Wandering domains and Singularities

Núria Fagella

Facultat de Matemtiques i Informtica Universitat de Barcelona and Barcelona Graduate School of Mathematics

Complex dynamics and Quasiconformal Geometry To celebrate Tan Lei October 23-25, 2017

N. Fagella (Universitat de Barcelona)

NATO conference, Hillerød 1993

Afterwards Paris (93), MSRI (95), etc, etc.

N. Fagella (Universitat de Barcelona)

Wandering domains and singularities

Angers 2 / 26

Bodil Fest, Hollbæk, 2003

N. Fagella (Universitat de Barcelona)

Wandering domains and singularities

Angers 3 / 26

Bodil Fest, Hollbæk, 2003

N. Fagella (Universitat de Barcelona)

Bob's Fest, Tossa de Mar, 2008

N. Fagella (Universitat de Barcelona)

Dynamics around Thurston's Theorem, Roskilde, 2010

N. Fagella (Universitat de Barcelona)

Topics in complex dynamics, Barcelona, 2015

N. Fagella (Universitat de Barcelona)

Newton's method of entire transcendental maps

Can these examples have wandering domains?

Newton's method for $F(z) = z + e^{z}$.

Newton's method of entire transcendental maps

Can these examples have wandering domains?

Newton's method for $F(z) = e^{z}(z + e^{z})$.

N. Fagella (Universitat de Barcelona)

 If f : C → C (or to Ĉ) has an essential singularity at infinit we say that f is transcendental.

- If f : C → C (or to Ĉ) has an essential singularity at infinit we say that f is transcendental.
- Transcendental maps may have Fatou components that are not basins of attraction nor rotation domains:
 - U is a Baker domain of period 1 if $f^n \mid_U \to \infty$ loc. unif.

- If f : C → C (or to Ĉ) has an essential singularity at infinit we say that f is transcendental.
- Transcendental maps may have Fatou components that are not basins of attraction nor rotation domains:
 - U is a Baker domain of period 1 if $f^n \mid_U \to \infty$ loc. unif.
 - U is a wandering domain if $f^n(U) \cap f^m(U) = \emptyset$ for all $n \neq m$.

 $z + a + b\sin(z)$ [Figures: Christian Henriksen] $z + 2\pi + \sin(z)$

N. Fagella (Universitat de Barcelona)

Wandering domains and singularities

Angers 10 / 26

• The set S(f) of singularities of f^{-1} consists of critical values and asymtpotic values (and the closure of such).

- The set S(f) of singularities of f^{-1} consists of critical values and asymtpotic values (and the closure of such).
- $f : \mathbb{C} \setminus f^{-1}(S(f)) \longrightarrow \mathbb{C} \setminus S(f)$ is a covering map of infinite degree.

• The set S(f) of singularities of f^{-1} consists of critical values and asymtpotic values (and the closure of such).

• $f : \mathbb{C} \setminus f^{-1}(S(f)) \longrightarrow \mathbb{C} \setminus S(f)$ is a covering map of infinite degree.

 A point a ∈ C is an asymptotic value if there exists a curve γ(t) → ∞ such that f(γ(t)) → a. (Morally, a has infinitely many preimages collapsed at infinity).

Example:
$$z = 0$$
 for $f(z) = \lambda e^{z}$.

• The set S(f) of singularities of f^{-1} consists of critical values and asymtpotic values (and the closure of such).

• $f : \mathbb{C} \setminus f^{-1}(S(f)) \longrightarrow \mathbb{C} \setminus S(f)$ is a covering map of infinite degree.

 A point a ∈ C is an asymptotic value if there exists a curve γ(t) → ∞ such that f(γ(t)) → a. (Morally, a has infinitely many preimages collapsed at infinity).

Example:
$$z = 0$$
 for $f(z) = \lambda e^{z}$.

• Define the postsingular set of f as

$$P(f) = \bigcup_{s \in S} \bigcup_{n \ge 0} f^n(s).$$

N. Fagella (Universitat de Barcelona)

Singular values play a very special role.

Singular values play a very special role.

• Basins of attraction of attracting or parabolic cycles contain at least one singular value

Singular values play a very special role.

- Basins of attraction of attracting or parabolic cycles contain at least one singular value
- Boundaries of Siegel disks or Herman rings, and Cremer cycles belong to $\overline{P(f)}$.

Singular values play a very special role.

- Basins of attraction of attracting or parabolic cycles contain at least one singular value
- Boundaries of Siegel disks or Herman rings, and Cremer cycles belong to $\overline{P(f)}$.
- The relation with Baker domains and wandering domains is not so clear.

Theorem (Bergweiler'95, Mihaljevic-rempe'13, Baranski-F-Jarque-Karpinska'17)

f transcendental meromorphic, U invariant Baker domain, $U \cap S(f) = \emptyset$. Then $\exists p_n \in P(f)$ st

$$\begin{array}{c|c} \bullet & |p_n| \to \infty \\ \bullet & \left| \frac{p_{n+1}}{p_n} \right| \to 1 \\ \bullet & \frac{\operatorname{dist}(p_n, U)}{|p_n|} \to 0 \end{array}$$

Special classes

Some classes of maps are singled out depending on their singular values.

• The Speisser class or finite type maps:

 $S = \{f \text{ ETF (or MTF) such that } S(f) \text{ is finite} \}$

Example: $z \mapsto \lambda \sin(z)$

Special classes

Some classes of maps are singled out depending on their singular values.

• The Speisser class or finite type maps:

 $S = \{f \text{ ETF (or MTF) such that } S(f) \text{ is finite} \}$

Example: $z \mapsto \lambda \sin(z)$

• The Eremenko-Lyubich class

 $\mathcal{B} = \{f \text{ ETF (or MTF) such that } S(f) \text{ is bounded}\}$

Example: $z \mapsto \lambda \frac{z}{\sin(z)}$.

N. Fagella (Universitat de Barcelona)

• Maps of finite type are the most similar to rational maps. Indeed,

 $f \in \mathcal{S} \implies f$ has no wandering domains

[Eremenko+Lyubich'92, Goldberg+Keen'87]

• Maps of finite type are the most similar to rational maps. Indeed,

 $f \in \mathcal{S} \implies f$ has no wandering domains

[Eremenko+Lyubich'92, Goldberg+Keen'87]

• Maps in class ${\cal B}$ also have special properties among which:

 $f \in \mathcal{B} \implies f$ has no escaping wandering domains

[Eremenko+Lyubich'92]

• Maps of finite type are the most similar to rational maps. Indeed,

 $f \in \mathcal{S} \implies f$ has no wandering domains

[Eremenko+Lyubich'92, Goldberg+Keen'87]

• Maps in class $\mathcal B$ also have special properties among which:

 $f \in \mathcal{B} \implies f$ has no escaping wandering domains

[Eremenko+Lyubich'92]

If U is a wandering domain, and L(U) is the set of limit functions of f^n on U, then

$$U \text{ is } \begin{cases} \text{escaping} & \text{if } L(U) = \{\infty\} \\ \text{oscillating} & \text{if } \{\infty, a\} \subset L(U) \text{ for some } a \in \mathbb{C}. \\ \text{"bounded"} & \text{if } \infty \notin L(U). \end{cases}$$

N. Fagella (Universitat de Barcelona)

Question

Can maps in class \mathcal{B} have wandering domains at all?

Question

Can maps in class B have wandering domains at all?

Answer: yes.

Theorem (Bishop'15)

There exists an entire map $f \in \mathcal{B}$ such that f has an (oscillating) wandering domain.

Question

Can maps in class B have wandering domains at all?

Answer: yes.

Theorem (Bishop'15)

There exists an entire map $f \in \mathcal{B}$ such that f has an (oscillating) wandering domain.

Open question

Does there exist a map with a "bounded" wandering domain?

The proof is based on quasiconformal folding, a qc surgery construction.

N. Fagella (Universitat de Barcelona)

Examples of wandering domains are not abundant. Usual methods are:

• Lifiting of maps of \mathbb{C}^* [Herman'89, Henriksen-F'09]. The relation with the singularities is limited to the finite type possibilities.

Examples of wandering domains are not abundant. Usual methods are:

- Lifiting of maps of \mathbb{C}^* [Herman'89, Henriksen-F'09]. The relation with the singularities is limited to the finite type possibilities.
- Infinite products and clever modifications of known functions [Bergweiler'95, Rippon-Stallard'08'09...]

Examples of wandering domains are not abundant. Usual methods are:

- Lifiting of maps of \mathbb{C}^* [Herman'89, Henriksen-F'09]. The relation with the singularities is limited to the finite type possibilities.
- Infinite products and clever modifications of known functions [Bergweiler'95, Rippon-Stallard'08'09...]
- Approximation theory [Eremenko-Lyubich'87]. No control on the singular values of the global map.

Examples of wandering domains are not abundant. Usual methods are:

- Lifiting of maps of \mathbb{C}^* [Herman'89, Henriksen-F'09]. The relation with the singularities is limited to the finite type possibilities.
- Infinite products and clever modifications of known functions [Bergweiler'95, Rippon-Stallard'08'09...]
- Approximation theory [Eremenko-Lyubich'87]. No control on the singular values of the global map.
- Quasiconformal surgery [Kisaka-Shishikura'05, Bishop'15].

Wandering domains and singularities: Motivating examples

The relation of a wandering domain with the postcritical set is not so clear.

Wandering domains and singularities: Motivating examples The relation of a wandering domain with the postcritical set is not so clear. Example 1 (escaping):

$$z \mapsto z + 2\pi + \sin(z)$$

N. Fagella (Universitat de Barcelona)

Wandering domains and singularities: Examples Example 2 (escaping and Univalent, $\partial U \subset \overline{P(f)}$):

N. Fagella (Universitat de Barcelona)

Wandering domains and singularities: Examples

Example 3 [Kisaka-Shishilkura'05, Bergweiler-Rippon-Stallard'13]. Wandering orbit of annuli such that

- $\mathcal{U} \cap P(f) = \emptyset$
- $P(f) \subset F(f)$.

Wandering domains and singularities: Examples

Example 3 [Kisaka-Shishilkura'05, Bergweiler-Rippon-Stallard'13]. Wandering orbit of annuli such that

- $\mathcal{U} \cap P(f) = \emptyset$
- $P(f) \subset F(f)$.

Example 4 [Bishop'15]

The oscillating domain of Bishop in class \mathcal{B} contains critical points of arbitrary high multiplicity, responsible for the high contraction necessary.

Wandering domains and singularities: Examples

Example 3 [Kisaka-Shishilkura'05, Bergweiler-Rippon-Stallard'13]. Wandering orbit of annuli such that

- $\mathcal{U} \cap P(f) = \emptyset$
- $P(f) \subset F(f)$.

Example 4 [Bishop'15]

The oscillating domain of Bishop in class \mathcal{B} contains critical points of arbitrary high multiplicity, responsible for the high contraction necessary.

Question

Does there exist an oscillating wandering domain in class \mathcal{B} on which f^n is univalent for all n > 0?

N. Fagella (Universitat de Barcelona)

Known results

Recall, for U a wandering domain, the set of limit functions

$$L(U) = \{a \in \widehat{\mathbb{C}} \mid f^{n_k}|_U \rightrightarrows a \text{ for some } n_k \to \infty\}.$$

Theorem (Bergweiler *et al*'93, Baker'02, Zheng'03) Let f be a MTF with a wandering domain U. If $a \in L(U)$ then $a \in P(f)' \cap J(f)$.

Known results

Recall, for U a wandering domain, the set of limit functions

$$L(U) = \{ a \in \widehat{\mathbb{C}} \mid f^{n_k} \mid_U \Rightarrow a \text{ for some } n_k \to \infty \}.$$

Theorem (Bergweiler *et al*'93, Baker'02, Zheng'03) Let f be a MTF with a wandering domain U. If $a \in L(U)$ then $a \in P(f)' \cap J(f)$.

Theorem (Mihaljevic-Rempe'13)

If $f \in \mathcal{B}$ and $f^n(S(f)) \rightrightarrows \infty$ uniformly (+ extra geometric assumption), then f has no wandering domains.

Univalent WD in class ${\cal B}$

Theorem A (F-Lazebnik-Jarque'17)

There exists an ETF $f \in \mathcal{B}$ such that f has a wandering domain U on which $f^n|_U$ is univalent for all $n \ge 0$.

Univalent WD in class ${\cal B}$

Theorem A (F-Lazebnik-Jarque'17)

There exists an ETF $f \in \mathcal{B}$ such that f has a wandering domain U on which $f^n|_U$ is univalent for all $n \ge 0$.

The proof is based on Bishop's quasiconformal folding construction. We substitute the high degree maps $(z - z_n)^{d_n}$ on the disk components by $(z - z_n)^{d_n} + \delta_n(z - z_n)$, which are univalent near z_n and show that that the critical values can be kept outside (but very close to) the wandering component. • More detail

Wandering domains and singular orbits

Theorem B (Baranski-F-Jarque-Karpinska'17)

Let f be a MTF and U be a wandering domain of f. Let U_n be the Fatou component such that $f^n(U) \subset U_n$. Then for every $z \in U$ there exists a sequence $p_n \in P(f)$ such that

$$\frac{\operatorname{dist}(p_n, U_n)}{\operatorname{dist}(f^n(z), \partial U_n)} \to 0 \quad \text{ as } n \to \infty.$$

In particular, if for some d > 0 we have dist $(f^n(z), \partial U_n) < d$ for all n (for instance if the diameter of U_n is uniformly bounded), then dist $(p_n, U_n) \rightarrow 0$ as n tends to ∞ .

Wandering domains and singular orbits

Theorem B (Baranski-F-Jarque-Karpinska'17)

Let f be a MTF and U be a wandering domain of f. Let U_n be the Fatou component such that $f^n(U) \subset U_n$. Then for every $z \in U$ there exists a sequence $p_n \in P(f)$ such that

$$\frac{\operatorname{dist}(p_n, U_n)}{\operatorname{dist}(f^n(z), \partial U_n)} \to 0 \quad \text{ as } n \to \infty.$$

In particular, if for some d > 0 we have $dist(f^n(z), \partial U_n) < d$ for all n (for instance if the diameter of U_n is uniformly bounded), then $dist(p_n, U_n) \rightarrow 0$ as n tends to ∞ .

Proof: normal families argument, hyperbolic geometry.... Based on a technical lemma from Bergweiler on Baker domains. Compare also [Mihaljevic-Rempe'13].

• A MTF is topologically hyperbolic if

 $\operatorname{dist}(P(f), J(f) \cap \mathbb{C}) > 0.$

• A MTF is topologically hyperbolic if

 $\mathsf{dist}(P(f),J(f)\cap\mathbb{C})>0.$

• This condition can be regarded as a kind of weak hyperbolicity in the context of transcendental meromorphic functions since $|(f^n)'(z)| \to \infty$ for all $z \in J(f)$ [Stallard'90, Mayer-Urnbanski'07'10].

A MTF is topologically hyperbolic if

 $dist(P(f), J(f) \cap \mathbb{C}) > 0.$

- This condition can be regarded as a kind of weak hyperbolicity in the context of transcendental meromorphic functions since $|(f^n)'(z)| \to \infty$ for all $z \in J(f)$ [Stallard'90, Mayer-Urnbanski'07'10].
- Topologically hyperbolic maps do not possess parabolic cycles, rotation domains or wandering domains which do not tend to infinity

• A MTF is topologically hyperbolic if

 $\operatorname{dist}(P(f), J(f) \cap \mathbb{C}) > 0.$

- This condition can be regarded as a kind of weak hyperbolicity in the context of transcendental meromorphic functions since $|(f^n)'(z)| \to \infty$ for all $z \in J(f)$ [Stallard'90, Mayer-Urnbanski'07'10].
- Topologically hyperbolic maps do not possess parabolic cycles, rotation domains or wandering domains which do not tend to infinity
- Examples include many Newton's methods of entire functions.

Corollary C

Let f be a MTF topologically hyperbolic. Let U be a wandering domain s.t. $U_n \cap P(f) = \emptyset$ for n > 0. Then for every compact set $K \subset U$ and every r > 0 there exists n_0 such that for every $z \in K$ and every $n \ge n_0$,

$$\mathbb{D}(f^n(z),r)\subset U_n.$$

In particular,

diam $U_n \to \infty$ and $dist(f^n(z), \partial U_n) \to \infty$

for every $z \in U$, as $n \to \infty$.

This can be applied to show that many functions, including Newton's method of $h(z) = ae^z + bz + c$ with $a, b, c \in \mathbb{R}$, have no wandering domains

[c.f. Bergweiler-Terglane,Kriete].

N. Fagella (Universitat de Barcelona)

No wandering domains

Newton's method for $F(z) = z + e^{z}$.

N. Fagella (Universitat de Barcelona)

Thank you for your attention!

N. Fagella (Universitat de Barcelona)