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Outline: Two Examples. 2.

The object of this talk will be to describe two examples of
smooth group actions on smooth manifolds.
Easier Example (Divisors on P1 ):

The group G(P1) = PGL2(C) of Möbius auto-
morphisms of the Riemann sphere P1 acts on the
space Dn of effective divisors of degree n on P1 ,
with quotient space Dn/G(P1) .

Much Harder Example (Curves in P2 ):
The group G(P2) = PGL3(C) of projective
automorphisms of the complex projective plane P2 ,
acts on the projective compactification Cn of the
space of algebraic curves of degree n in P2 ,
with quotient space Cn/G(P2) .

In both cases, some parts of the quotient space are beautiful
objects to study, but other parts are rather nasty.

Basic Problem: Which parts are which?



Part 1. Some Basic Point Set Topology. 3.

A topological space Y is a T1 -space if every point p ∈ Y is
closed as a subset of Y .

Y is locally T1 at p if some neighborhood of p is a T1 -space.

Easy Exercise. In any topological space Y , the subset
consisting of all points at which Y is locally T1 is itself a
T1 -space.

This subset can be described as the unique maximal
open subset of Y which is a T1 -space.



Locally Hausdorff Spaces 4.

Definition. A space Y is
locally Hausdorff at p if some
neighborhood of p is a Hausdorff
space.

Evidently the set of all points at
which Y is locally Hausdorff is a
well defined open subset of Y .

A Toy Example: The additive group G of real numbers acts on
R2 by gt (x , y) = (et x , e−ty) . The quotient space R2/G is
locally T1 and even locally Hausdorff, except at (0,0) .
The quotient

(
R2r{(0,0}

)
/G is locally Hausdorff everywhere,

but is not Hausdorff.



Part 2. The Space Dn of Degree n Divisors on P1. 5.

Definition: An effective divisor D of degree n on the
Riemann sphere P1 is a formal sum

D = m1〈z1〉+ · · ·+ mk 〈zk 〉 ,
where the mj > 0 are integers with

∑
j mj = n ,

and the zj are distinct points of P1 .
Each such D can be identified with the set of zeros, counted
with multiplicity, for some non-zero homogeneous polynomial

Φ(x , y) = c0xn + c1xn−1y + · · · + cnyn .
It follows that the space Dn of all such divisors is isomorphic to
the projective space Pn .

The group G = G(P1) of Möbius automorphisms of P1 acts on Dn .
Two integer invariants under the action of G :

• The number of points k = #|D| in the support
|D| = {z1, . . . , zk} ⊂ P1 .

• The maximum mmax = max{m1, . . . , mk} of the
multiplicities of the various points of |D| .



Finite Stabilizer ⇐⇒ #|D| ≥ 3 . 6.

Definition. The stabilizer GD of a divisor D is the subgroup
of G consisting of all g ∈ G with g(D) = D .

Lemma. The stabilizer GD is finite if and only if the
support |D| contains at least three elements.

Proof. For any D there is a natural homomorphism
GD → S|D| , where S|D| is the symmetric group
consisting of all permutations of the finite set |D| .
If #|D| ≥ 3 , since any Möbius transformation which fixed
three distinct points must be the identity, it follows that
GD is finite, isomorphic to a subgroup of S|D| .

Now suppose that #|D| ≤ 2 . After a Möbius transformation,
we may assume that |D| ⊂ {0, ∞} . (Here I am identifying the
Riemann sphere with C ∪ {∞} .) The group GD then contains
infinitely many transformations of the form

gκ(z) = κ z with κ 6= 0 . �



The Moduli Space for Divisors. 7.

Let D fstab
n be the open subset of Dn consisting of all divisors

with finite stabilizer (or all divisors with #|D| ≥ 3 ).

Proposition 1. Every G -orbit

((D)) = {g(D) ; g ∈ G}

in D fstab
n is closed as a subset of D fstab

n .

In other words, every divisor D′ which belongs to the
topological boundary ((D))r((D)) must have infinite stabilizer.

Definition. This quotient Mn = D fstab
n /G will be called the

moduli space for divisors, under the action of G .

Thus Proposition 1 implies that Mn is a T1 -space.

To prove Proposition 1, we must study elements of G
which are “close to infinity” in G .



Distortion Lemma for Möbius Transformations. 8.
Using the spherical metric on P1 , let Nε(p) be the open
ε -neighborhood of p .

Lemma. For any ε > 0
there is a compact set

K = Kε ⊂ G
with the following property:
For any g 6∈ K ,
there are ( not necessarily
distinct ) points p and q
such that

g(Nε(p)) ∪ Nε(q) = P1 .

g

N
ε
(p)

N
ε
(q)

Thus points outside of Nε(p) map inside Nε(q) .
(Proof Outline. The proof for the group of diagonal
transformations d(x : y) = (κ x : y) is easy. But any g ∈ G
can be written as a product g = r ◦ d ◦ r′ where r and r′ are
rotations of the Riemann sphere and d is diagonal. . . . )



Proof of Proposition 1. 9.

To prove: Every G -orbit ((D)) ⊂ D fstab
n is closed

as a subset of D fstab
n .

Choose ε small enough so that any two points of |D| have
distance > 2 ε from each other.

=⇒ No ε -ball contains more than one point of |D| .
Given any g 6∈ Kε , choose p and q as in
the Distortion Lemma. It follows that:
all but possibly one of the points of g

(
|D|
)

lie in Nε(q) .

g

N
ε
(p)

N
ε
(q)

Now suppose that we are given
a sequence of group elements
gj 6∈ Kεj with εj → 0 , and
suppose that the sequence of
divisors

gj(D) ∈ ((D))
converges to some D′ .

Then #|D′| ≤ 2 ,
hence D′ 6∈ D fstab

n . �



Mn is Hausdorff only for Small n . 10.

Let π : D fstab
n →Mn be the projection map.

Proposition 2. The moduli space
Mn = D fstab

n /G
is a Hausdorff space only if n ≤ 4 .

For any n , the open set consisting of points
π(D) with mmax < n/2 is a Hausdorff space.

However, if n ≥ 5 , then points π(D) with
mmax ≥ n/2 are not even locally Hausdorff.

Low degree examples:
M3 is a point.
M4
∼= P1 . [Proof Outline: Four distinct points in P1

determine a 2-fold branched covering which is an elliptic curve;
characterized by the classical invariant j(C) ∈ C . But there is
one other G -orbit ((D)) ⊂ D fstab

4 consisting of divisors with
#|D| = 3 . Therefore: M4

∼= C ∪ {∞} ∼= P1 .]



A Non Locally Hausdorff Example. 11.
Choose two divisors

D = Dh + h〈∞〉 and D′ = D′h + h〈∞〉 ,

of degree n = 2h ≥ 6 , which are not in the same
G -orbit, with both |Dh| and |D′h| contained in C .
Note that mmax = h = n/2 for both.

Let gr (z) = r2/z , with r � 1 ;
so that |z| < r ⇐⇒ |gr (z)| > r .

Then the two divisors Dh + gr (D′h) and D′h + gr (Dh)
belong to the same G -orbit.

As r →∞ , the first converges to D
and the second converges to D′ .

Thus every neighborhood of π(D) ∈Mn
intersects every neighborhood of π(D′) .

Since D′ can be arbitrarily close to D , this proves that
M2h is not locally Hausdorff at the point π(D) .



Proper and Locally Proper Actions. 12.

Let G be a Lie group G acting on a locally compact space X .
Definition. The action is proper at a pair (x, y) ∈ X × X if,
for some neighborhood U × V of (x, y) ,
there exists a compact set K ⊂ G such that:

Every g which satisfies g(U) ∩ V 6= ∅ belongs to K .

If this is true for all (x, y) , then the action is proper .
If it is true throughout a neighborhood of x then the action is
locally proper at x .

In our toy example, the action
is not proper; but it is locally
proper away from the origin.

Exercise: Proper action
⇒ X/G Hausdorff;

and locally proper action
⇒ X/G locally Hausdorff.



To Prove: mmax < n/2 implies Hausdorff. 13.

Let D, D′ ∈ Dn be two divisors, both satisfying the condition
that m max < n/2 .

Lemma. We can choose neighborhoods ND of D
and ND′ of D′ in Dn , and a compact set K ⊂ G ,
such that any group element satisfying

g(ND) ∩ND′ 6= ∅

must belong to K .

In other words, the action of G is proper throughout the
G -invariant set where m max < n/2 . Since proper action
implies a Hausdorff quotient, this Lemma implies that the
corresponding open subset of Mn is a Hausdorff space.

First step of proof: Choose ε > 0 small enough so that so
that any two points of |D| or of |D′| have distance > 4 ε .



Proof (continued): Next define Nε(D) . 14.

ε -balls around
the points of |D| :

4
3

2

D̂ ∈ Nε(D) :

Now suppose that g
(
D̂
)
∈Nε(D′) , with g 6∈ Kε .

Then there are p and q with g
(
P2rNε(p)

)
⊂ Nε(q) .

Here Nε(p)
contains < n/2
points of D̂ ,

Nε(p)

hence Nε(q)
contains > n/2
points of g(D̂) ;

g

Nε(q)

which contradicts the hypothesis. �



Part 3. Curves in the Projective Plane. 15.
Definition. An effective 1-cycle of degree n ≥ 1 on the
complex projective plane P2 is a formal sum

C = m1 · C1 + · · · + mk · Ck ,

where each Cj is an irreducible complex curve, where the
mj ≥ 1 are integers, and where n =

∑
j mj deg(Cj) .

The space Cn of all effective 1-cycles can be given the
structure of a complex projective space of dimension
n(n + 3)/2 . (In fact each non-zero homogeneous polynomial
Φ(x , y , z) of degree n has a zero locus consisting of irreducible
curves Cj , each counted with some multiplicity mj ≥ 1 ;
yielding a 1-cycle.)
The group G = G(P2) = PGL3(C) of all automorphisms of P2

acts on P2 and hence on the space Cn .
The stabilizer GC of C ∈ Cn is just the group consisting of
all projective automorphisms which map C to itself.

This stabilizer GC may be either finite or infinite.



W-curves (and cycles). 16.
Curves with infinite stabilizer were first studied by Felix Klein
and Sophus Lie, who called them W-curves.

Some examples:

Let Wn ⊂ Cn be the algebraic set consisting of all cycles with
infinite stabilizer. (Wn is a union of finitely many maximal
irreducible subvarieties of Cn , of varying dimension.)

Note: C has finite stabilizer if and only if
the G -orbit ((C)) ⊂ Cn has dimension 8.

In fact dim ((C)) + dim(GC) = dim(G) = 8 ,
where dim(GC) = 0 ⇐⇒ GC is finite.



The Moduli Space Mn . 17.

The complement C fstab
n = CnrWn is the open set consisting

of all cycles with finite stabilizer.

Definition. The quotient space Mn = C fstab
n /G , will be called

the moduli space for plane cycles of degree n .

Examples. M1 = M2 = ∅ .
The moduli space M3 for cubic curves in P2 is canonically
isomorphic to the moduli space M4 for divisors in P1 .
Each has two “ramified points” corresponding to points with
extra symmetry (= larger stabilizer). Each also has one
“improper point” where the group action is not proper.

Thus M3
∼= C ∪ {∞} ∼= P1 .



Mn is a T1 -space. 18.

Cartoon of Cn , showing
a typical G -orbit in red: Wn

((C))

Cn

The topological boundary of any G -orbit in Cn is contained
in the closed subset Wn .

[Ghizzetti 1936; Aluffi and Faber 2010.]
=⇒ Every G -orbit of cycles with finite stabilizer is closed

as a subset of C fstab
n .

=⇒ Every point in Mn is a closed set.



Virtual Flex Points 19.

Let Un ⊂ Cn be the open subset consisting of all C ∈ Cn which
satisfy the following two conditions:

(1) C contains no line.
(2) C contains no component with multiplicity ≥ 2 .

Definition. For C ∈ Un , a point p ∈ |C| will be called a virtual
flex point (or VFP) if it is either a flex point or a singular point.
Each VFP has a multiplicity µ(p) ≥ 1 satisfying the following:

Under a generic small perturbation of the curve, p will
split into µ(p) nearby flex points.

Some Examples:

µ=1 µ=2 µ=6 µ=7 µ=8



A Criterion for Proper Action. 20.

Fixing some curve C ∈ Un , for any set S ⊂ P2 , define

µ(S) = µC(S) =
∑

p∈S∩C

µ(p) .

The total number of VFP is µ(C) = 3n(n − 2) .

We can also introduce the probability measure

µ̂(S) = µ(S)/µ(C) ∈ [0,1] .

Now define two invariants pmax(C) ≤ Lmax(C) ≤ 1 :

pmax(C) is the maximum of µ̂(p) over all points p ∈ C .
Lmax(C) is the maximum of µ̂(L) over all lines L ⊂ P2 .

Theorem (Preliminary Version).
If pmax(C) + Lmax(C) < 1 ,

then the action of G is locally proper at C .



The square of pairs (pmax, Lmax) 21.

smooth curves

Lmax

pmax.2 .4 .5

Illustration for degree
n = 4 ,

showing three typical
rectangles where the action
is known to be proper.

Here is a more precise statement:
Given any constant 0 < κ ≤ 1/2 , let Un(κ) be the set of all
C ∈ Un such that pmax(C) < κ and Lmax(C) < 1− κ .

Theorem: The action of G on each Un(κ) is proper.

Corollary: The action of G on the space
of smooth degree n curves is proper.



The Distortion Lemma for P2 . 22.
Lemma. Given ε > 0 there exists a compact set
Kε ⊂ G(P2) with the following property.

For any g 6∈ Kε there exists either:

L

p

g

(1) a point p ∈ P2 and
a line L ⊂ P2 such that

g
(
Nε(p)

)
∪ Nε(L) = P2

(so that g maps every point
outside of Nε(p) into Nε(L) ),

Ĺ

q
g

or (2) a line L′ ⊂ P2 and
a point q ∈ P2 such that

g
(
Nε(L)

)
∪ Nε(q) = P2

(so that g maps every point
outside of Nε(L′) into Nε(q) ).



Four examples, showing pmax + Lmax 23.

1 + 1 = 2 .5 + 1 = 1.5 .5 + .75 = 1.25 .25 + .5 = .75

smooth curves

Lmax

pmax

(1)(2)

(3)

(4)

The first two are W-curves.

Only the right hand example
has locally proper action.



An Improper Example. 24.

Lemma. In a region where the action is proper,
the function C 7→ GC is upper semicontinuous:

If Cj → C then lim supj
(
GCj

)
⊂ GC .

|GC | = 8 |GCj | = 4 |GC | = 2
The action is proper near the two left hand curves,

but not near the right hand curve.

Unknown:

Is the moduli space M4 locally Hausdorff
near the image of the right hand curve ?
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