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Notation and goal.

Let mk : T→ T := R/Z denote the multiplication by k ≥ 2
map of the circle

mk(x) = kx (mod Z).

The central question of this work is whether a given combinatoric
σ ∈ Cq and or combinatorial type τ in Cq has a realization under
mk and if it does, how many such realizations there are.
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Motivation I

There is a natural way to associate to each q-periodic point z for mk

belonging to a q-cycle 0 < z1 < . . . < zq < 1, say z = zj , a pair of
q-periodic points (xj , yj) characterized as follows :

yj − xj =
(k + 1)q−1

((k + 1)q − 1)
,

Their cycles are interlaced

0 < x1 < y1 < x2 < y2 < . . . xq < yq < 1

There is a monotone projection P : T −→ T with P(0) = 0,
P([xj , yj ]) = zj and semi-conjugating mk+1 to mk on Tr]xj , yj [.
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Connectedness locus for λz2 + z3

e.g z = 3
5

with m2-orbit

{ 1
5
, 2
5
, 3
5
, 4
5
}

gives (x3, y3) = (29
80
, 56
80

)

with m3 orbits

{ 7
80
, 21
80
, 29
80
, 63
80
}

and

{ 8
80
, 24
80
, 56
80
, 72
80
}.
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Motivation II

I view the above as saying that for every periodic point z for mk

there is a pair of neighbouring periodic orbits for mk+1 with the
same combinatorics and with critical interval corresponding to z .

This motivates the following questions :

Which combinatorics exists for mk+1, but does not exist for mk?

How does the number of orbits with a given combinatorics grow
with the degree k ?

For rotation orbits with rational rotation number the answers to
these questions are known.

In fact for each irreducible rotation number p/q, m2 has a
unique such orbit and Goldberg showed that in the general case,
the number of such orbits is given by(

q + k − 2

q

)
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Cyclic Permutations

We shall use cyclic permutations to represent combinatorics of
periodic orbits on the circle T.

Denote by Sq the group of permutations of q symbols, which we
take to be the representatives {1, . . . , q} of the cyclically
ordered set Z/qZ.

Denote by Cq ⊂ Sq the set of q-cycles σ in Sq :

σ = (1 σ(1) σ2(1) . . . σq−(1))

And denote by Rq ⊂ Sq the rotation group, that is the group
generated by the q-cycle

ρ = (1 2 . . . q)

with rotation number 1/q.
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What is a combinatorics ? I

Consider again the ”Cocapeli”-orbit { 1
5
, 2
5
, 3
5
, 4
5
} under m2.

1
5 = x1x2 = 2

5

x3 = 3
5

4
5 = x4

• 0

We can view this as the representation xi 7→ xσ(i)
of the cyclic permutation σ = (1 2 4 3) acting on the set
{1, 2, 3, 4} representing the cyclically ordered set Z/4Z.

Note that 0 ∈ T IS NOT 0 ≡ 4 ∈ Z/4Z.
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What is a combinatorics ? II

We shall use σ = (1 2 4 3) as a synonym for the combinatorics
of the orbit { 1

5
, 2
5
, 3
5
, 4
5
} under m2.

More generally if 0 < x1 < x2 < . . . < xq < 1 and

f : {x1, . . . , xq} −→ {x1, . . . , xq}

is a cyclic dynamics we shall say that the orbit {x1, . . . , xq} has
combinatorics σ ∈ Cq iff

∀i : f (xi) = xσ(i).

And we shall call any σ ∈ Cq a q-combinatorics.
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A few numbers

For each q the number of q-combinatorics is (q − 1)!.

For each k ≥ 2 and q there are at most
kq

q
periodic orbits for

mk of period q.

So for each fixed k and sufficiently large q the majority of the
q-combinatorics are not realized by mk .

The next slide shows as examples the four possible
non-rotational 4-combinatorics
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σ1 =

(1 2 4 3 )

σ2 =

(1 4 2 3 )

x1x2

x3 x4

x1x2

x3 x4

σ3 =

(1 3 4 2 )

σ4 =

(1 3 2 4 )

x1x2

x3 x4

x1x2

x3 x4
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Botanics of combinatorics

Only σ1 is realized by m2, uniquely by our ”Cocapeli”-orbit
{ 1

5
, 2
5
, 3
5
, 4
5
}.

The others however are each uniquely realized by m3 :

σ2 = (1 4 2 3) :

{
23

80
,

47

80
,

61

80
,

69

80

}
σ3 = (1 3 4 2) :

{
1

5
,

2

5
,

3

5
,

4

5

}
σ4 = (1 3 2 4) :

{
11

80
,

19

80
,

33

80
,

57

80

}
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A 5-cycle example

x1x2

x3

x4

x5
• 0σ = (1 2 4 5 3)

This combinatorics is not realized by m2 either.

It is however uniquely realized by m3 :

σ = (1 2 4 5 3) :

{
8

121
,

24

121
,

43

121
,

72

121
,

95

121

}
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Intervals in Z/qZ and ”lengths”

Definition
For 1 ≤ i , j ≤ q define the closed interval [i , j ] in Z/qZ as :

[i , j ] =

{
{i , i + 1, . . . , j} if i < j ,

{i , (i + 1), . . . , (j + q)} if j < i .

And the length |[i , j ]| := #[i , j ]− 1 so that

|[i , j ]| = j − i if i ≤ j and |[i , j ]| = j + q − i if j < i .

All subsets of Z/qZ are closed but we shall use the notion [i , j) to
indicate the ”open interval [i , j ] minus the right end point
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The degree of a cycle.

Definition
For σ ∈ Cq define deg(σ) as the integer :

deg(σ) =
1

q

q∑
j=1

|[σ(j), σ(j + 1)]|

The degree of σ is equal to the descent number des(σ) of the
permutation σ as defined in combinatorial analysis.

deg(1243) = deg(1423) = deg(1342) = deg(1324) = 2

deg(12453) = 3

deg(σ) = 1 if and only if σ is a rotation cycle.
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Example σ = (1 2 4 5 3)
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Topological realization

Definition
A (topological) realization of the cycle σ ∈ Cq is a pair (f ,O),
where f : R/Z→ R/Z is a positively oriented covering map,
O = {x1, . . . , xq}, 0 < x1 < . . . , xq < 1 is a period q orbit of f ,
and f (xi) = xσ(i) for all i .

The degree of the realization (f ,O) is the mapping degree of f .

A realization of σ is minimal if it has the smallest possible degree
among all realizations.

For any x 6= y ∈ T let [x , y ] denote the closed interval in T with
end points x , y such that for any z in the corresponding open
interval ]x , y [ the triple (x , z , y) is positively oriented.
Equivalently let Π : R −→ T denote the natural projection.
Then [x , y ] = Π([x̂ , ŷ ]), where Π(x̂) = x and Π(ŷ) = y and
x̂ < ŷ < x̂ + 1.
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For (f ,O) a topological realization of σ and any j ∈ Z/qZ
the restriction of f to Ij := [xj , xj+1] lifts into Π as

a homeomorphism f̂j : [xj , xj+1] −→ [x̂σ(j), x̂σ(j+1)], where
x̂σ(j) < x̂σ(j+1), Π(x̂σ(j)) = xσ(j) and Π(x̂σ(j+1)) = xσ(j+1).

It follows that (f ,O) is minimal iff x̂σ(j) < x̂σ(j+1) < x̂σ(j) + 1 for
each j .

Or in other words (f ,O) is minimal only if for each j

f (Ij) = [f (xj), f (xj+1)] = [xσ(j), xσ(j+1)] =
⋃

i∈[σ(j),σ(j+1))

Ii .

Thus (f ,O) is minimal if and only if deg(f ) = deg(σ)

McMullen observed that a minimal realization of σ always exists:

Take any q points with 0 < x1 < . . . < xq < 1 as O and let
f be any map which for each j maps [xj , xj+1] homeomorphically
onto [xσ(j), xσ(j+1)].
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Minimal realization of σ = (1 2 4 5 3)
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Analysis of the botanics I

We see immediately why σ = (1 2 4 5 3) is not realized by m2.
It has degree 3 and thus any realizing map must have
topological degree at least 3.

The four non-rotational period 4 combinatorics σ1 = (1 2 4 3),
σ2 = (1 4 2 3), σ3 = (1 3 4 2) and σ4 = (1 3 2 4) are mutually
conjugate by powers of the rotation ρ = (1 2 3 4) and have
degree 2. But only σ1 is realized by m2. Why is this?

Notice that 0 is a fixed point for any mk . Thus in general Iq
must be mapped over itself, and in fact onto a larger interval in
order for σ ∈ Cq to be realized by mk .

This means for a σ ∈ Cq of degree d to be realized by md we
must have Iq = [xq, x1] ⊂ [xσ(q), xσ(1)] or equivalently

σ(1) < σ(q).
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Analysis of the botanics II

We have thus arrived at

Proposition
A necessary condition for a combinatoric σ ∈ Cq to be realized by mk

is that
deg(σ) ≤ k and σ(1) < σ(q).

The following theorem shows that these conditions are also
sufficient.
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Realization under md . I

Theorem (Zakeri and P.)

Let σ ∈ Cq be a q-cycle with deg(σ) = d ≥ 2.

If σ(1) < σ(q) then σ has a realization under md and

if σ(1) > σ(q) then σ has a realization under md+1.

In both cases the realisation is unique.
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Realization under md . II

Theorem (Zakeri and P.)

Let σ ∈ Cq be a q-cycle with deg(σ) = d ≥ 2 and let k ≥ d. Then
the number of realizations of σ under mk is given by the binomial
coefficient : (

q + k − d

q

)
if σ(1) < σ(q)(

q + k − d − 1

q

)
if σ(1) > σ(q).

Note that for d = 1 (rotation cycles) and k ≥ 2 this agrees with
Goldbergs formula.

I shall focus on the proof that a q-cycle σ ∈ Cq with
deg(σ) = d ≥ 2 and σ(1) < σ(q) is realised under md .
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The transition matrix of σ.

Definition
The transition matrix of σ ∈ Cq is the q × q matrix A = [aij ] defined
by

aij =

{
1 if j ∈ [σ(i), σ(i + 1))

0 otherwise.

We may also view the transition matrix A geometrically:

Let (f ,O) be a(ny) minimal realization of σ, where
O = {x1, . . . , xq} and as usual 0 < x1 < . . . < xq < 1.
Then we saw above that

f (Ii) =
⋃

j∈[σ(i),σ(i+1))

Ij for all i ,

where Ij = [xj , xj+1].
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The transition matrix of σ cont..

It follows that the entries of the transition matrix A = [aij ] satisfy

aij =

{
1 if f (Ii) ⊃ Ij

0 otherwise.

Since f is a covering map of degree d , every column of the
transition matrix A contains exactly d entries of 1.

The column stochastic matrix 1
d
· A describes a Markov chain

with states I1, . . . , Iq, with the probability of going from Ij to Ii
equal to 1/d if Ij ⊂ f (Ii) and equal to 0 otherwise.
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The Transition matrix and iteration

Let A be the transition matrix of a q-cycle σ.

Let (f ,O) be a minimal realization of σ with the partition
intervals I1, . . . , Iq as above.

A straightforward induction shows that the ij-entry a
(n)
ij of the

power An is the number of times the n-th iterated image f ◦n(Ii)
covers Ij or, equivalently, the number of connected components
of f −n(Ij) in Ii .

Lemma

Let A be the transition matrix of σ ∈ Cq with deg(σ) ≥ 2. Then the
power Aq has positive entries.

This is shows that the transition matrix is irreducible.
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A Perron – Frobenius Theorem

Theorem (Perron – Frobenius)

Let S be a q × q column stochastic matrix with the property that
some power of S has positive entries. Then

(i) S has a simple eigenvalue at λ = 1 and the remaining
eigenvalues are in the open unit disk {λ : |λ| < 1}.

(ii) The eigenspace corresponding to λ = 1 is generated by a unique
probability vector ` = (`1, . . . , `q) with `i > 0 for all i .

(iii) The powers Sn converges to the matrix with identical columns `
as n→∞.
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We immediately have :

Theorem

Let A be the transition matrix of σ ∈ Cq with deg(σ) = d ≥ 2.
Then, there is a unique probability vector ` ∈ Rq such that A` = d`.
Moreover, ` has positive components and satisfies

` = lim
n→∞

1

dn
Anv

for every probability vector v ∈ Rq.
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We are now ready to prove the theorem :

Theorem
Let σ ∈ Cq be any q-cycle with deg(σ) = d ≥ 2 and with
σ(1) < σ(q). Then σ has a unique realization under md .

PROOF:

We are looking for a q-periodic orbit O = {x1, . . . , xq} for md ,
0 < x1 < . . . < xq < 1 such that md(xi) = xσ(i) for all i .

Assume for a moment that such O exists, let Ii = [xi , xi+1],
consider the lengths `i = |Ii |, and form the probability vector

` = (`1, . . . , `q) ∈ Rq
+.

Since md maps Ii homeomorphically onto
⋃

j∈[σ(i),σ(i+1)) Ij , we
have ∑

j∈[σ(i),σ(i+1))

`j = d`i for all i . (1)
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The q relations (1) can be written as

A` = d`, (2)

where A is the transition matrix of σ.

By the Perron-Frobenius Theorem, this equation has a unique
solution ` which determines the lengths of the partition intervals
{Ii}, hence the orbit O once we find x1.

To construct the orbit O = {x1, . . . , xq}, take the unique
solution ` = (`1, . . . , `q) of (2) and define

x1 =
1

d − 1

∑
j∈[1,σ(1))

`j

xi = x1 +
∑
j∈[1,i)

`j for 2 ≤ i ≤ q.
(3)

A few tedious computations shows that (3) works.
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The higher degree cases

Let σ ∈ C. In order to describe the higher degree case
k > d = deg(σ), we need some further notation.

As before let A denote the transition matrix for σ.

It can be shown that the diagonal of the 0− 1 matrix A contains
precisely d − 1 entries of 1.

A diagonal entry say aii with value 1 corresponds to a fixed point
for realizations.

That is for any minimal realization (f ,O) of σ, the interval Ii
contains a fixed point for f iff aii = 1, that is iff f (Ii) ⊃ Ii .

In particular the q-th diagonal entry aqq = 1 if and only if
σ(1) < σ(q).
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The signature of σ.

We define

Definition
Let A = [aij ] be the transition matrix of σ ∈ Cq with deg(σ) = d .
The signature of σ is the integer vector formed by the main diagonal
entries of A:

sig(σ) = (a11, . . . , aqq).

If (f ,O) is any realization of σ (minimal or not), and if I1, . . . , Iq are
the corresponding partition intervals, then Ii is called a marked
interval if aii = 1.

Let p = (p1, . . . , pq) ∈ Nq be a q-vector with non negative
integer valued coordinates. And let 1 denote the q-vector of
ones 1 = (1, . . . , 1)
Let P = pT · 1 be the q × q matrix with identical columns equal
to pT . . .
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The transformation matrix for non minimal

realiztions.

Then
B = A + P

can be regarded as the transition matrix for realizations (f ,O)
of σ with winding pi on interval Ii .
That is lifts of f on [xi , x(i+1)] to Π have homeomorphic images
of the form [x̂σ(i), x̂σ(i+1)] where
x̂σ(i) + pi < x̂σ(i+1) < x̂σ(i) + pi + 1, Π(x̂σ(i)) = xσ(i) and
Π(x̂σ(i+1)) = xσ(i+1).
Then bij is the number of connected components of f −1(Ij)
contained in Ii .
The total sum of the elements in each column is

k = deg(σ) +

q∑
j=1

pj .
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Thus 1
k
B is a column stochastic matrix.

Applying the Perron-Frobenius theorem again we find that B has
a unique simpel leading eigenvalue 1 and a unique corresponding
positive probability eigen-vector.

With this in place the following theorem is easily proved.

Theorem
If the diagonal element bqq = aqq + pq > 0, then there are bqq orbits
for mk realizing σ.
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Workshop on Holomorphic Dynamics
- Iterated Monodromy groups and

Henon maps with a semi-neutral fixed point -
Søminestationen Holbæk, November 30 - December 3. 2017

http://thiele.ruc.dk/∼lunde/Monodromy/index.html
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