Two Moduli Spaces

John Milnor

Work with Araceli Bonifant

Stony Brook University

ANGERS, OCTOBER 2017 IN MEMORY OF TAN LEI

Outline: Two Examples.

The object of this talk will be to describe two examples of smooth group actions on smooth manifolds.

Easier Example (Divisors on \mathbb{P}^1):

The group $G(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$ of Möbius automorphisms of the Riemann sphere \mathbb{P}^1 acts on the space \mathfrak{D}_n of effective divisors of degree n on \mathbb{P}^1 , with quotient space $\mathfrak{D}_n/G(\mathbb{P}^1)$.

Much Harder Example (Curves in \mathbb{P}^2):

The group $G(\mathbb{P}^2) = PGL_3(\mathbb{C})$ of projective automorphisms of the complex projective plane \mathbb{P}^2 , acts on the projective compactification \mathfrak{C}_n of the space of algebraic curves of degree n in \mathbb{P}^2 , with quotient space $\mathfrak{C}_n/G(\mathbb{P}^2)$.

In both cases, some parts of the quotient space are beautiful objects to study, but other parts are rather nasty.

Basic Problem: Which parts are which?

A topological space Y is a T_1 -**space** if every point $\mathbf{p} \in Y$ is closed as a subset of Y.

Y is *locally* T_1 at **p** if some neighborhood of **p** is a T_1 -space.

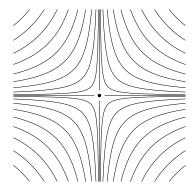
Easy Exercise. In any topological space Y, the subset consisting of all points at which Y is locally T_1 is itself a T_1 -space.

This subset can be described as the unique maximal open subset of Y which is a T_1 -space.

Locally Hausdorff Spaces

Definition. A space *Y* is *locally Hausdorff* at **p** if some neighborhood of **p** is a Hausdorff space.

Evidently the set of all points at which Y is locally Hausdorff is a well defined open subset of Y.



A Toy Example: The additive group *G* of real numbers acts on \mathbb{R}^2 by $\mathbf{g}_t(x, y) = (e^t x, e^{-t} y)$. The quotient space \mathbb{R}^2/G is locally T_1 and even locally Hausdorff, **except at** (0,0). The quotient $(\mathbb{R}^2 \setminus \{(0,0\})/G$ is locally Hausdorff everywhere, **but is not Hausdorff.**

Part 2. The Space \mathfrak{D}_n of Degree *n* Divisors on \mathbb{P}^1 . 5.

Definition: An *effective divisor* \mathcal{D} of degree *n* on the Riemann sphere \mathbb{P}^1 is a formal sum

 $\mathcal{D} = m_1 \langle z_1 \rangle + \cdots + m_k \langle z_k \rangle ,$

where the $m_j > 0$ are integers with $\sum_j m_j = n$, and the z_j are distinct points of \mathbb{P}^1 .

Each such ${\cal D}$ can be identified with the set of zeros, counted with multiplicity, for some non-zero homogeneous polynomial

 $\Phi(x, y) = c_0 x^n + c_1 x^{n-1} y + \dots + c_n y^n.$ It follows that the space \mathfrak{D}_n of all such divisors is isomorphic to the projective space \mathbb{P}^n .

The group $G = G(\mathbb{P}^1)$ of Möbius automorphisms of \mathbb{P}^1 acts on \mathfrak{D}_n .

Two integer invariants under the action of G:

• The number of points $k = \#|\mathcal{D}|$ in the **support**

 $|\mathcal{D}| = \{z_1, \ldots, z_k\} \subset \mathbb{P}^1$.

• The maximum $m_{max} = max\{m_1, ..., m_k\}$ of the multiplicities of the various points of $|\mathcal{D}|$.

Finite Stabilizer $\iff \#|\mathcal{D}| \ge 3$.

Definition. The *stabilizer* $G_{\mathcal{D}}$ of a divisor \mathcal{D} is the subgroup of G consisting of all $g \in G$ with $g(\mathcal{D}) = \mathcal{D}$.

Lemma. The stabilizer $G_{\mathcal{D}}$ is finite if and only if the support $|\mathcal{D}|$ contains at least three elements.

Proof. For any \mathcal{D} there is a natural homomorphism $G_{\mathcal{D}} \to S_{|\mathcal{D}|}$, where $S_{|\mathcal{D}|}$ is the symmetric group consisting of all permutations of the finite set $|\mathcal{D}|$. If $\#|\mathcal{D}| \geq 3$, since any Möbius transformation which fixed three distinct points must be the identity, it follows that $G_{\mathcal{D}}$ is finite, isomorphic to a subgroup of $S_{|\mathcal{D}|}$.

Now suppose that $\#|\mathcal{D}| \leq 2$. After a Möbius transformation, we may assume that $|\mathcal{D}| \subset \{0, \infty\}$. (Here I am identifying the Riemann sphere with $\mathbb{C} \cup \{\infty\}$.) The group $G_{\mathcal{D}}$ then contains infinitely many transformations of the form

 $\mathbf{g}_{\kappa}(z) = \kappa z \quad \text{with} \quad \kappa \neq \mathbf{0} \; . \quad \Box$

The Moduli Space for Divisors.

Let $\mathfrak{D}_n^{\text{fstab}}$ be the open subset of \mathfrak{D}_n consisting of all divisors with finite stabilizer (or all divisors with $\#|\mathcal{D}| \ge 3$).

Proposition 1. Every G-orbit

 $((\mathcal{D})) = \{ \mathbf{g}(\mathcal{D}) ; \mathbf{g} \in \mathbf{G} \}$

in $\mathfrak{D}_n^{\text{fstab}}$ is closed as a subset of $\mathfrak{D}_n^{\text{fstab}}$.

In other words, every divisor \mathcal{D}' which belongs to the topological boundary $\overline{(\mathcal{D})} \setminus ((\mathcal{D}))$ must have infinite stabilizer.

Definition. This quotient $\mathfrak{M}_n = \mathfrak{D}_n^{\text{fstab}}/G$ will be called the *moduli space* for divisors, under the action of *G*.

Thus Proposition 1 implies that \mathfrak{M}_n is a T_1 -space.

To prove Proposition 1, we must study elements of G which are "close to infinity" in G.

Distortion Lemma for Möbius Transformations.

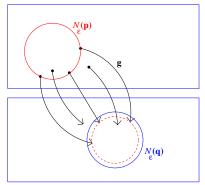
Using the spherical metric on \mathbb{P}^1 , let $N_{\varepsilon}(\mathbf{p})$ be the open ε -neighborhood of \mathbf{p} .

Lemma. For any $\varepsilon > 0$ there is a compact set

 $K = K_{\varepsilon} \subset G$

with the following property: For any $\mathbf{g} \notin K$, there are (not necessarily distinct) points \mathbf{p} and \mathbf{q} such that

 $\mathbf{g}(N_{\varepsilon}(\mathbf{p})) \cup N_{\varepsilon}(\mathbf{q}) = \mathbb{P}^1$.



8.

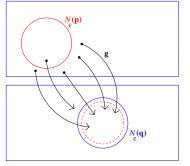
Thus points outside of $N\varepsilon(\mathbf{p})$ map inside $N_{\varepsilon}(\mathbf{q})$. (Proof Outline. The proof for the group of diagonal transformations $\mathbf{d}(x : y) = (\kappa x : y)$ is easy. But any $\mathbf{g} \in G$ can be written as a product $\mathbf{g} = \mathbf{r} \circ \mathbf{d} \circ \mathbf{r}'$ where \mathbf{r} and \mathbf{r}' are rotations of the Riemann sphere and \mathbf{d} is diagonal. ...) Proof of Proposition 1.

To prove: Every *G*-orbit $((\mathcal{D})) \subset \mathfrak{D}_n^{\text{fstab}}$ is closed as a subset of $\mathfrak{D}_n^{\text{fstab}}$.

Choose ε small enough so that any two points of $|\mathcal{D}|$ have distance $> 2 \varepsilon$ from each other.

⇒ No ε -ball contains more than one point of $|\mathcal{D}|$. Given any $\mathbf{g} \notin K_{\varepsilon}$, choose \mathbf{p} and \mathbf{q} as in the Distortion Lemma. It follows that:

all but possibly one of the points of $\mathbf{g}(|\mathcal{D}|)$ lie in $N_{\varepsilon}(\mathbf{q})$.



Now suppose that we are given a sequence of group elements $\mathbf{g}_j \notin K_{\varepsilon_j}$ with $\varepsilon_j \to 0$, and suppose that the sequence of divisors $\mathbf{g}_j(\mathcal{D}) \in ((\mathcal{D}))$ converges to some \mathcal{D}' .

9.

Then $\#|\mathcal{D}'| \leq 2$, hence $\mathcal{D}' \notin \mathfrak{D}_n^{\text{fstab}}$. \Box

\mathfrak{M}_n is Hausdorff only for Small n.

Let $\pi : \mathfrak{D}_n^{\text{fstab}} \to \mathfrak{M}_n$ be the projection map.

Proposition 2. The moduli space $\mathfrak{M}_n = \mathfrak{D}_n^{\text{fstab}}/G$ is a Hausdorff space only if $n \leq 4$.

For any *n*, the open set consisting of points $\pi(D)$ with $m_{max} < n/2$ is a Hausdorff space.

However, if $n \ge 5$, then points $\pi(D)$ with $m_{\text{max}} \ge n/2$ are not even locally Hausdorff.

Low degree examples:

 \mathfrak{M}_3 is a point.

 $\mathfrak{M}_4 \cong \mathbb{P}^1$. [Proof Outline: Four distinct points in \mathbb{P}^1 determine a 2-fold branched covering which is an elliptic curve; characterized by the classical invariant $j(\mathcal{C}) \in \mathbb{C}$. But there is one other *G*-orbit $((\mathcal{D})) \subset \mathfrak{D}_4^{\text{fstab}}$ consisting of divisors with $\#|\mathcal{D}| = 3$. Therefore: $\mathfrak{M}_4 \cong \mathbb{C} \cup \{\infty\} \cong \mathbb{P}^1$.]

A Non Locally Hausdorff Example.

Choose two divisors

 $\mathcal{D} = \mathcal{D}_h + h \langle \infty \rangle$ and $\mathcal{D}' = \mathcal{D}'_h + h \langle \infty \rangle$,

of degree $n = 2h \ge 6$, which are not in the same *G*-orbit, with both $|\mathcal{D}_h|$ and $|\mathcal{D}'_h|$ contained in \mathbb{C} . Note that $m_{\max} = h = n/2$ for both.

Let $\mathbf{g}_r(z) = r^2/z$, with $r \gg 1$; so that $|z| < r \iff |\mathbf{g}_r(z)| > r$. Then the two divisors $\mathcal{D}_h + \mathbf{g}_r(\mathcal{D}'_h)$ and $\mathcal{D}'_h + \mathbf{g}_r(\mathcal{D}_h)$ belong to the same *G*-orbit.

> As $r \to \infty$, the first converges to \mathcal{D} and the second converges to \mathcal{D}' .

Thus every neighborhood of $\pi(\mathcal{D}) \in \mathfrak{M}_n$ intersects every neighborhood of $\pi(\mathcal{D}')$.

Since \mathcal{D}' can be arbitrarily close to \mathcal{D} , this proves that \mathfrak{M}_{2h} is not locally Hausdorff at the point $\pi(\mathcal{D})$.

Proper and Locally Proper Actions.

Let *G* be a Lie group *G* acting on a locally compact space *X*. **Definition.** The action is *proper at a pair* $(\mathbf{x}, \mathbf{y}) \in X \times X$ if, for some neighborhood $U \times V$ of (\mathbf{x}, \mathbf{y}) , there exists a compact set $K \subset G$ such that:

Every **g** which satisfies $\mathbf{g}(U) \cap V \neq \emptyset$ belongs to *K*.

If this is true for all (\mathbf{x}, \mathbf{y}) , then the action is *proper*.

If it is true throughout a neighborhood of \mathbf{x} then the action is *locally proper* at \mathbf{x} .

In our toy example, the action is not proper; but it is locally proper away from the origin.

Exercise: Proper action $\Rightarrow X/G$ Hausdorff;

and locally proper action $\Rightarrow X/G$ locally Hausdorff.

To Prove: $m_{\text{max}} < n/2$ implies Hausdorff. 13.

Let $\mathcal{D}, \mathcal{D}' \in \mathfrak{D}_n$ be two divisors, both satisfying the condition that $m_{\max} < n/2$.

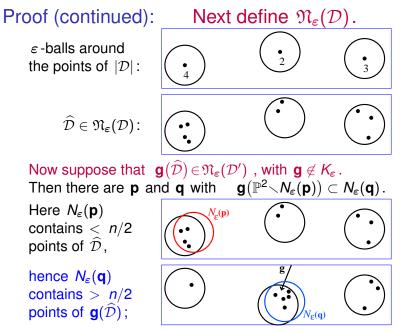
Lemma. We can choose neighborhoods $\mathfrak{N}_{\mathcal{D}}$ of \mathcal{D} and $\mathfrak{N}_{\mathcal{D}'}$ of \mathcal{D}' in \mathfrak{D}_n , and a compact set $K \subset G$, such that any group element satisfying

 $\textbf{g}(\mathfrak{N}_{\mathcal{D}})\cap\mathfrak{N}_{\mathcal{D}'}\neq\emptyset$

must belong to K.

In other words, the action of *G* is proper throughout the *G*-invariant set where $m_{max} < n/2$. Since proper action implies a Hausdorff quotient, this Lemma implies that the corresponding open subset of \mathfrak{M}_n is a Hausdorff space.

First step of proof: Choose $\varepsilon > 0$ small enough so that so that any two points of $|\mathcal{D}|$ or of $|\mathcal{D}'|$ have distance $> 4 \varepsilon$.



which contradicts the hypothesis.

Part 3. Curves in the Projective Plane. **Definition.** An *effective 1-cycle* of degree $n \ge 1$ on the complex projective plane \mathbb{P}^2 is a formal sum

 $\mathcal{C} = m_1 \cdot \mathcal{C}_1 + \cdots + m_k \cdot \mathcal{C}_k ,$

where each C_j is an irreducible complex curve, where the $m_j \ge 1$ are integers, and where $n = \sum_j m_j \deg(C_j)$.

The space \mathfrak{C}_n of all effective 1-cycles can be given the structure of a complex projective space of dimension n(n+3)/2. (In fact each non-zero homogeneous polynomial $\Phi(x, y, z)$ of degree *n* has a zero locus consisting of irreducible curves C_j , each counted with some multiplicity $m_j \ge 1$; yielding a 1-cycle.)

The group $G = G(\mathbb{P}^2) = PGL_3(\mathbb{C})$ of all automorphisms of \mathbb{P}^2 acts on \mathbb{P}^2 and hence on the space \mathfrak{C}_n .

The stabilizer $G_{\mathcal{C}}$ of $\mathcal{C} \in \mathfrak{C}_n$ is just the group consisting of all projective automorphisms which map \mathcal{C} to itself.

This stabilizer $G_{\mathcal{C}}$ may be either finite or infinite.

W-curves (and cycles). Curves with infinite stabilizer were first studied by Felix Klein and Sophus Lie, who called them *W-curves*.

Some examples:

Let $\mathfrak{W}_n \subset \mathfrak{C}_n$ be the algebraic set consisting of all cycles with infinite stabilizer. (\mathfrak{M}_n) is a union of finitely many maximal irreducible subvarieties of \mathfrak{C}_n , of varying dimension.)

> **Note:** C has finite stabilizer if and only if the *G*-orbit $((\mathcal{C})) \subset \mathfrak{C}_n$ has dimension 8.

In fact $\dim ((\mathcal{C})) + \dim (\mathcal{G}_{\mathcal{C}}) = \dim (\mathcal{G}) = 8$, where dim(G_{C}) = 0 \iff G_{C} is finite.

16.

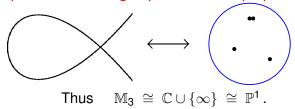
The Moduli Space \mathbb{M}_n .

The complement $\mathfrak{C}_n^{\text{fstab}} = \mathfrak{C}_n \setminus \mathfrak{W}_n$ is the open set consisting of all cycles with *finite stabilizer*.

Definition. The quotient space $\mathbb{M}_n = \mathfrak{C}_n^{\text{fstab}}/G$, will be called the *moduli space* for plane cycles of degree *n*.

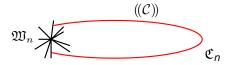
Examples. $\mathbb{M}_1 = \mathbb{M}_2 = \emptyset$.

The moduli space \mathbb{M}_3 for cubic curves in \mathbb{P}^2 is canonically isomorphic to the moduli space \mathfrak{M}_4 for divisors in \mathbb{P}^1 . Each has two "ramified points" corresponding to points with extra symmetry (= larger stabilizer). Each also has one "improper point" where the group action is not proper.



\mathbb{M}_n is a T_1 -space.

Cartoon of \mathfrak{C}_n , showing a typical *G*-orbit in red:



The topological boundary of any *G*-orbit in \mathfrak{C}_n is contained in the closed subset \mathfrak{W}_n . [Ghizzetti 1936; Aluffi and Faber 2010.]

- \implies Every *G*-orbit of cycles with finite stabilizer is closed as a subset of $\mathfrak{C}_n^{\text{fstab}}$.
- \implies Every point in \mathbb{M}_n is a closed set.

Virtual Flex Points

Let $\mathfrak{U}_n \subset \mathfrak{C}_n$ be the open subset consisting of all $\mathcal{C} \in \mathfrak{C}_n$ which satisfy the following two conditions:

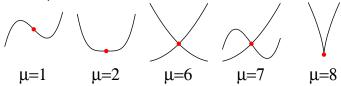
(1) \mathcal{C} contains no line.

(2) C contains no component with multiplicity \geq 2.

Definition. For $C \in \mathfrak{U}_n$, a point $\mathbf{p} \in |C|$ will be called a *virtual flex point* (or *VFP*) if it is either a flex point or a singular point. Each VFP has a *multiplicity* $\mu(\mathbf{p}) \ge 1$ satisfying the following:

Under a generic small perturbation of the curve, **p** will split into $\mu(\mathbf{p})$ nearby flex points.

Some Examples:



A Criterion for Proper Action.

Fixing some curve $\mathcal{C} \in \mathfrak{U}_n$, for any set $\mathcal{S} \subset \mathbb{P}^2$, define

$$\mu(S) = \mu_{\mathcal{C}}(S) = \sum_{\mathbf{p} \in S \cap \mathcal{C}} \mu(\mathbf{p}) .$$

The total number of VFP is $\mu(C) = 3n(n-2)$. We can also introduce the probability measure $\widehat{\mu}(S) = \mu(S)/\mu(C) \in [0, 1]$.

Now define two invariants $pmax(\mathcal{C}) \leq Lmax(\mathcal{C}) \leq 1$:

 $\begin{array}{l} \textbf{pmax}(\mathcal{C}) \text{ is the maximum of } \widehat{\mu}(\textbf{p}) \text{ over all points } \textbf{p} \in \mathcal{C} \,. \\ \textbf{Lmax}(\mathcal{C}) \text{ is the maximum of } \widehat{\mu}(L) \text{ over all lines } L \subset \mathbb{P}^2 \,. \end{array}$ $\begin{array}{l} \textbf{Theorem (Preliminary Version).} \\ \textbf{If } \textbf{pmax}(\mathcal{C}) + \textbf{Lmax}(\mathcal{C}) < 1 \,, \\ \text{ then the action of } G \text{ is locally proper at } \mathcal{C} \,. \end{array}$

The square of pairs (pmax, Lmax)

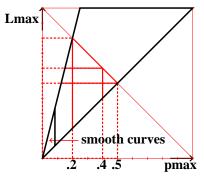


Illustration for degree n = 4, showing three typical rectangles where the action is known to be proper.

Here is a more precise statement: Given any constant $0 < \kappa \le 1/2$, let $\mathfrak{U}_n(\kappa)$ be the set of all $\mathcal{C} \in \mathfrak{U}_n$ such that $\mathbf{pmax}(\mathcal{C}) < \kappa$ and $\mathbf{Lmax}(\mathcal{C}) < 1 - \kappa$.

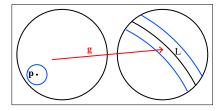
Theorem: The action of *G* on each $\mathfrak{U}_n(\kappa)$ is proper.

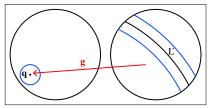
Corollary: The action of *G* on the space of smooth degree *n* curves is proper.

The Distortion Lemma for \mathbb{P}^2 .

Lemma. Given $\varepsilon > 0$ there exists a compact set $K_{\varepsilon} \subset G(\mathbb{P}^2)$ with the following property.

For any $\mathbf{g} \notin K_{\varepsilon}$ there exists either:





(1) a point $\mathbf{p} \in \mathbb{P}^2$ and or (2) a line $L' \subset \mathbb{P}^2$ and a line $L \subset \mathbb{P}^2$ such that $g(N_{\varepsilon}(\mathbf{p})) \cup N_{\varepsilon}(L) = \mathbb{P}^2$

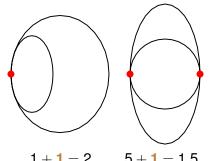
a point $\mathbf{q} \in \mathbb{P}^2$ such that $\mathbf{g}(N_{\varepsilon}(L)) \cup N_{\varepsilon}(\mathbf{q}) = \mathbb{P}^2$

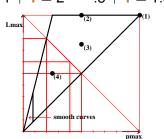
(so that **g** maps every point outside of $N_{\varepsilon}(\mathbf{p})$ into $N_{\varepsilon}(L)$),

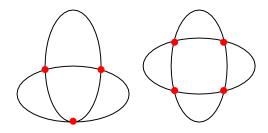
(so that **g** maps every point outside of $N_{\varepsilon}(L')$ into $N_{\varepsilon}(\mathbf{q})$).

Four examples, showing **pmax** + **Lmax**

23.







1 + 1 = 2 .5 + 1 = 1.5 .5 + .75 = 1.25 .25 + .5 = .75

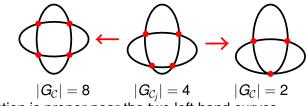
The first two are W-curves.

Only the right hand example has locally proper action.

An Improper Example.

Lemma. In a region where the action is proper, the function $\mathcal{C} \mapsto \mathcal{G}_{\mathcal{C}}$ is **upper semicontinuous**:

If $\mathcal{C}_j o \mathcal{C}$ then $\limsup_j (\mathcal{G}_{\mathcal{C}_j}) \subset \mathcal{G}_{\mathcal{C}}$.



The action is proper near the two left hand curves, but not near the right hand curve.

Unknown:

Is the moduli space \mathbb{M}_4 locally Hausdorff near the image of the right hand curve ?

References.

- P. Aluffi and C. Faber, Limits of PGL(3)-translates of plane curves, J. Pure Appl. Algebra 214 (2010) 526–547 and 548–564.
- A. Bonifant and J. Milnor, *On Real and Complex Cubic Curves,* arXiv:1603.09018v2 [math.AG]. To appear, L'Enseign. Math. **63**.
- A. Bonifant and J. Milnor, *Improper Group Actions, Orbifolds, and Plane Curves,* Manuscript in Preparation.
- A. Ghizzetti, Determinazione delle curve limiti di un sistema continuo ∞¹ di curve piane omografiche, Rendiconti Reale accademia dei Lincei. Classe di scienze fisiche, matematiche e naturali, **23** (1936) 261–264.
 - F. Klein and S. Lie, Ueber diejenigen ebenen Curven, welche durch ein geschlossenes System von einfach unendlich vielen vertauschbaren linearen Transformationen in sich übergehen, Math. Ann. 4 (1871), 50–84.

D. Mumford et al., "Geometric Invariant Theory", Chapter 4, Section 2, Springer-Verlag-Berlin 1965, 1994.