ON COMBINATORIAL TYPES OF CYCLES UNDER THE MULTIPLICATION BY k MAP OF THE CIRCLE.

Carsten Lunde Petersen, INM Roskilde University

joint work with Saeed Zakeri, CUNY Queens College

In memory of Tan Lei

Université d'Angers October 25, 2017

• Let $\mathbf{m}_k : \mathbb{T} \to \mathbb{T} := \mathbb{R}/\mathbb{Z}$ denote the multiplication by $k \ge 2$ map of the circle

$$\mathbf{m}_k(x) = kx \pmod{\mathbb{Z}}.$$

• The central question of this work is whether a given combinatoric $\sigma \in \mathcal{C}_q$ and or combinatorial type τ in \mathcal{C}_q has a realization under \mathbf{m}_k and if it does, how many such realizations there are.

There is a natural way to associate to each *q*-periodic point *z* for \mathbf{m}_k belonging to a *q*-cycle $0 < z_1 < \ldots < z_q < 1$, say $z = z_j$, a pair of *q*-periodic points (x_i, y_i) characterized as follows :

•
$$y_j - x_j = \frac{(k+1)^{q-1}}{((k+1)^q - 1)}$$

• Their cycles are interlaced

$$0 < x_1 < y_1 < x_2 < y_2 < \ldots x_q < y_q < 1$$

• There is a monotone projection $P : \mathbb{T} \longrightarrow \mathbb{T}$ with P(0) = 0, $P([x_j, y_j]) = z_j$ and semi-conjugating \mathbf{m}_{k+1} to \mathbf{m}_k on $\mathbb{T} \setminus [x_j, y_j]$.

Connectedness locus for $\lambda z^2 + z^3$

e.g $z = \frac{3}{5}$ with \mathbf{m}_2 -orbit $\left\{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right\}$ gives $(x_3, y_3) = (\frac{29}{80}, \frac{56}{80})$ with \mathbf{m}_3 orbits $\left\{\frac{7}{80}, \frac{21}{80}, \frac{29}{80}, \frac{63}{80}\right\}$ and $\left\{\frac{8}{80}, \frac{24}{80}, \frac{56}{80}, \frac{72}{80}\right\}.$

Motivation II

- I view the above as saying that for every periodic point z for m_k there is a pair of neighbouring periodic orbits for m_{k+1} with the same combinatorics and with critical interval corresponding to z.
- This motivates the following questions :
- Which combinatorics exists for \mathbf{m}_{k+1} , but does not exist for \mathbf{m}_k ?
- How does the number of orbits with a given combinatorics grow with the degree *k* ?
- For rotation orbits with rational rotation number the answers to these questions are known.
- In fact for each irreducible rotation number p/q, \mathbf{m}_2 has a unique such orbit and Goldberg showed that in the general case, the number of such orbits is given by

$$\binom{q+k-2}{q}$$

Cyclic Permutations

- We shall use cyclic permutations to represent combinatorics of periodic orbits on the circle T.
- Denote by S_q the group of permutations of q symbols, which we take to be the representatives {1,...,q} of the cyclically ordered set Z/qZ.
- Denote by $\mathcal{C}_q \subset \mathcal{S}_q$ the set of *q*-cycles σ in \mathcal{S}_q :

$$\sigma = (1 \ \sigma(1) \ \sigma^2(1) \ \dots \ \sigma^{q-}(1))$$

• And denote by $\Re_q \subset \Im_q$ the rotation group, that is the group generated by the *q*-cycle

$$ho = (1 \ 2 \ \dots \ q)$$

with rotation number 1/q.

What is a combinatorics ? I

• Consider again the "Cocapeli"-orbit $\{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\}$ under \mathbf{m}_2 .

 We can view this as the representation x_i → x_{σ(i)} of the cyclic permutation σ = (1 2 4 3) acting on the set {1,2,3,4} representing the cyclically ordered set Z/4Z.

• Note that $0 \in \mathbb{T}$ IS NOT $0 \equiv 4 \in \mathbb{Z}/4\mathbb{Z}$.

- We shall use $\sigma = (1 \ 2 \ 4 \ 3)$ as a synonym for the combinatorics of the orbit $\{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\}$ under \mathbf{m}_2 .
- More generally if $0 < x_1 < x_2 < \ldots < x_q < 1$ and

$$f: \{x_1,\ldots,x_q\} \longrightarrow \{x_1,\ldots,x_q\}$$

is a cyclic dynamics we shall say that the orbit $\{x_1, \ldots, x_q\}$ has *combinatorics* $\sigma \in C_q$ iff

$$\forall i: f(x_i) = x_{\sigma(i)}.$$

And we shall call any $\sigma \in \mathcal{C}_q$ a *q*-combinatorics.

- For each q the number of q-combinatorics is (q-1)!.
- For each $k \ge 2$ and q there are at most $\frac{k^q}{q}$ periodic orbits for \mathbf{m}_k of period q.
- So for each fixed k and sufficiently large q the majority of the q-combinatorics are not realized by m_k.
- The next slide shows as examples the four possible non-rotational 4-combinatorics

- Only σ_1 is realized by \mathbf{m}_2 , uniquely by our "Cocapeli"-orbit $\{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\}$.
- The others however are each uniquely realized by \mathbf{m}_3 :

$$\sigma_{2} = (1 \ 4 \ 2 \ 3) : \left\{ \frac{23}{80}, \frac{47}{80}, \frac{61}{80}, \frac{69}{80} \right\}$$

$$\sigma_{3} = (1 \ 3 \ 4 \ 2) : \left\{ \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \right\}$$

$$\sigma_{4} = (1 \ 3 \ 2 \ 4) : \left\{ \frac{11}{80}, \frac{19}{80}, \frac{33}{80}, \frac{57}{80} \right\}$$

A 5-cycle example

- This combinatorics is not realized by \mathbf{m}_2 either.
- It is however uniquely realized by \mathbf{m}_3 :

$$\sigma = (1 \ 2 \ 4 \ 5 \ 3): \left\{ \frac{8}{121}, \frac{24}{121}, \frac{43}{121}, \frac{72}{121}, \frac{95}{121} \right\}$$

12 / 34

Intervals in $\mathbb{Z}/q\mathbb{Z}$ and "lengths"

Definition

For $1 \leq i,j \leq q$ define the closed interval [i,j] in $\mathbb{Z}/q\mathbb{Z}$ as :

$$[i,j] = \begin{cases} \{i, i+1, \dots, j\} & \text{if } i < j, \\ \{i, (i+1), \dots, (j+q)\} & \text{if } j < i. \end{cases}$$

And the length |[i,j]| := #[i,j] - 1 so that

|[i,j]| = j - i if $i \leq j$ and |[i,j]| = j + q - i if j < i.

All subsets of $\mathbb{Z}/q\mathbb{Z}$ are closed but we shall use the notion [i, j) to indicate the "open interval [i, j] minus the right end point

The degree of a cycle.

Definition

For $\sigma \in \mathcal{C}_q$ define deg (σ) as the integer :

$$\mathsf{deg}(\sigma) = rac{1}{q}\sum_{j=1}^{q} |[\sigma(j),\sigma(j+1)]|$$

- The degree of σ is equal to the descent number des(σ) of the permutation σ as defined in combinatorial analysis.
- $\deg(1243) = \deg(1423) = \deg(1342) = \deg(1324) = 2$
- deg(12453) = 3
- $deg(\sigma) = 1$ if and only if σ is a rotation cycle.

Example $\sigma = (1 \ 2 \ 4 \ 5 \ 3)$

Topological realization

Definition

A (topological) realization of the cycle $\sigma \in \mathbb{C}_q$ is a pair (f, \mathcal{O}) , where $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is a positively oriented covering map, $\mathcal{O} = \{x_1, \ldots, x_q\}, \ 0 < x_1 < \ldots, x_q < 1$ is a period q orbit of f, and $f(x_i) = x_{\sigma(i)}$ for all i.

The *degree* of the realization (f, \mathcal{O}) is the mapping degree of f. A realization of σ is *minimal* if it has the smallest possible degree among all realizations.

- For any x ≠ y ∈ T let [x, y] denote the closed interval in T with end points x, y such that for any z in the corresponding open interval]x, y[the triple (x, z, y) is positively oriented.
- Equivalently let $\Pi : \mathbb{R} \longrightarrow \mathbb{T}$ denote the natural projection. Then $[x, y] = \Pi([\widehat{x}, \widehat{y}])$, where $\Pi(\widehat{x}) = x$ and $\Pi(\widehat{y}) = y$ and $\widehat{x} < \widehat{y} < \widehat{x} + 1$.

- For (f, \mathcal{O}) a topological realization of σ and any $j \in \mathbb{Z}/q\mathbb{Z}$ the restriction of f to $I_j := [x_j, x_{j+1}]$ lifts into Π as a homeomorphism $\widehat{f_j} : [x_j, x_{j+1}] \longrightarrow [\widehat{x}_{\sigma(j)}, \widehat{x}_{\sigma(j+1)}]$, where $\widehat{x}_{\sigma(j)} < \widehat{x}_{\sigma(j+1)}, \Pi(\widehat{x}_{\sigma(j)}) = x_{\sigma(j)}$ and $\Pi(\widehat{x}_{\sigma(j+1)}) = x_{\sigma(j+1)}$.
- It follows that (f, O) is minimal iff x̂_{σ(j)} < x̂_{σ(j+1)} < x̂_{σ(j)} + 1 for each j.
- Or in other words (f, \mathcal{O}) is minimal only if for each j

$$f(I_j) = [f(x_j), f(x_{j+1})] = [x_{\sigma(j)}, x_{\sigma(j+1)}] = \bigcup_{i \in [\sigma(j), \sigma(j+1))} I_i.$$

- Thus (f, \mathcal{O}) is minimal if and only if $\deg(f) = \deg(\sigma)$
- $\bullet\,$ McMullen observed that a minimal realization of σ always exists:
- Take any q points with 0 < x₁ < ... < x_q < 1 as O and let f be any map which for each j maps [x_j, x_{j+1}] homeomorphically onto [x_{σ(j)}, x_{σ(j+1)}].

Minimal realization of $\sigma = (1 \ 2 \ 4 \ 5 \ 3)$

Analysis of the botanics I

- We see immediately why σ = (1 2 4 5 3) is not realized by m₂. It has degree 3 and thus any realizing map must have topological degree at least 3.
- The four non-rotational period 4 combinatorics $\sigma_1 = (1 \ 2 \ 4 \ 3)$, $\sigma_2 = (1 \ 4 \ 2 \ 3)$, $\sigma_3 = (1 \ 3 \ 4 \ 2)$ and $\sigma_4 = (1 \ 3 \ 2 \ 4)$ are mutually conjugate by powers of the rotation $\rho = (1 \ 2 \ 3 \ 4)$ and have degree 2. But only σ_1 is realized by \mathbf{m}_2 . Why is this?
- Notice that 0 is a fixed point for any m_k. Thus in general I_q must be mapped over itself, and in fact onto a larger interval in order for σ ∈ C_q to be realized by m_k.
- This means for a $\sigma \in C_q$ of degree d to be realized by \mathbf{m}_d we must have $I_q = [x_q, x_1] \subset [x_{\sigma(q)}, x_{\sigma(1)}]$ or equivalently

$$\sigma(1) < \sigma(q).$$

A B F A B F

• We have thus arrived at

Proposition

A necessary condition for a combinatoric $\sigma \in \mathbb{C}_q$ to be realized by \mathbf{m}_k is that

$$\deg(\sigma) \leq k$$
 and $\sigma(1) < \sigma(q)$.

• The following theorem shows that these conditions are also sufficient.

Theorem (Zakeri and P.)

Let $\sigma \in \mathfrak{C}_q$ be a q-cycle with deg $(\sigma) = d \geq 2$.

- If $\sigma(1) < \sigma(q)$ then σ has a realization under m_d and
- if $\sigma(1) > \sigma(q)$ then σ has a realization under m_{d+1} .

In both cases the realisation is unique.

Theorem (Zakeri and P.)

Let $\sigma \in C_q$ be a q-cycle with deg $(\sigma) = d \ge 2$ and let $k \ge d$. Then the number of realizations of σ under m_k is given by the binomial coefficient :

$$egin{pmatrix} q+k-d\ q \end{pmatrix} & ext{if} \quad \sigma(1) < \sigma(q) \ egin{pmatrix} q+k-d-1\ q \end{pmatrix} & ext{if} \quad \sigma(1) > \sigma(q). \end{cases}$$

- Note that for d = 1 (rotation cycles) and k ≥ 2 this agrees with Goldbergs formula.
- I shall focus on the proof that a *q*-cycle $\sigma \in C_q$ with $\deg(\sigma) = d \ge 2$ and $\sigma(1) < \sigma(q)$ is realised under m_d .

The transition matrix of σ .

Definition

The *transition matrix* of $\sigma \in \mathbb{C}_q$ is the $q \times q$ matrix $A = [a_{ij}]$ defined by

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{if } j \in [\sigma(i), \sigma(i+1)) \ 0 & ext{otherwise}. \end{array}
ight.$$

- We may also view the transition matrix A geometrically:
- Let (f, \mathcal{O}) be a(ny) minimal realization of σ , where $\mathcal{O} = \{x_1, \ldots, x_q\}$ and as usual $0 < x_1 < \ldots < x_q < 1$. Then we saw above that

$$f(I_i) = \bigcup_{j \in [\sigma(i), \sigma(i+1))} I_j$$
 for all i ,

where $I_{j} = [x_{j}, x_{j+1}].$

• It follows that the entries of the transition matrix $A = [a_{ij}]$ satisfy

$$\mathsf{a}_{ij} = \left\{egin{array}{ll} 1 & ext{ if } f(\mathit{I}_i) \supset \mathit{I}_j \ 0 & ext{ otherwise.} \end{array}
ight.$$

- Since *f* is a covering map of degree *d*, every column of the transition matrix *A* contains exactly *d* entries of 1.
- The column stochastic matrix $\frac{1}{d} \cdot A$ describes a Markov chain with states I_1, \ldots, I_q , with the probability of going from I_j to I_i equal to 1/d if $I_j \subset f(I_i)$ and equal to 0 otherwise.

The Transition matrix and iteration

- Let A be the transition matrix of a q-cycle σ .
- Let (f, O) be a minimal realization of σ with the partition intervals l₁,..., l_q as above.
- A straightforward induction shows that the *ij*-entry a_{ij}⁽ⁿ⁾ of the power Aⁿ is the number of times the *n*-th iterated image f^{on}(I_i) covers I_j or, equivalently, the number of connected components of f⁻ⁿ(I_j) in I_i.

Lemma

Let A be the transition matrix of $\sigma \in \mathbb{C}_q$ with deg $(\sigma) \geq 2$. Then the power A^q has positive entries.

• This is shows that the transition matrix is irreducible.

Theorem (Perron – Frobenius)

Let S be a $q \times q$ column stochastic matrix with the property that some power of S has positive entries. Then

- (i) S has a simple eigenvalue at $\lambda = 1$ and the remaining eigenvalues are in the open unit disk $\{\lambda : |\lambda| < 1\}$.
- (ii) The eigenspace corresponding to $\lambda = 1$ is generated by a unique probability vector $\ell = (\ell_1, \dots, \ell_q)$ with $\ell_i > 0$ for all *i*.
- (iii) The powers S^n converges to the matrix with identical columns ℓ as $n \to \infty$.

We immediately have :

Theorem

Let A be the transition matrix of $\sigma \in \mathbb{C}_q$ with deg $(\sigma) = d \ge 2$. Then, there is a unique probability vector $\ell \in \mathbb{R}^q$ such that $A\ell = d\ell$. Moreover, ℓ has positive components and satisfies

$$\ell = \lim_{n o \infty} rac{1}{d^n} A^n oldsymbol{v}$$

for every probability vector $\mathbf{v} \in \mathbb{R}^q$.

We are now ready to prove the theorem :

i

Theorem

Let $\sigma \in \mathbb{C}_q$ be any q-cycle with $\deg(\sigma) = d \ge 2$ and with $\sigma(1) < \sigma(q)$. Then σ has a unique realization under \mathbf{m}_d .

PROOF:

- We are looking for a q-periodic orbit $\mathcal{O} = \{x_1, \ldots, x_q\}$ for \mathbf{m}_d , $0 < x_1 < \ldots < x_q < 1$ such that $\mathbf{m}_d(x_i) = x_{\sigma(i)}$ for all *i*.
- Assume for a moment that such \mathcal{O} exists, let $I_i = [x_i, x_{i+1}]$, consider the lengths $\ell_i = |I_i|$, and form the probability vector

$$\boldsymbol{\ell} = (\ell_1, \dots, \ell_q) \in \mathbb{R}^q_+$$

Since m_d maps I_i homeomorphically onto U_{j∈[σ(i),σ(i+1))} I_j, we have

$$\sum_{\ell \in [\sigma(i), \sigma(i+1))} \ell_j = d\ell_i \quad \text{for all } i.$$
 (1)

28 / 34

• The q relations (1) can be written as

$$A\ell = d\ell, \tag{2}$$

where A is the transition matrix of σ .

- By the Perron-Frobenius Theorem, this equation has a unique solution ℓ which determines the lengths of the partition intervals {*I_i*}, hence the orbit *O* once we find *x*₁.
- To construct the orbit \$\mathcal{O} = {x_1, \ldots, x_q}\$, take the unique solution \$\mathcal{\ell} = (\ell_1, \ldots, \ell_q)\$ of (2) and define

$$\begin{cases} x_{1} = \frac{1}{d-1} \sum_{j \in [1,\sigma(1))} \ell_{j} \\ x_{i} = x_{1} + \sum_{j \in [1,i)} \ell_{j} & \text{for } 2 \leq i \leq q. \end{cases}$$
(3)

• A few tedious computations shows that (3) works.

- Let σ ∈ C. In order to describe the higher degree case
 k > d = deg(σ), we need some further notation.
- As before let A denote the transition matrix for σ .
- It can be shown that the diagonal of the 0 − 1 matrix A contains precisely d − 1 entries of 1.
- A diagonal entry say *a_{ii}* with value 1 corresponds to a fixed point for realizations.
- That is for any minimal realization (f, O) of σ, the interval I_i contains a fixed point for f iff a_{ii} = 1, that is iff f(I_i) ⊃ I_i.
- In particular the *q*-th diagonal entry $a_{qq} = 1$ if and only if $\sigma(1) < \sigma(q)$.

The signature of σ .

We define

Definition

Let $A = [a_{ij}]$ be the transition matrix of $\sigma \in C_q$ with deg $(\sigma) = d$. The *signature* of σ is the integer vector formed by the main diagonal entries of A:

$$\operatorname{sig}(\sigma) = (a_{11}, \ldots, a_{qq}).$$

If (f, \mathcal{O}) is any realization of σ (minimal or not), and if I_1, \ldots, I_q are the corresponding partition intervals, then I_i is called a *marked interval* if $a_{ii} = 1$.

- Let p = (p₁,..., p_q) ∈ N^q be a q-vector with non negative integer valued coordinates. And let 1 denote the q-vector of ones 1 = (1,...,1)
- Let $P = p^T \cdot \mathbf{1}$ be the $q \times q$ matrix with identical columns equal to $p^T \dots$

The transformation matrix for non minimal realiztions.

• Then

$$B = A + P$$

can be regarded as the transition matrix for realizations (f, \mathcal{O}) of σ with winding p_i on interval I_i .

- That is lifts of f on $[x_i, x_{(i+1)}]$ to Π have homeomorphic images of the form $[\widehat{x}_{\sigma(i)}, \widehat{x}_{\sigma(i+1)}]$ where $\widehat{x}_{\sigma(i)} + p_i < \widehat{x}_{\sigma(i+1)} < \widehat{x}_{\sigma(i)} + p_i + 1$, $\Pi(\widehat{x}_{\sigma(i)}) = x_{\sigma(i)}$ and $\Pi(\widehat{x}_{\sigma(i+1)}) = x_{\sigma(i+1)}$.
- Then b_{ij} is the number of connected components of $f^{-1}(I_j)$ contained in I_i .
- The total sum of the elements in each column is

$$k = \deg(\sigma) + \sum_{j=1}^{q} p_j.$$

- Thus $\frac{1}{k}B$ is a column stochastic matrix.
- Applying the Perron-Frobenius theorem again we find that *B* has a unique simpel leading eigenvalue 1 and a unique corresponding positive probability eigen-vector.
- With this in place the following theorem is easily proved.

Theorem

If the diagonal element $b_{qq} = a_{qq} + p_q > 0$, then there are b_{qq} orbits for \mathbf{m}_k realizing σ .

Workshop on Holomorphic Dynamics - Iterated Monodromy groups and Henon maps with a semi-neutral fixed point -Søminestationen Holbæk, November 30 - December 3. 2017 http://thiele.ruc.dk/~lunde/Monodromy/index.html