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Outline: Two Examples.

The object of this talk will be to describe two examples of

smooth group actions on smooth manifolds.

Easier Example (Divisors on P'):
The group G(P') = PGLy(C) of Mébius auto-
morphisms of the Riemann sphere P! acts on the
space D, of effective divisors of degree n on P!,
with quotient space ©,/G(P').

Much Harder Example (Curves in P?):
The group G(P?) = PGL3(C) of projective
automorphisms of the complex projective plane P?,
acts on the projective compactification €, of the
space of algebraic curves of degree n in P?,
with quotient space ¢,/ G(P?).

In both cases, some parts of the quotient space are beautiful

objects to study, but other parts are rather nasty.
Basic Problem: Which parts are which?



Part 1. Some Basic Point Set Topology.

A topological space Y is a T; -space if every point p € Y is
closed as a subset of Y.

Y is locally Ty at p if some neighborhood of p isa Ty -space.

Easy Exercise. In any topological space Y, the subset
consisting of all points at which Y is locally T; is itself a
T, -space.

This subset can be described as the unique maximal
open subset of Y which is a T, -space.



Locally Hausdorff Spaces 4,

- | N
Definition. A space Y is
locally Hausdorff at p if some

neighborhood of p is a Hausdorff
space.

Evidently the set of all points at
which Y is locally Hausdorff is a
well defined open subset of Y.

)\
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A Toy Example: The additive group G of real numbers acts on

R? by @:(x,y) = (e x, e7ly). The quotient space R?/G is

locally Ty and even locally Hausdorff, except at (0,0).

The quotient (R2\.{(0,0})/G is locally Hausdorff everywhere,
but is not Hausdorff.



Part 2. The Space ©, of Degree n Divisors on P'. s,

Definition: An effective divisor D of degree n on the
Riemann sphere P! is a formal sum
D = my(z1) + -+ mM{2k) ,
where the m; > 0 are integers with  >_,m; = n,
and the z; are distinct points of P'.
Each such D can be identified with the set of zeros, counted
with multiplicity, for some non-zero homogeneous polynomial
O(x,y) = cox" + e x" 'y + -+ cpy".
It follows that the space ©, of all such divisors is isomorphic to
the projective space P".
The group G = G(P') of Mébius automorphisms of P' acts on ©,,.

Two integer invariants under the action of G:
e The number of points k = #|D| in the support
Dl ={z, ..., z} CP".
e The maximum Mmax = max{my, ..., mx} of the
multiplicities of the various points of |D|.



Finite Stabilizer «<— #|D| > 3.
Definition. The stabilizer Gp of a divisor D is the subgroup
of G consisting of all g € G with g(D) = D.

Lemma. The stabilizer Gp is finite if and only if the
support |D| contains at least three elements.

Proof. For any D there is a natural homomorphism

Gp — S|, where Syp| is the symmetric group
consisting of all permutations of the finite set |D]|.

If #/D| >3, since any Mdbius transformation which fixed
three distinct points must be the identity, it follows that

Gp is finite, isomorphic to a subgroup of Sip,.

Now suppose that #|D| < 2. After a Mdbius transformation,
we may assume that |D| C {0, oo}. (Here | am identifying the
Riemann sphere with CU {cc}.) The group Gp then contains
infinitely many transformations of the form

0.(2) = kz with k#0. O



The Moduli Space for Divisors.

Let © /518 pbe the open subset of D, consisting of all divisors
with finite stabilizer (or all divisors with #|D| > 3).

Proposition 1. Every G-orbit

(D) ={9(DP): g€ G}
in D81 s closed as a subset of D [t

In other words, every divisor D’ which belongs to the

topological boundary (D))~ ((D)) must have infinite stabilizer.

Definition. This quotient M, = © /8 /G will be called the
moduli space for divisors, under the action of G.

Thus Proposition 1 implies that 9, is a T -space.

To prove Proposition 1, we must study elements of G
which are “close to infinity” in G.



Distortion Lemma for Mdbius Transformations.

Using the spherical metric on P!, let N.(p) be the open
e -neighborhood of p.

Lemma. For any ¢ > 0
there is a compact set

K=K caG
with the following property:

N®)

Forany g ¢ K,

there are ( not necessarily
distinct) points p and q
such that

d(Ne(p)) UNe(a) = P'.

N(a)

Thus points outside of Ne(p) map inside N.(q).

(Proof Outline. The proof for the group of diagonal
transformations d(x : y) = (kx : y) iseasy. Butany gec G
can be written as a product g =rodor’ where r and r are
rotations of the Riemann sphere and d is diagonal. ...)



Proof of Proposition 1.

9.

To prove: Every G-orbit (D)) c D8 s closed

as a subset of D [stad

Choose e small enough so that any two points of |D| have
distance > 2¢ from each other.

= No e-ball contains more than one point of |D|.
Given any g ¢ K., choose p and q as in

the Distortion Lemma.

It follows that:

all but possibly one of the points of g(|D|) lie in N.(q).

/ \N(p)

\\%/\\
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Now suppose that we are given
a sequence of group elements
g ¢ Kej with e; — 0, and

suppose that the sequence of

divisors
g;(D) € (D)
converges to some D’.

Then #|D'| <2,
hence D' ¢ Db [



M, is Hausdorff only for Small n. 10.
Let 7 : @8 _ ,1, be the projection map.
Proposition 2. The moduli space
mn _ @rl;stab/G
is a Hausdorff space only if n < 4.
For any n, the open set consisting of points
(D) with mmax < n/2 is a Hausdorff space.

However, if n > 5, then points =(D) with
Mmax > N/2 are not even locally Hausdorff.

Low degree examples:

M3 is a point.

My = P'. [Proof Outline: Four distinct points in P!
determine a 2-fold branched covering which is an elliptic curve;
characterized by the classical invariant j(C) € C. Butthere is
one other G-orbit (D)) C D58 consisting of divisors with

#Pl =3 Therefore: My = CU{oo} =P ]



A Non Locally Hausdorff Example. 11.
Choose two divisors

D=Dp+h(x) and D' =D+ h{cx),

of degree n=2h > 6, which are not in the same
G-orbit, with both |Dj| and |D}| containedin C.
Note that my.« = h = n/2 for both.

Let g.(z)=r?/z, with r>1;

sothat |z| <r < |g/(2)>r.
Then the two divisors Dy +g,(D},) and D} + g(Dp)
belong to the same G-orbit.

As r — oo, the first converges to D
and the second converges to D’.
Thus every neighborhood of 7(D) € M,
intersects every neighborhood of =(D’).

Since D’ can be arbitrarily close to D, this proves that
Moy, is not locally Hausdorff at the point #(D).



Proper and Locally Proper Actions. 12,

Let G be a Lie group G acting on a locally compact space X.

Definition. The action is proper at a pair (x,y) € X x X if,
for some neighborhood U x V of (x,y),
there exists a compact set K C G such that:

Every g which satisfies g(U) N V # () belongs to K.
If this is true for all (x, y), then the action is proper.

If it is true throughout a neighborhood of x then the action is
locally proper at x.

/ AN In our toy example, the action
% \\§ is not proper; but it is locally
proper away from the origin.

Exercise: Proper action

WF = X /G Hausdorff;
and locally proper action
@ % = X/G locally Hausdorff.




To Prove: mmax < n/2 implies Hausdorff. 13.

Let D, D' € ©®, be two divisors, both satisfying the condition
that mmax < n/2.
Lemma. We can choose neighborhoods 9y of D

and Np of D' in ©,, and a compact set K C G,
such that any group element satisfying

g(Mp) NNp # 0
must belong to K .
In other words, the action of G is proper throughout the
G-invariant set where mmax < n/2 . Since proper action

implies a Hausdorff quotient, this Lemma implies that the
corresponding open subset of M, is a Hausdorff space.

First step of proof: Choose € > 0 small enough so that so
that any two points of |D| or of |D’| have distance > 4¢.



Proof (continued): Next define 91.(D).

e -balls around
the points of |D|:

D e N(D):

@0
0O
L O

Now suppose that (ﬁ) N(D') , with g € K-
Then there are p and q with  g(P2\N:(p)) C N:(q).

Here N.(p) N®)
contains < n/2
points of D,

hence N:(q)
contains > n/2
points of g(D);

OP)F

G< O
e

(a)

which contradicts the hypothesis. [



Part 3. Curves in the Projective Plane. 1.
Definition. An effective 1-cycle of degree n > 1 on the
complex projective plane P? is a formal sum

C=m -C + -+ mg-Cg,

where each C; is an irreducible complex curve, where the
m; > 1 are integers, and where n= %, m;deg(C)) .

The space ¢, of all effective 1-cycles can be given the
structure of a complex projective space of dimension
n(n+3)/2. (In fact each non-zero homogeneous polynomial
®(x,y,z) of degree n has a zero locus consisting of irreducible
curves C;, each counted with some multiplicity m; > 1;
yielding a 1-cycle.)

The group G = G(P?) = PGL3(C) of all automorphisms of P2
acts on P? and hence on the space ¢,.

The stabilizer Gq of C € €, is just the group consisting of

all projective automorphisms which map C to itself.

This stabilizer G- may be either finite or infinite.



W-curves (and cycles). 16.
Curves with infinite stabilizer were first studied by Felix Klein

and Sophus Lie, who called them W-curves.

Some examples:

Let 20, C €, be the algebraic set consisting of all cycles with
infinite stabilizer. (20, is a union of finitely many maximal
irreducible subvarieties of ¢,, of varying dimension.)

Note: C has finite stabilizer if and only if
the G-orbit ((C)) C €, has dimension 8.

Infact dim((C)) + dim(G¢) = dim(G) =8,
where dim(G¢) =0 <= G is finite.



The Moduli Space M,,. 17.

The complement ¢/ — ¢, 20, is the open set consisting
of all cycles with finite stabilizer.

Definition. The quotient space M, = ¢/ /G will be called
the moduli space for plane cycles of degree n.

Examples. Mj; = M, = 0.

The moduli space M3 for cubic curves in P? is canonically
isomorphic to the moduli space M, for divisors in P! .
Each has two “ramified points” corresponding to points with
extra symmetry (= larger stabilizer). Each also has one
“improper point” where the group action is not proper.

Thus Ms = CU{oc} = P'.



M, is a T;-space.

Cartoon of ¢,, showing
a typical G-orbitin red: wn@
Cn

The topological boundary of any G-orbitin €, is contained
in the closed subset 20,.

[Ghizzetti 1936; Aluffi and Faber 2010.]

= Every G-orbit of cycles with finite stabilizer is closed
as a subset of ¢/stab,

—> Every pointin M, is a closed set.

18.



Virtual Flex Points 19.

Let i, C €, be the open subset consisting of all C € €, which
satisfy the following two conditions:

(1) C contains no line.

(2) C contains no component with multiplicity > 2.

Definition. For C € i,, a point p € |C| will be called a virtual
flex point (or VFP) if it is either a flex point or a singular point.
Each VFP has a multiplicity ;.(p) > 1 satisfying the following:

Under a generic small perturbation of the curve, p will
splitinto p(p) nearby flex points.

Some Examples:

N



A Criterion for Proper Action. 20.

Fixing some curve C € i,, for any set S c P2, define

w(S) = pne(S) = D ulp)
peSNC
The total number of VFP is  n(C) =3n(n—2).
We can also introduce the probability measure

#(S) = u(8)/m(C) < [0,1].
Now define two invariants pmax(C) < Lmax(C) <1 :

pmax(C) is the maximum of zi(p) over all points p € C.
Lmax(C) is the maximum of fi(L) over all lines L c P2.

Theorem (Preliminary Version).
If pmax(C)+ Lmax(C) <1,
then the action of G is locally proper at C.



The square of pairs (pmax, Lmax) 21,

L max

lllustration for degree

""" ] n=4,

; showing three typical

/; rectangles where the action
P is known to be proper.

i smaoth curves

2745 pm
Here is a more precise statement:

Given any constant 0 < k < 1/2, let 4,(x) be the set of all
C € U, such that pmax(C) < x and Lmax(C) <1 —«.

Theorem: The action of G oneach ,(k) is proper.

Corollary: The action of G on the space
of smooth degree n curves is proper.



The Distortion Lemma for P2. 22,

Lemma. Given € > 0 there exists a compact set
K. ¢ G(P?) with the following property.

For any g ¢ K. there exists either:

SN

(1) a point p € P? and or (2) aline L' c P? and

a line L < P? such that apoint q € P? such that
g(N:=(p)) UN:(L) = P? g(Ne(L)) UNe(q) = P2

(so that g maps every point (so that g maps every point

outside of N (p) into N.(L)), outside of N(L') into N.(q)).




Four examples, showing pmax + Lmax 23,

D OFs e

141=2

Lm:

5+1=15 S5+ 75=1.25 25+ .5=.75

*2

°®

h ciirves

(1)

The first two are W-curves.

Only the right hand example
has locally proper action.



An Improper Example. 24.

Lemma. In a region where the action is proper,
the function C — G¢ is upper semicontinuous:
If C;—C then limsup;(Ge,) C Ge.

— —

|Ge| =8 |G| = 4 |Ge| =2
The action is proper near the two left hand curves,
but not near the right hand curve.

Unknown:

Is the moduli space My, locally Hausdorff
near the image of the right hand curve ?
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