fixed points):

$$
\zeta_{A M}(t)=\exp \left(\sum_{n \geq 1} \frac{t^{n}}{n} \# \operatorname{Fix}\left(f^{n}\right)\right)
$$

Yet again magic cancellations:

$$
D(t) \times \zeta_{A M}(t)
$$

is analytic in \mathbb{D} with no roots!

Analytic structures related to $h_{\text {top }}(f)$

Continuing the tour at the zoo ...:

- $L(t)$: Lap number generating function.
- $D(t)$: Milnor-Thurston kneading determinant.
- $\zeta_{A M}(t)$: Artin-Mazur topological zeta-function.
- $\mathcal{L}: \quad$ Ruelle transfer operator for (I, f).
- $\zeta_{R}(t)$: Ruelle dynamical zeta-function.

The Ruelle transfer operator and zeta-function

For $\phi \in B V(I)$, a function of bounded variation on I, we set:

$$
\mathcal{L} \phi(y)=\sum_{x: f(x)=y} \phi(x)
$$

Acting on the constant function we simply count pre-images:

$$
\operatorname{Card}\left\{x: f^{n}(x)=y\right\}=\mathcal{L}^{n} \mathbf{1}(y)
$$

One has:

- $r_{\mathrm{sp}}(\mathcal{L})=\lim _{n \rightarrow \infty}\left\|\mathcal{L}^{n}\right\|_{B V}^{1 / n}=e^{h_{\mathrm{top}}}$.
- \mathcal{L} is a positive operator $\Rightarrow\left(r_{\mathrm{sp}}(\mathcal{L})-\mathcal{L}\right)$ is non-invertible.

Baladi and Keller (1990) defines a zeta-function (when f is expanding):

$$
\zeta_{R}(t)=\exp \left(\sum_{n \geq 1} \frac{t^{n}}{n} \# \operatorname{Fix}\left(f^{n}\right)\right) .
$$

They show that on the space of BV-functions:

$$
\left(\zeta_{R}(t)\right)^{-1}=\operatorname{det}(1-t \mathcal{L})
$$

"det" is a "dynamical" determinant introduced by Ruelle.
Both functions are analytic in \mathbb{D}. Zeros are in 1-1 correspondance with the reciprocal of the eigenvalues of \mathcal{L}, greater than 1 in absolute value.

- Now note that $\zeta_{R}(t)=\zeta_{A M}(t)$.

So ($\sim=$ analytic, same roots in $\mathbb{D})$:

$$
D(t) \sim \zeta_{A M}(t)^{-1}=\zeta_{R}(t)^{-1} \sim \operatorname{det}(1-t \mathcal{L})
$$

$D(t)$ not only determines $h_{\text {top }}$ but also describes eigenvalues of $\mathcal{L}!$

- $D(t)$ is determined by forward orbits
- while \mathcal{L} uses backward iteration.

A thought: Since \mathcal{L} is based upon backward iterates of f, perhaps the dual operator \mathcal{L}^{\prime} should use forward iterations by f ?

Quest starting in the 90s ...:

Express $D(t)$ as a determinant of the dual Ruelle operator.
Several partial results: Baladi and Ruelle (1994), ..., Gouëzel (2001). Calculations use BV-functions, are indirect and difficult. They do not quite cover the original problem.

Reason:

- BV function space is too large \Rightarrow The dual space is too small.

Is it possible to tailor a Banach space better to our needs...?

Let \mathcal{S} be the space of piecewise constant functions on $\left(c_{0}, c_{d+1}\right)$ and X the closure of \mathcal{S} in $\mathrm{BV} . X^{\prime}$ denotes the dual space.

Theorem (R. 2015)

$D(t)$ equals a (regularized) determinant of \mathcal{L}^{\prime} acting upon X^{\prime}. This (regularized) determinant is analytic in \mathbb{D}.

Corollary

$h_{\text {top }}>0 \Rightarrow e^{-h_{\text {top }}}$ is the smallest zero of $D(t)$.
Proof:

- $r_{\text {sp }}\left(\mathcal{L}^{\prime}\right)=r_{\text {sp }}(\mathcal{L})=e^{-h_{\text {top }}}$.
- \mathcal{L} is a positive operator $\Rightarrow e^{h_{\text {top }}} \in$ spectrum of \mathcal{L} (and of \mathcal{L}^{\prime}).
- For $t \in \mathbb{D}$ we have: $D(t)=0 \Leftrightarrow 1 / t$ is an eigenvalue of \mathcal{L}^{\prime}

Functions of bounded variation

$\phi: I=\left(c_{0}, c_{d+1}\right) \rightarrow \mathbb{C}$ is said to be of bounded variation (BV) iff
$\operatorname{var} \phi=\sup \left\{\sum_{i=1}^{N-1} \mid \phi\left(x_{i}\right)-\phi\left(x_{i+1} \mid: c_{0}<x_{1}<\ldots<x_{N}<c_{d+1}\right\}<+\infty\right.$
When $\operatorname{var} \phi<+\infty$ we have existence of right and left limits:

- $\phi\left(x^{+}\right)=\lim _{t \rightarrow 0^{+}} \phi(x+t)$ for $c_{0} \leq x<c_{d+1}$,
- $\phi\left(x^{-}\right)=\lim _{t \rightarrow 0^{+}} \phi(x-t)$ for $c_{0}<x \leq c_{d+1}$.

We introduce the "boundary" value of ϕ :

$$
\partial \phi=\phi\left(c_{0}^{+}\right)+\phi\left(c_{d+1}^{-}\right)
$$

We define the BV norm:

$$
\|\phi\|=\|\phi\|_{\mathrm{BV}}=\operatorname{var} \phi+|\partial \phi| .
$$

Denote by \mathcal{S} the piecewise constant functions on I and let X be the completion of \mathcal{S} w.r.t $\|\cdot\|$ (same as closure in BV).

The Ruelle transfer operator. Backward iterates

The dual Ruelle operator
Every $\phi \in \mathcal{S}$ may be written as $\sum_{\text {finite }} w_{i} \sigma_{\widehat{u}_{i}}$ in the basis:

$$
\sigma_{\widehat{u}}(x)=\left\{\begin{array}{ll}
+1 / 2 & \text { if } \widehat{u}<x \\
-1 / 2 & \text { if } \widehat{u}>x
\end{array}, \quad \widehat{u} \in \widehat{I}=\left[c_{0}^{+}, c_{d+1}^{-}\right)\right.
$$

Example:

$$
\phi=3 \sigma_{c_{0}^{+}}-3 \sigma_{a^{+}}+\sigma_{b^{-}}
$$

The BV-norm of ϕ :

$$
\|\phi\|=3+3+1=4
$$

For $\phi=\sum_{\text {finite }} w_{i} \sigma_{\widehat{u}_{i}}$ we have: $\|\phi\|=\sum_{i}\left|w_{i}\right|$.

A represention of the dual space of X is obtained by acting upon the basis of X. For $\ell \in X^{\prime}$ define:

$$
\widehat{\ell}(\widehat{u})=\left\langle\ell, \sigma_{\widehat{u}}\right\rangle, \quad \widehat{u} \in \widehat{l}
$$

Then $\quad|\widehat{\ell}(\widehat{u})| \leq\|\ell\|_{X^{\prime}} \quad$ and for $\quad \phi=\sum_{\text {finite }} w_{i} \sigma_{\widehat{u_{i}}}$:

$$
|\langle\ell, \phi\rangle|=\left|\sum_{i} w_{i} \widehat{\ell}\left(\widehat{u}_{i}\right)\right| \leq\|\phi\|_{\mathrm{BV}}\|\widehat{\ell}\|_{\infty} .
$$

We have an isomorphism between X^{\prime} and the bounded functions on the directed points of I with the uniform norm:

$$
X^{\prime} \cong B\left(\left[c_{0}^{+}, c_{d+1}^{-}\right)\right)
$$

Example: Acting with $\mathcal{L}_{k}, 1 \leq k \leq d+1$ upon $\sigma_{u^{-}}$:

The image is a linear combination of (at most) three basis functions. In the dual representation:

$$
\begin{aligned}
\widehat{\mathcal{L}}_{k} \widehat{\ell}(\widehat{u})= & \left\langle\ell, \mathcal{L}_{k} \sigma_{\widehat{u}}\right\rangle \\
= & \mathbf{1}_{\hat{I}_{k}}(\widehat{u}) s(f, \widehat{u}) \widehat{\ell}(\widehat{f} \widehat{u}) \\
& -\sigma_{c_{k}}(\widehat{u}) s\left(f, c_{k}^{+}\right) \widehat{\ell}\left(f c_{k}^{+}\right) \\
& +\sigma_{c_{k+1}}(\widehat{u}) s\left(f, c_{k+1}^{-}\right) \widehat{\ell}\left(f c_{k+1}^{-}\right)
\end{aligned}
$$

Adding terms: $\widehat{\mathcal{L}}=\sum_{k=1}^{d+1} \widehat{\mathcal{L}}_{k}$ we get:

$$
\widehat{\mathcal{L}}=S-P S
$$

in which we find a signed Koopman operator of norm $\|S\|=1$:

$$
S \widehat{\ell}(\widehat{u})=s(f, \widehat{u}) \ell(\hat{f} \widehat{u})
$$

and a finite rank projection operator, $P^{2}=P$:

$$
\begin{aligned}
P \widehat{\ell}(\widehat{u}) & =\sigma_{c_{0}}(\widehat{u})\left(\widehat{\ell}\left(c_{0}^{+}\right)+\widehat{\ell}\left(c_{d+1}^{-}\right)\right) \\
& +\sum_{k=1}^{d} \sigma_{c_{k}}(\widehat{u})\left(\widehat{\ell}\left(c_{k}^{+}\right)-\widehat{\ell}\left(c_{k}^{-}\right)\right.
\end{aligned}
$$

Good news: $\widehat{\mathcal{L}}=S-P S$ is a finite $(d+1)$ rank pertubation of the signed Koopman operator of norm 1 . For $t=1 / \lambda \in \mathbb{D},(1-t S)$ is invertible:

$$
(1-t S)^{-1}=1+t S+t^{2} S^{2}+\cdots
$$

To find eigenvalues with $|\lambda|>1$ of $\widehat{\mathcal{L}}$ is equivalent to finding values of $t=1 / \lambda \in \mathbb{D}$ for which:

$$
\begin{array}{lcl}
& 1-t \mathcal{L} & \text { is non-invertible } \\
= & (1-t S)+t P S & \\
= & \left(1+t P S(1-t S)^{-1}\right)(1-t S) & \\
\Leftrightarrow & 1+t P S(1-t S)^{-1} & \text { is non-invertible }
\end{array}
$$

The projection P has finite rank so $\left(1+t P S(1-t S)^{-1}\right)$ is invertible iff it is invertible on

$$
\operatorname{im} P=\operatorname{Span}\left\{\sigma_{c_{0}}, \ldots, \sigma_{c_{d}}\right\}
$$

Let us compute the matrix elements on im P of

$$
G(t)=P+t P S(1-t S)^{-1}=P(1-t S)^{-1}
$$

Note first that

$$
\begin{gathered}
(1-t S)^{-1} \sigma_{c_{k}}(\widehat{u})=\left(1+t S+t^{2} S^{2}+\cdots\right) \sigma_{c_{k}}(\widehat{u}) \\
=\sum_{n \geq 0} t^{n} s\left(f^{n}, \widehat{u}\right) \sigma\left(\widehat{f}^{n}(\widehat{u}), c\right)=\theta_{c_{k}}(\widehat{u}, t)
\end{gathered}
$$

is nothing but the kneading coordinate of \widehat{u} w.r.t. c_{k}.

Applying P to the result we get:

$$
\begin{aligned}
G(t) \sigma_{c_{k}}(\widehat{u})= & P(1-t S)^{-1} \sigma_{c_{k}}(\widehat{u}) \\
= & \sigma_{c_{0}}(\widehat{u})\left(\theta_{c_{k}}\left(c_{0}^{+}, t\right)+\theta_{c_{k}}\left(c_{d+1}^{-}, t\right)\right) \\
& +\sum_{j=1}^{d} \sigma_{c_{j}}(\widehat{u})\left(\theta_{c_{k}}\left(c_{j}^{+}, t\right)-\theta_{c_{k}}\left(c_{j}^{-}, t\right)\right) \\
= & \sum_{j=0}^{d} \sigma_{c_{j}}(\widehat{u}) R_{j k}(t)
\end{aligned}
$$

where $\left(R_{j k}(t)\right)$ is the Milnor-Thurston kneading matrix. It is non-invertible precisely when its determinant vanishes which is what we wanted to show.

