
htop of interval maps
Dual picture: Forward iterates

Some kneading theory
The Ruelle transfer operator. Backward iterates

The dual Ruelle operator

The Milnor-Thurston determinant and the Ruelle
transfer operator

Hans Henrik Rugh
mailto:Hans-Henrik.Rugh@math.u-psud.fr

Angers 2017

Hans Henrik Rugh The MT determinant and the Ruelle operator



htop of interval maps
Dual picture: Forward iterates

Some kneading theory
The Ruelle transfer operator. Backward iterates

The dual Ruelle operator

Motivation and set-up

We consider (I , f ), a piecewise continuous and strictly monotone
map of a 1 dimensional space. We may take I to be an Interval:
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Analytic structures related to htop(f )

The dynamical system (I , f ) has a topological entropy htop(f ). We
are interested in related analytic structures. Here is the zoo:

L(t): Lap number generating function.

D(t): Milnor-Thurston kneading determinant.

ζAM(t): Artin-Mazur topological zeta-function.

L: Ruelle transfer operator for (I , f ).

ζR(t): Ruelle dynamical zeta-function.
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Backward iterates of critical points

Crit(f ) = {c0, c1, c2}

”Partition” into open intervals:

I1 = (c0, c1), I2 = (c1, c2)

Z1 = {I1, I2}
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Backward iterates of critical points

Crit(f ) = {c0, c1, c2}

”Partition” into open intervals:

I1 = (c0, c1), I2 = (c1, c2)

Z1 = {I1, I2}

Refinement by backward iteration
of critical points:

Z2 = f −1Z1 ∨ Z1

Z2 = {I11, I12, I22, I21}
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Backward iterates of critical points

Zn = f −(n−1)Z1 ∨ · · · ∨ Z1

Misiurewicz and Szlenk:

htop = lim
n→∞

1

n
log #Zn

Lap number generating function:

L(t) =
∑
n≥0

tn #Zn ∈ Z+[[t]]
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An a priori simple analytic structure of
the Lap generating function, example:

L(t) = 1 + 2t + 4t2 + 8t3 + 14t4 + ...

Coefficients are non-negative integers.

L analytic for: |t| < t∗ = e−htop

L diverges for t > t∗ = e−htop
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Analytic structures related to htop(f )

Returning to the zoo:

L(t): Lap number generating function.

D(t): Milnor-Thurston kneading determinant.

ζAM(t): Artin-Mazur topological zeta-function.

L: Ruelle transfer operator for (I , f ).

ζR(t): Ruelle dynamical zeta-function.
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Dual picture: Forward iterates of critical points

c0 < c1 < · · · cd < cd+1.

Intervals of monot.: Ik = (ck , ck+1),

fk : Ik → I = (c0, cd+1)

is strictly monotone and continuous.
Need not be defined at ck and ck+1.

But f (c+k ) and f (c−k+1) are well-defined.

Introduce ”directed” points to keep track of directed limits:

x+ = (x ,+1), x− = (x ,−1)
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Lifting the map to a directed point map

A directed point x̂ denotes either (x ,+1) or (x ,−1) (limit from
the right/left).

On each directed interval [c+k , c
−
k+1] the map either preserves or

reverses orientation, also at endpoints. Set:

s(f , x̂) = +1 if f preserves the orientation at x̂ ,

s(f , x̂) = −1 if f reverses the orientation at x̂ .

We ”lift” f to a map on the space of directed points:

f̂ (x̂) = f̂ ((x , ε)) = ( lim
t→0+

f (x + εt), s(f , x̂) ε).
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Kneading invariant

When x < y , declare x < x+ < y− < y and for x̂ ∈ Î and u ∈ R:

σ(x̂ , u) =

{
+1/2 if x̂ < u
−1/2 if x̂ > u

and for c ∈ Crit(f ) the kneading invariant (coefficients = ±1
2):

θc(x̂ , t) =
∑
n≥0

tn s(f n, x̂) σ(f̂ n(x̂), c).

The kneading ”determinant” (in our unimodal case):

D(t) = θc1(c+1 , t)− θc1(c−1 , t).
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Recall: The lap generating function

L(t) = 1 + 2t + 4t2 + 8t3 + 14t4 + ...

diverges for t > t∗ = e−htop

while D(t) is analytic in D = {|t| < 1}
since coefficients are in {−1, 0, 1}.

Cancellations of backward and forward
orbit contributions: D(t) × L(t) is
analytic in D with no roots!

e−htop is a pole of L(t).

e−htop is the smallest root of D(t).
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With d critical points, Crit(f ) = {c0, ..., cd+1} one may introduce
a (d + 1)× (d + 1) kneading matrix:

Rjk(t) =

{
θck (c+0 , t) + θck (c−d+1, t) , j = 0

θck (c+j , t)− θck (c−j , t) , 1 ≤ j ≤ d

and a Milnor-Thurston kneading determinant:

D(t) = detRjk(t).

Again a magic property (much harder to prove): D(t)L(t) is
analytic in D and has no roots for |t| < e−htop . Once again:

t∗ = e−htop is the smallest root of D(t).
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Analytic structures related to htop(f )

Back at the zoo ...:

L(t): Lap number generating function.

D(t): Milnor-Thurston kneading determinant.

ζAM(t): Artin-Mazur topological zeta-function.

L: Ruelle transfer operator for (I , f ).

ζR(t): Ruelle dynamical zeta-function.
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The Artin-Mazur topological zeta-function (tacitly assuming
finitely many fixed points):

ζAM(t) = exp

∑
n≥1

tn

n
#Fix(f n)

 .

Yet again magic cancellations:

D(t)× ζAM(t)

is analytic in D with no roots!
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Analytic structures related to htop(f )

Continuing the tour at the zoo ...:

L(t): Lap number generating function.

D(t): Milnor-Thurston kneading determinant.

ζAM(t): Artin-Mazur topological zeta-function.

L: Ruelle transfer operator for (I , f ).

ζR(t): Ruelle dynamical zeta-function.
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The Ruelle transfer operator and zeta-function

For φ ∈ BV (I ), a function of bounded variation on I , we set:

Lφ(y) =
∑

x :f (x)=y

φ(x)

Acting on the constant function we simply count pre-images:

Card{x : f n(x) = y} = Ln 1(y).

One has:

rsp(L) = limn→∞ ‖Ln‖1/nBV = ehtop .

L is a positive operator ⇒ (rsp(L)− L) is non-invertible.
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Baladi and Keller (1990) defines a zeta-function (when f is
expanding):

ζR(t) = exp

∑
n≥1

tn

n
#Fix(f n)

 .

They show that on the space of BV-functions:

(ζR(t))−1 = det (1− tL)

”det” is a ”dynamical” determinant introduced by Ruelle.
Both functions are analytic in D. Zeros are in 1-1 correspondance
with the reciprocal of the eigenvalues of L, greater than 1 in
absolute value.

Now note that ζR(t) = ζAM(t).
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So (∼ = analytic, same roots in D):

D(t) ∼ ζAM(t)−1 = ζR(t)−1 ∼ det(1− tL).

D(t) not only determines htop but also describes eigenvalues of L!

D(t) is determined by forward orbits

while L uses backward iteration.

A thought: Since L is based upon backward iterates of f ,
perhaps the dual operator L′ should use forward iterations by f ?
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Quest starting in the 90s ...:
Express D(t) as a determinant of the dual Ruelle operator.

Several partial results: Baladi and Ruelle (1994), ..., Gouëzel
(2001). Calculations use BV-functions, are indirect and difficult.
They do not quite cover the original problem.

Reason:

BV function space is too large ⇒ The dual space is too small.

Is it possible to tailor a Banach space
better to our needs...?
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Let S be the space of piecewise constant functions on (c0, cd+1)
and X the closure of S in BV. X ′ denotes the dual space.

Theorem (R. 2015)

D(t) equals a (regularized) determinant of L′ acting upon X ′.
This (regularized) determinant is analytic in D.

Corollary

htop > 0⇒ e−htop is the smallest zero of D(t).

Proof:

rsp(L′) = rsp(L) = e−htop .

L is a positive operator ⇒ ehtop ∈ spectrum of L (and of L′).

For t ∈ D we have: D(t) = 0⇔ 1/t is an eigenvalue of L′
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Functions of bounded variation

φ : I = (c0, cd+1)→ C is said to be of bounded variation (BV) iff

varφ = sup{
N−1∑
i=1

|φ(xi )−φ(xi+1| : c0 < x1 < ... < xN < cd+1} < +∞

When varφ < +∞ we have existence of right and left limits:

φ(x+) = limt→0+ φ(x + t) for c0 ≤ x < cd+1,

φ(x−) = limt→0+ φ(x − t) for c0 < x ≤ cd+1.
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We introduce the ”boundary” value of φ:

∂φ = φ(c+0 ) + φ(c−d+1)

We define the BV norm:

‖φ‖ = ‖φ‖BV = varφ+ |∂φ|.

Denote by S the piecewise constant functions on I and let X be
the completion of S w.r.t ‖ · ‖ (same as closure in BV).
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Every φ ∈ S may be written as
∑

finite wiσûi in the basis:

σû(x) =

{
+1/2 if û < x
−1/2 if û > x

, û ∈ Î = [c+0 , c
−
d+1).

Example:

φ = 3σc+0
− 3σa+ + σb−

The BV-norm of φ:

‖φ‖ = 3 + 3 + 1 = 4

.
For φ =

∑
finite wiσûi we have: ‖φ‖ =

∑
i |wi |.
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A represention of the dual space of X is obtained by acting upon
the basis of X . For ` ∈ X ′ define:

̂̀(û) = 〈 `, σû 〉, û ∈ Î .

Then |̂̀(û)| ≤ ‖`‖X ′ and for φ =
∑

finite wiσûi :

|〈`, φ〉| = |
∑
i

wi
̂̀(ûi )| ≤ ‖φ‖BV ‖̂̀‖∞.

We have an isomorphism between X ′ and the bounded functions
on the directed points of I with the uniform norm:

X ′ ∼= B ( [c+0 , c
−
d+1) ).
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Example: Acting with Lk , 1 ≤ k ≤ d + 1 upon σu− :

Lk−→

The image is a linear combination of (at most) three basis
functions. In the dual representation:

L̂k ̂̀(û) = 〈`,Lkσû〉
= 1

Îk
(û) s(f , û) ̂̀(f̂ û)

−σck (û) s(f , c+k ) ̂̀(fc+k )

+σck+1
(û) s(f , c−k+1) ̂̀(fc−k+1)
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Adding terms: L̂ =
∑d+1

k=1 L̂k we get:

L̂ = S − PS

in which we find a signed Koopman operator of norm ‖S‖ = 1:

S ̂̀(û) = s(f , û) `(f̂ û)

and a finite rank projection operator, P2 = P:

P ̂̀(û) = σc0(û)
(̂̀(c+0 ) + ̂̀(c−d+1)

)
+

d∑
k=1

σck (û)
(̂̀(c+k )− ̂̀(c−k

)
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Good news: L̂ = S − PS is a finite (d + 1) rank pertubation of the
signed Koopman operator of norm 1. For t = 1/λ ∈ D, (1− tS) is
invertible:

(1− tS)−1 = 1 + tS + t2S2 + · · ·

To find eigenvalues with |λ| > 1 of L̂ is equivalent to finding
values of t = 1/λ ∈ D for which:

1− tL is non-invertible
= (1− tS) + tPS
= (1 + tPS(1− tS)−1)(1− tS)
⇔ 1 + tPS(1− tS)−1 is non-invertible
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The projection P has finite rank so (1 + tPS(1− tS)−1) is
invertible iff it is invertible on

imP = Span{σc0 , ..., σcd}

Let us compute the matrix elements on imP of

G (t) = P + tPS(1− tS)−1 = P(1− tS)−1

Note first that

(1− tS)−1σck (û) = (1 + tS + t2S2 + · · · )σck (û)

=
∑
n≥0

tn s(f n, û)σ(f̂ n(û), c) = θck (û, t)

is nothing but the kneading coordinate of û w.r.t. ck .
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Applying P to the result we get:

G (t) σck (û) = P(1− tS)−1σck (û)

= σc0(û)
(
θck (c+0 , t) + θck (c−d+1, t)

)
+

d∑
j=1

σcj (û)
(
θck (c+j , t)− θck (c−j , t)

)

=
d∑

j=0

σcj (û)Rjk(t)

where (Rjk(t)) is the Milnor-Thurston kneading matrix. It is
non-invertible precisely when its determinant vanishes which is
what we wanted to show.
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