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I Matings were the subject of Tan Lei’s Ph D thesis, and
remained an interest throughout her career.

I Matings were introduced by Douady and Hubbard, following
their amazingly detailed and informative description of (in
particular) quadratic polynomials z2 + c for c in the
Mandelbrot set.

I Their description came from results they proved about
dynamical rays in the basin of infinity of a quadratic
polynomial, and parameter rays in the complement of the
Mandelbrot set (in parameter space).
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Consequences for hyperbolic polynomials

I The Douady-Hubbard results can be summarised more simply
for hyperbolic polynomials, and are so complete for these that
there seems to be nothing to add.

I For polynomials, every bounded Fatou component is a
topological disc, and every periodic bounded Fatou component
contains a unique attractive periodic point.

I If the Julia set is connected then it is locally connected and
the filled Julia set is a quotient of the closed unit disc, with
the dynamics on the Julia set being a quotient of z 7→ zd on
the unit circle, where d is the degree of the polynomial.
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The quadratic case

I For a hyperbolic quadratic polynomial f (z) = z2 + c which is
not in the hyperbolic component of z 7→ z2, the quotient of
the unit disc and the dynamics on it is completely described by
the points on the unit circle which collapse to the point on the
boundary of the immediate attractive basin containing the
critical value.

I These points map forward to the common endpoint of finitely
many, and at least two, dynamical rays for f , of which two,
together with the common endpoint separate any other rays
from the critical value (and the Fatou component containing
it).

I The preimages of these two dynamical rays in the exterior of
the unit disc are radial lines ending at points of rational
argument, that is, at points e2πip1 and e2πip2 where p1 and p2
are odd denominator rationals. In addition the points e2πip1

and e2πip2 are of the same period under the map z 7→ z2.
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Parameter Rays

I Some preimages of common endpoints of dynamical rays are
also preimages of common endpoints of parameter rays.

I This happens if the radial lines ending at e2πip1 and e2πip2 are
the preimages of the dynamical rays landing at the lowest
period point on the boundary of the Fatou component
containing the critical value.

I These two radial lines are then also preimages of parameter
rays ending at a parabolic parameter value in the Mandelbrot
set.

I This parabolic value is in the boundary of the hyperbolic
component of f , for which the periodic parabolic basin has the
same period as the immediate attractive basin of f containing
the critical value.
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Two-to-one correspondence

I Each parabolic parameter value in the Mandelbrot set, apart
from c = 1

4 , is the endpoint of exactly two parameter rays of
odd denominator rational arguments p1 and p2.

I It is also in the boundary of a unique hyperbolic component
with a periodic cycle of Fatou components of the same period
as the periodic cycle of parabolic basins for the parabolic
parameter value.
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Conversely. . .

I Conversely each odd denominator rational is the preimage of
the common endpoint of exactly two parameter rays.

I This common endpoint is a parabolic parameter value.
I The two parameter rays separate c = 0 from the hyperbolic

component adjacent to the parabolic parameter value with
attractive basin of the same period as the parabolic basin.
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The critically periodic centre of a hyperbolic component

I Any hyperbolic component of quadratic polynomials in the
Mandelbrot set contains a unique critically periodic
polynomial z2 + c0 called the centre.

I The dynamics on the Julia set is constant, up to topological
conjugacy, throughout the hyperbolic component, and also the
same up to topological conjugacy for the parabolic parameter
value.
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I For c0 6= 0, the dynamics of the critically periodic map z2 + c0
on the Julia set is the quotient of a critically periodic branched
covering of C which preserves the unit circle, interior and
exterior of the unit disc and is equal to z 7→ z2 on
{z : |z | ≥ 1}.

I I call this map sp.
I Here p is the argument of one of the dynamical rays landing at

the lowest period point on the boundary of the Fatou
component containing the critical value, and adjacent to this
Fatou component.

I Equivalently p is the argument of one of the parameter rays
landing at the parabolic value on the boundary of the
hyperbolic component of z2 + c0 and separating it from 0.
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Unique up to Thurston equivalence and topological
conjugacy

I For any odd-denominator rational p, the critically periodic
polynomial sp is uniquely determined up to Thurston
equivalence.

I sp chosen to preserve a quadratic invariant lamination on the
disc, called Lp, and is also chosen suitably up to topological
conjugacy on the complement of the lamination

I The quotient map [sp] is uniquely determined up to topological
conjugacy - and of course is topologically conjugate to the
corresponding critically periodic quadratic polynomial.
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Matings

For present purposes we restrict matings to critically periodic
quadratic branched coverings and define them up to Thurston
equivalence.

Let p and q be odd denominator rationals.

sp q sq(z) =
sp(z) if |z | ≤ 1
(sq(z

−1))−1 if |z | ≥ 1.
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Which matings are rational maps?

It was immediately clear that sp q s1−p could not be Thurston
equivalent to a rational map and also that sp q sq could not be
Thurston equivalent to a rational map if [sp] and [sq] are in
conjugate limbs.

In the language of minor leaves the conjugate limbs condition
becomes µr ≤ µp and µ1−r ≤ µq, where µp, µq , µr are the chords
in the unit disc joining the preimages of common ray endpoints

e2πip and e2πip2 , e2πiq and e2πiq2 , e2πir and e2πir2 .
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Theorem
(1986-7) [sp] and [sq] are not in conjugate limbs ⇔ sp q sq is
Thurston equivalent (and [sp q sq] topologically equivalent) to a
rational map.



History of the theorem

I Conjectured by Douady and Hubbard in the earlier ’80’s.
Assigned to Tan Lei as a thesis problem. Proved by me in
1986 (actually in a more general context) and by Tan Lei in
her thesis by a different method.

I So a rich class of examples of quadratic rational maps. But
I How many ((sub)hyperbolic) rational maps are matings?
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How many rational maps are matings?

I From the definition, a mating essentially generalizes a
polynomial. A non-renormalisable quadratic polynomial in the
Mandelbrot set is a mating of itself with z2.

I Perhaps it was hoped for a while that mating described was a
rather general description of rational maps, at least (for
example) in the case of hyperbolic rational maps of degree two
with two disjoint cycles of periodic Fatou components.

I This was soon realised not to be the case.
I In addition, if a rational map is a mating, the pair of

polynomials providing the mating is far from unique, in general.
I However, there are some positive results.
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The star-like case

I One positive result has a long history, and concerns quadratic
rational maps with disjoint orbits of periodic critical points, for
which one critical point is constrained to have degree two.

I It was claimed by Luo, a student of Hubbard, in his thesis in
1995, that all nonrenormalisable maps in this family were
matings.

I The proof was incomplete, but a complete proof was published
in 2009 by Aspenberg and Yampolsky.

I A similar result can be proved in some regions of parameter
space where one critical point is constrained to have degree k ,
and the Julia set is star-like
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The case of no common endpoints between lamination
leaves

Here is a result of a quite different nature, about a neighbourhood
of the closure of a hyperbolic component represented by a mating.

A hyperbolic component of quadratic rational maps is of type IV if
the two critical points are in disjoint periodic cycles of Fatou
components.

Theorem
(2016-17)Let f ' sp q sq be a hyperbolic quadratic rational map
with critical points c1(f ) and c2(f ) corresponding to the critical
points ∞ and 0 of sp q sq, such that all Fatou components have
disjoint closures. Suppose also that any point on S1 in the
boundary of the gap of Lp containing thr critical value of sp is not
an endpoint of a leaf of Lq. Let c1(f ) have period m
Then, in the variety of rational maps with c1 of period m, all type
IV hyperbolic components sufficiently near the Mandelbrot set copy
containing f , are matings.
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A hyperbolic component of quadratic rational maps is of type IV if
the two critical points are in disjoint periodic cycles of Fatou
components.

Theorem
(2016-17)Let f ' sp q sq be a hyperbolic quadratic rational map
with critical points c1(f ) and c2(f ) corresponding to the critical
points ∞ and 0 of sp q sq, such that all Fatou components have
disjoint closures. Suppose also that any point on S1 in the
boundary of the gap of Lp containing thr critical value of sp is not
an endpoint of a leaf of Lq. Let c1(f ) have period m
Then, in the variety of rational maps with c1 of period m, all type
IV hyperbolic components sufficiently near the Mandelbrot set copy
containing f , are matings.



Idea of proof

I Periodic orbits move continuously in parameter space.

I So do critical points
I A nearby hyperbolic component is created when a critical

point moves to a nearby periodic point.
I If there are no connections between different leaves of

Lp ∪ L−1
q then the critical point does not cross S1 in any

essential way and moves to another mating.
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The path description of sp

I The description of a critically periodic quadratic polynomial f
up to Thurston equivalence can be given very simply in terms
of one of the associated rationals p.

I Let s(z) = z2.
I Let β be the path along the radius from 0 to e2πip.
I Let ζ be the path back along the radius from the periodic

preimage of e2πip to 0.
I Let σβ be a homeomorphism which is the identity outside a

small neighbourhood of β and moves the start-point to the
finish-point.

I Then f ' sp ' σ−1
ζ ◦ σβ ◦ s.
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Nearby hyperbolic components

I Now suppose that f is a type IV critically periodic quadratic
rational map with critical points c1 and c2.

I Suppose also that the closures of Fatou components are all
disjoint.

I Then type IV hyperbolic rational maps near f with c1 of fixed
period are in two-to-one correspondence with periodic points
of f near the closure of the Fatou component of f (c2).
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Path description locally

I The description of nearby hyperbolic components can again be
done in terms of paths in the dynamical plane.

I Let g be hyperbolic type IV in a neighbourhood of f . Let x be
the corresponding periodic point in the corresponding
neighbourhood of the Fatou component of c2.

I Then there is a path β from f (c2) to x in this neighbourhood
such that g ' σ−1

ζ ◦ σβ ◦ f where f ◦ ζ = β and ζ is a path
from c2(f ) to the periodic point in f −1(x).
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Is the path β the union of a path in the Fatou component of f (c2)
and the image of a path along S1?
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By induction

As so often in mathematics, the strategy involves an induction.



Thurston equivalence and homotopy of paths

Consider
g ' σ−1

ζ ◦ σβ ◦ f

where β is a path from f (c2) to a periodic point x , and f ◦ ζ = β.
I The map on the right is determined relative to the homotopy

class of β relative to the forward orbit of x .
I If the path β is in a disc U which intersects the forward orbit

of x only in x itself then U determines the homotopy class of
β uniquely.

I So this is one thing we want to arrange, by an inductive
process.
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And what else?

Again, consider
g ' σ−1

ζ ◦ σβ ◦ f

where β is a path from f (c2) to a periodic point x , and f ◦ ζ = β.
I Suppose also that β is a path in a topological disc U which

intersects the periodic orbit of x just in x itself,
I and that f itself is a mating, and hence a semiconjugate to

sp q sq unders some map ϕ.
I Then for g to be a mating we need β to be a path in the

union of the Fatou component of f (c2) and the image of an
arc of S1, up to homotopy.

I This will be true if every component of S1 ∩ ϕ−1(U) intersects
the preimage of the closure of the Fatou component of f (c2).
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I Markov partitions with good properties are needed for the
work.

I This is a big subject in dynamics in general, and especially in
complex dynamics, principally through Yoccoz puzzles and
their generalisations.

I This topic is connected to Tan Lei, perhaps rather indirectly,
through the people she is associated with, and in particular,
former students.
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