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Local Rings

Proposition

The following conditions are equivalent for a ring R:
(i) The ring R has a unique maximal right ideal.
(ii) The Jacobson radical J(R) is a maximal right ideal.
(iii) The sum of two elements of R that are not right invertible is
not right invertible.
(iv) J(R) = { r ∈ R | rR 6= R }.
(v) R/J(R) is a division ring.
(vi) J(R) = { r ∈ R | r is not invertible in R }.
(vii) The sum of two non-invertible elements of R is non-invertible.
(viii) For every r ∈ R, either r is invertible or 1− r is invertible.



Local Rings

The rings that satisfy the equivalent conditions of the previous
proposition are called local rings.

For instance:
(i) Division rings are local rings.
(ii) If the endomorphism ring End(MR) of a module MR is local,
then MR is an indecomposable module.
(iii) The endomorphism ring End(ER) of an indecomposable
injective module ER is local.
(iv) The endomorphism ring End(MR) of an indecomposable
module MR of finite composition length is local.
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Krull-Schmidt-Azumaya Theorem, 1950

Theorem
Let M be a module that is a direct sum of modules with local
endomorphism rings. Then M is a direct sum of indecomposable
modules in an essentially unique way in the following sense. If

M =
⊕
i∈I

Mi =
⊕
j∈J

Nj ,

where all the Mi ’s (i ∈ I ) and all the Nj ’s (j ∈ J) are
indecomposable modules, then there exists a bijection ϕ : I → J
such that Mi

∼= Nϕ(i) for every i ∈ I .



In general, there is not uniqueness

R a ring with identity

MR be a unital right R-module.

Our aim: describe direct-sum decompositions of MR as a direct
sum MR = M1 ⊕ · · · ⊕Mn of finitely many direct summands.
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A monoid S is reduced if s, t ∈ S and s + t = 0 implies s = t = 0.
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The reduced monoid V (C)

Classes of right R-modules will be seen as full subcategories of the
category Mod-R of all right R-modules.

Let C be a category and V (C) denote a skeleton of C, that is, a
class of representatives of the objects of C modulo isomorphism.
For every object A in C, there is a unique object 〈A〉 in V (C)
isomorphic to A. Thus there is a mapping Ob(C)→ V (C),
A 7→ 〈A〉, that associates to every object A of C the unique object
〈A〉 in V (C) isomorphic to A.
Assume that a product A× B exists in C for every pair A,B of
objects of C. Define an addition + in V (C) by A + B := 〈A× B〉
for every A,B ∈ V (C).

Lemma
Let C be a category with a terminal object and in which a product
A× B exists for every pair A,B of objects of C. Then V (C) is a
large reduced commutative monoid.
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Bergman and Dicks, 1974–1978

Theorem
Let k be a field and let M be a commutative reduced monoid.
Then there exists a class C of finitely generated projective right
modules over a right and left hereditary k-algebra R such that
M ∼= V (C).



Uniserial modules

A module UR is uniserial if the lattice L(UR) of its submodules is
linearly ordered under inclusion.

The endomorphism ring of a uniserial module has at most two
maximal right (left) ideals:
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Uniserial modules and their endomorphism rings

Theorem
[F., T.A.M.S. 1996] Let UR be a uniserial module over a ring R,

E := End(UR) its endomorphism ring, I := { f ∈ E | f is not
injective } and K := { f ∈ E | f is not surjective }. Then I and K
are two two-sided completely prime ideals of E , and every proper
right ideal of E and every proper left ideal of E is contained either
in I or in K . Moreover,
(a) either E is a local ring with maximal ideal I ∪ K , or
(b) E/I and E/K are division rings, and E/J(E ) ∼= E/I × E/K .
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Monogeny class, epigeny class

Two modules U and V are said to have

1. the same monogeny class, denoted [U]m = [V ]m, if there exist
a monomorphism U → V and a monomorphism V → U;

2. the same epigeny class, denoted [U]e = [V ]e , if there exist an
epimorphism U → V and an epimorphism V → U.

For instance, two injective modules have the same monogeny class
if and only if they are isomorphic (Bumby’s Theorem).
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Weak Krull-Schmidt Theorem

Theorem
[F., T.A.M.S. 1996] Let U1, . . . , Un, V1, . . . , Vt be n + t
non-zero uniserial right modules over a ring R. Then the direct
sums U1 ⊕ · · · ⊕Un and V1 ⊕ · · · ⊕ Vt are isomorphic R-modules if
and only if n = t and there exist two permutations σ and τ of
{1, 2, . . . , n} such that [Ui ]m = [Vσ(i)]m and [Ui ]e = [Vτ(i)]e for
every i = 1, 2, . . . , n.



Cyclically presented modules over local rings

The behavior of uniserial modules is enjoyed by other classes of
modules.

First example [B. Amini, A. Amini and A. Facchini, J. Algebra
2008].

A right module over a ring R is cyclically presented if it is
isomorphic to R/aR for some element a ∈ R. For any ring R, we
will denote with U(R) the group of all invertible elements of R.
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Cyclically presented modules over local rings

If R/aR and R/bR are cyclically presented modules over a local
ring R, we say that R/aR and R/bR have the same lower part,
and write [R/aR]l = [R/bR]l , if there exist u, v ∈ U(R) and
r , s ∈ R with au = rb and bv = sa.

(Two cyclically presented modules over a local ring have the same
lower part if and only if their Auslander-Bridger transposes have
the same epigeny class.)
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Cyclically presented modules and idealizer

The endomorphism ring EndR(R/aR) of a non-zero cyclically
presented module R/aR is isomorphic to E/aR, where
E := { r ∈ R | ra ∈ aR } is the idealizer of aR.



Cyclically presented modules over local rings

E := { r ∈ R | ra ∈ aR } is the idealizer of aR.

Theorem
Let a be a non-zero non-invertible element of an arbitrary local
ring R, let E be the idealizer of aR, and let E/aR be the
endomorphism ring of the cyclically presented right R-module
R/aR. Set I := { r ∈ R | ra ∈ aJ(R) } and K := J(R) ∩ E . Then I
and K are two two-sided completely prime ideals of E containing
aR, the union (I/aR) ∪ (K/aR) is the set of all non-invertible
elements of E/aR, and every proper right ideal of E/aR and every
proper left ideal of E/aR is contained either in I/aR or in K/aR.
Moreover, exactly one of the following two conditions holds:
(a) Either I and K are comparable (that is, I ⊆ K or K ⊆ I ), in
which case E/aR is a local ring, or
(b) I and K are not comparable, and in this case E/I and E/K are
division rings, J(E/aR) = (I ∩ K )/aR, and (E/aR)/J(E/aR) is
canonically isomorphic to the direct product E/I × E/K .
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Weak Krull-Schmidt Theorem for cyclically presented
modules over local rings

Theorem
(Weak Krull-Schmidt Theorem) Let a1, . . . , an, b1, . . . , bt be
n + t non-invertible elements of a local ring R. Then the direct
sums R/a1R ⊕ · · · ⊕ R/anR and R/b1R ⊕ · · · ⊕ R/btR are
isomorphic right R-modules if and only if n = t and there exist two
permutations σ, τ of {1, 2, . . . , n} such that [R/aiR]l = [R/bσ(i)R]l
and [R/aiR]e = [R/bτ(i)R]e for every i = 1, 2, . . . , n.



Equivalence of matrices

The Weak Krull-Schmidt Theorem for cyclically presented modules
has an immediate consequence as far as equivalence of matrices is
concerned. Recall that two m× n matrices A and B with entries in
a ring R are said to be equivalent matrices, denoted A ∼ B, if
there exist an m ×m invertible matrix P and an n × n invertible
matrix Q with entries in R (that is, matrices invertible in the rings
Mm(R) and Mn(R), respectively) such that B = PAQ.

We denote
by diag(a1, . . . , an) the n × n diagonal matrix whose (i , i) entry is
ai and whose other entries are zero.
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Kernels of morphisms between indecomposable injective
modules

For a right module AR over a ring R, let E (AR) denote the
injective envelope of AR . We say that two modules AR and BR

have the same upper part, and write [AR ]u = [BR ]u, if there exist a
homomorphism ϕ : E (AR)→ E (BR) and a homomorphism
ψ : E (BR)→ E (AR) such that ϕ−1(BR) = AR and
ψ−1(AR) = BR .



Kernels of morphisms between indecomposable injective
modules

A standard technique of homological algebra to extend a morphism
between two modules to their injective resolutions.

Notation. Assume that E0,E1,E
′
0,E

′
1 are indecomposable injective

right modules over a ring R, and that ϕ : E0 → E1, ϕ
′ : E ′0 → E ′1

are two right R-module morphisms. A morphism f : kerϕ→ kerϕ′

extends to a morphism f0 : E0 → E ′0. Now f0 induces a morphism

f̃0 : E0/ kerϕ→ E ′0/ kerϕ′, which extends to a morphism
f1 : E1 → E ′1. Thus we get a commutative diagram with exact rows

0 // kerϕ //

f
��

E0
ϕ
////

f0
��

E1

f1
��

0 // kerϕ′ // E ′0 ϕ′
// E ′1.

(1)

The morphisms f0 and f1 are not uniquely determined by f .
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Kernels of morphisms between indecomposable injective
modules

Theorem
Let E0 and E1 be indecomposable injective right modules over a
ring R, and let ϕ : E0 → E1 be a non-zero non-injective morphism.
Let S := EndR(kerϕ) denote the endomorphism ring of kerϕ. Set
I := { f ∈ S | the endomorphism f of kerϕ is not a
monomorphism } and K := { f ∈ S | the endomorphism f1 of E1 is
not a monomorphism } = { f ∈ S | kerϕ ⊂ f −10 (kerϕ) }.

Then I
and K are two two-sided completely prime ideals of S, and every
proper right ideal of S and every proper left ideal of S is contained
either in I or in K. Moreover, exactly one of the following two
conditions holds:
(a) Either I and K are comparable (that is, I ⊆ K or K ⊆ I ), in
which case S is a local ring with maximal ideal I ∪ K , or
(b) I and K are not comparable, and in this case S/I and S/K are
division rings and S/J(S) ∼= S/I × S/K .
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division rings and S/J(S) ∼= S/I × S/K .



Kernels of morphisms between indecomposable injective
modules

Theorem
(Weak Krull-Schmidt Theorem) Let ϕi : Ei ,0 → Ei ,1 (i = 1, 2, . . . ,
n) and ϕ′j : E ′j ,0 → E ′j ,1 (j = 1, 2, . . . , t) be n + t non-injective
morphisms between indecomposable injective right modules
Ei ,0,Ei ,1,E

′
j ,0,E

′
j ,1 over an arbitrary ring R. Then the direct sums

⊕n
i=0 kerϕi and ⊕t

j=0 kerϕ′j are isomorphic R-modules if and only
if n = t and there exist two permutations σ, τ of {1, 2, . . . , n} such
that [kerϕi ]m = [kerϕ′σ(i)]m and [kerϕi ]u = [kerϕ′τ(i)]u for every
i = 1, 2, . . . , n.



Other classes of modules with the same behaviour

(1) Couniformly presented modules.

(2) Biuniform modules (modules of Goldie dimension one and dual
Goldie dimension one).

(3) Another class of modules that can be described via two
invariants is that of Auslander-Bridger modules. For
Auslander-Bridger modules, the two invariants are epi-isomorphism
and lower-isomorphism.
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A general pattern

Let C be a full subcategory of the category Mod-R for some ring R
and assume that every object of C is an indecomposable right
R-module. Define a completely prime ideal P of C as an
assignement of a subgroup P(A,B) of the additive abelian group
HomR(A,B) to every pair (A,B) of objects of C with the following
two properties: (1) for every A,B,C ∈ Ob(C), every f : A→ B
and every g : B → C , one has that gf ∈ P(A,C ) if and only if
either f ∈ P(A,B) or g ∈ P(B,C ); (2) P(A,A) is a proper
subgroup of HomR(A,A) for every object A ∈ Ob(C).

Let P be a completely prime ideal of C. If A,B are objects of C, we
say that A and B have the same P class, and write [A]P = [B]P , if
P(A,B) 6= HomR(A,B) and P(B,A) 6= HomR(B,A).
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A general pattern

Theorem
[F.-Př́ıhoda, Algebr. Represent. Theory 2011] Let C be a full
subcategory of Mod-R and P,Q be two completely prime ideals
of C. Assume that all objects of C are indecomposable right
R-modules and that, for every A ∈ Ob(C), f : A→ A is an
automorphism of A if and only if f /∈ P(A,A)∪Q(A,A). Then, for
every A1, . . . ,An,B1, . . . ,Bt ∈ Ob(C), the modules A1 ⊕ · · · ⊕ An

and B1 ⊕ · · · ⊕ Bt are isomorphic if and only if n = t and there
exist two permutations σ, τ of {1, 2, . . . , n} such that
[Ai ]P = [Bσ(i)]P and [Ai ]Q = [Bτ(i)]Q for all i = 1, . . . , n.



General pattern

For the classes C of modules described until now, the fact that the
weak form of the Krull-Schmidt Theorem holds can be described
saying that the corresponding monoid V (C) is a subdirect product
of two free monoids.



Direct sums of infinite families of uniserial modules

Let’s go back to the case of C = { uniserial modules }.

Until now
we have considered direct sums of finite families of uniserial
modules. What happens for infinite families of uniserial modules?
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Direct sums of infinite families of uniserial modules

Theorem
[F.-Dung, J. Algebra 1997] Let {Ai | i ∈ I } and {Bj | j ∈ J } be
two families of uniserial right R-modules. Assume that there exist
two bijections σ, τ : I → J such that [Ai ]m = [Bσ(i)]m and
[Ai ]e = [Bτ(i)]e for every i ∈ I . Then

⊕i∈IAi
∼= ⊕j∈JBj .



Quasismall modules

A module NR is quasismall if for every set {Mi | i ∈ I } of
R-modules such that NR is isomorphic to a direct summand of
⊕i∈IMi , there exists a finite subset F of I such that NR is
isomorphic to a direct summand of ⊕i∈FMi .



Quasismall modules

For instance:

(1) Every finitely generated module is quasismall.
(2) Every module with local endomorphism ring is quasismall.
(3) Every uniserial module is either quasismall or countably
generated.
(4) There exist uniserial modules that are not quasismall (Puninski
2001).
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Quasismall modules

For instance:
(1) Every finitely generated module is quasismall.
(2) Every module with local endomorphism ring is quasismall.
(3) Every uniserial module is either quasismall or countably
generated.
(4) There exist uniserial modules that are not quasismall (Puninski
2001).



Direct sums of infinite families of uniserial modules

Theorem
[Př́ıhoda 2006] Let {Ui | i ∈ I } and {Vj | j ∈ J } be two families
of uniserial modules over an arbitrary ring R. Let I ′ be the sets of
all indices i ∈ I with Ui quasismall, and similarly for J ′. Then⊕

i∈I Ui
∼=

⊕
j∈J Vj if and only if there exist a bijection σ : I → J

such that [Ui ]m = [Vσ(i)]m and a bijection τ : I ′ → J ′ such that
[Ui ]e = [Vτ(i)]e for every i ∈ I ′.



Direct products of infinite families of uniserial modules

Until now: direct sums.

What about direct products?
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Direct products of infinite families of uniserial modules

Theorem
[Alahmadi-F. 2014] Let {Ui | i ∈ I } and {Vj | j ∈ J } be two
families of uniserial modules over an arbitrary ring R. Assume that
there exist two bijections σ, τ : I → J such that [Ui ]m = [Vσ(i)]m
and [Ui ]e = [Vτ(i)]e for every i ∈ I . Then

∏
i∈I Ui

∼=
∏

j∈J Vj .



General pattern

A full subcategory C of Mod-R is said to satisfy Condition (DSP)
(direct summand property) if whenever A,B,C ,D are right
R-modules with A⊕ B ∼= C ⊕ D and A,B,C ∈ Ob(C), then also
D ∈ Ob(C).



General pattern

Theorem
Let C be a full subcategory of Mod-R in which all objects are
indecomposable right R-modules and let P,Q be two completely
prime ideals of C with the property that, for every A ∈ Ob(C), an
endomorphism f : A→ A is an automorphism if and only if
f /∈ P(A,A) ∪Q(A,A). Assume that C satisfies Condition (DSP).

Let {Ai | i ∈ I } and {Bj | j ∈ J } be two families of objects of C.
Assume that there exist two bijections σ, τ : I → J such that
[Ai ]P = [Bσ(i)]P and [Ai ]Q = [Bτ(i)]Q for every i ∈ I . Then the
R-modules

∏
i∈I Ai and

∏
j∈J Bj are isomorphic.
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Cyclically presented modules

Theorem
Let R be a local ring and {Ui | i ∈ I } and {Vj | j ∈ J } be two
families of cyclically presented right R-modules. Suppose that
there exist two bijections σ, τ : I → J such that [Ui ]l = [Vσ(i)]l and
and [Ui ]e = [Vτ(i)]e for every i ∈ I . Then

∏
i∈I Ui

∼=
∏

j∈J Vj .



Kernels of morphisms between indecomposable injective
modules

Theorem
Let R be a ring and {Ai | i ∈ I } and {Bj | j ∈ J } be two families
of right R-modules that are all kernels of non-injective morphisms
between indecomposable injective modules. Suppose that there
exist bijections σ, τ : I → J such that [Ai ]m = [Bσ(i)]m and
[Ai ]u = [Bτ(i)]u for every i ∈ I . Then

∏
i∈I Ai

∼=
∏

j∈J Bj .



Another example

Let R be a ring and let S1,S2 be two fixed non-isomorphic simple
right R-modules.

Let C be the full subcategory of Mod-R whose
objects are all artinian right R-modules AR with
soc(AR) ∼= S1 ⊕ S2. Set
Pi (A,B) := { f ∈ HomR(A,B) | f (socSi (A)) = 0 }.

Theorem
Let {Ai | i ∈ I } and {Bj | j ∈ J } be two families of objects of C.
Suppose that there exist two bijections σk : I → J, k = 1, 2, such
that [Ai ]k = [Bσk (i)]k for both k = 1, 2. Then

∏
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∼=
∏

j∈J Bj .
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Negative example 1

R = localization of the ring Z of integers at a maximal ideal (p),

Q⊕ (Z(p∞))N
∗ ∼= (Z(p∞))N

∗
, all the factors are uniserial

R-modules with a local endomorphism ring, but there are no
bijections preserving the monogeny classes and the epigeny classes.
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Negative example 3

p = prime number,

Ẑp = ring of p-adic integers, so that Z/pnZ is

a module over Ẑp for every integer n ≥ 1. Then

Ẑp ⊕
∏

n≥1 Z/pnZ ∼=
∏

n≥1 Z/pnZ. In these direct products, all

the factors Ẑp and Z/pnZ (n ≥ 1) are pair-wise non-isomorphic

uniserial Ẑp-modules, have distinct monogeny classes and distinct
epigeny classes ⇒ there cannot be bijections σ and τ preserving
the monogeny and the epigeny classes in the two direct-product
decompositions.
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uniserial Ẑp-modules, have distinct monogeny classes and distinct
epigeny classes ⇒ there cannot be bijections σ and τ preserving
the monogeny and the epigeny classes in the two direct-product
decompositions.



Negative example 3
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But. . . slender modules.

R = a ring,

Rω =
∏

n<ω enR right R-module that is the direct product of
countably many copies of the right R-module RR , where en is the
element of Rω with support {n} and equal to 1 in n.

A right R-module MR is slender if, for every homomorphism
f : Rω → M there exists n0 < ω such that f (en) = 0 for all n ≥ n0.

Theorem
A module MR is slender if and only if for every countable family
{Pn | n ≥ 0 } of right R-modules and any homomorphism
f :

∏
n≥0 Pn → MR there exists m ≥ 0 such that f (

∏
n≥m Pn) = 0.
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Measurable cardinals

A cardinal α is measurable if it is an uncountable cardinal with an
α-complete, non-principal ultrafilter.

α-complete = the intersection of any strictly less than α-many sets
in the ultrafilter is also in the ultrafilter.

If a cardinal is not measurable, then neither are all smaller
cardinals. Thus if there exists a measurable cardinal, then there is
a smallest one and all larger cardinals are measurable.

It is not known whether ZFC⇒ ∃ a measurable cardinal.
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Slender modules

Theorem
If MR is slender and {Pi | i ∈ I } is a family of right R-modules
with |I | non-measurable, then
Hom(

∏
i∈I Pi ,MR) ∼=

⊕
i∈I Hom(Pi ,MR).

Every submodule of a slender module is a slender module.

Theorem
A Z-module is slender if and only if it does not contains a copy of
Q, Zω, Z/pZ or Ẑp for any prime p.
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Theorem
Let C be a full subcategory of Mod-R in which all objects are
indecomposable slender right R-modules and let P,Q be a pair of
completely prime ideals of C with the property that, for every
A ∈ Ob(C), f : A→ A is an automorphism if and only if
f /∈ P(A,A) ∪Q(A,A). Assume that C satisfies Condition (DSP).
Let {Ai | i ∈ I } and {Bj | j ∈ J } be two families of objects of C
with |I | and |J| non-measurable.

Assume that:
(a) In both families, there are at most countably many modules in
each P class.
(b) In both families, there are at most countably many modules in
each Q class.
(c) The R-modules

∏
i∈I Ai and

∏
j∈J Bj are isomorphic.

Then there exist two bijections σ, τ : I → J such that
[Ai ]P = [Bσ(i)]P and [Ai ]Q = [Bτ(i)]Q for every i ∈ I .
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Corollary

Let C be a full subcategory of Mod-R in which all objects are
indecomposable slender right R-modules and let P,Q be a pair of
completely prime ideals of C with the property that, for every
A ∈ Ob(C), f : A→ A is an automorphism if and only if
f /∈ P(A,A) ∪Q(A,A). Assume that C satisfies Condition (DSP).

Let {Ai | i ∈ I } and {Bj | j ∈ J } be two countable families of
objects of C. Assume that

∏
i∈I Ai

∼=
∏

j∈J Bj . Then there exist
two bijections σ, τ : I → J such that [Ai ]P = [Bσ(i)]P and
[Ai ]Q = [Bτ(i)]Q for every i ∈ I .
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Corollary

[Franetič, 2014] Let R be a ring and {Ai | i ∈ I } be a family of
slender right R-modules with local endomorphism rings. Let
{Bj | j ∈ J } be a family of indecomposable slender right
R-modules. Assume that:
(a) |I | and |J| are non-measurable cardinals.
(b) There are at most countably many mutually isomorphic
modules in each of the two families {Ai | i ∈ I } and {Bj | j ∈ J }.
(c) The R-modules

∏
i∈I Ai and

∏
j∈J Bj are isomorphic.

Then there exists a bijection σ : I → J such that Ai
∼= Bσ(i) for

every i ∈ I .


