Some particular direct-sum decompositions and direct-product decompositions

Alberto Facchini University of Padova, Italy

Lille, 25 June 2014

Rings and their Jacobson ideal

The rings R in this talk are rings with an identity 1, not necessarily commutative.

Rings and their Jacobson ideal

The rings R in this talk are rings with an identity 1, not necessarily commutative.

The Jacobson radical of R is the intersection of all maximal right ideals of R

Rings and their Jacobson ideal

The rings R in this talk are rings with an identity 1, not necessarily commutative.

The *Jacobson radical* of R is the intersection of all maximal right ideals of R (= the intersection of all maximal left ideals of R.)

Proposition

The following conditions are equivalent for a ring R:

- (i) The ring R has a unique maximal right ideal.
- (ii) The Jacobson radical J(R) is a maximal right ideal.
- (iii) The sum of two elements of R that are not right invertible is not right invertible.
- (iv) $J(R) = \{ r \in R \mid rR \neq R \}.$
- (v) R/J(R) is a division ring.
- (vi) $J(R) = \{ r \in R \mid r \text{ is not invertible in } R \}.$
- (vii) The sum of two non-invertible elements of R is non-invertible.
- (viii) For every $r \in R$, either r is invertible or 1 r is invertible.

The rings that satisfy the equivalent conditions of the previous proposition are called *local rings*.

The rings that satisfy the equivalent conditions of the previous proposition are called *local rings*.

For instance:

(i) Division rings are local rings.

The rings that satisfy the equivalent conditions of the previous proposition are called *local rings*.

For instance:

- (i) Division rings are local rings.
- (ii) If the endomorphism ring $\operatorname{End}(M_R)$ of a module M_R is local, then M_R is an indecomposable module.

The rings that satisfy the equivalent conditions of the previous proposition are called *local rings*.

For instance:

- (i) Division rings are local rings.
- (ii) If the endomorphism ring $\operatorname{End}(M_R)$ of a module M_R is local, then M_R is an indecomposable module.
- (iii) The endomorphism ring $\operatorname{End}(E_R)$ of an indecomposable injective module E_R is local.

The rings that satisfy the equivalent conditions of the previous proposition are called *local rings*.

For instance:

- (i) Division rings are local rings.
- (ii) If the endomorphism ring $\operatorname{End}(M_R)$ of a module M_R is local, then M_R is an indecomposable module.
- (iii) The endomorphism ring $\operatorname{End}(E_R)$ of an indecomposable injective module E_R is local.
- (iv) The endomorphism ring $\operatorname{End}(M_R)$ of an indecomposable module M_R of finite composition length is local.

Krull-Schmidt-Azumaya Theorem, 1950

Theorem

Let M be a module that is a direct sum of modules with local endomorphism rings. Then M is a direct sum of indecomposable modules in an essentially unique way in the following sense. If

$$M = \bigoplus_{i \in I} M_i = \bigoplus_{j \in J} N_j,$$

where all the M_i 's $(i \in I)$ and all the N_j 's $(j \in J)$ are indecomposable modules, then there exists a bijection $\varphi \colon I \to J$ such that $M_i \cong N_{\varphi(i)}$ for every $i \in I$.

R a ring with identity

R a ring with identity

 M_R be a unital right R-module.

R a ring with identity

 M_R be a unital right R-module.

Our aim: describe direct-sum decompositions of M_R as a direct sum $M_R = M_1 \oplus \cdots \oplus M_n$ of finitely many direct summands.

The best algebraic way to describe direct-sum decompositions of a module M_R is making use of commutative monoids

The best algebraic way to describe direct-sum decompositions of a module M_R is making use of commutative monoids (semigroups with a binary operation that is associative, commutative and has an identity element).

The best algebraic way to describe direct-sum decompositions of a module M_R is making use of commutative monoids (semigroups with a binary operation that is associative, commutative and has an identity element).

In this talk, all monoids S will be commutative and additive.

The best algebraic way to describe direct-sum decompositions of a module M_R is making use of commutative monoids (semigroups with a binary operation that is associative, commutative and has an identity element).

In this talk, all monoids S will be commutative and additive.

A monoid S is reduced if $s, t \in S$ and s + t = 0 implies s = t = 0.

Classes of right R-modules will be seen as full subcategories of the category $\operatorname{Mod-}R$ of all right R-modules.

Classes of right R-modules will be seen as full subcategories of the category $\operatorname{Mod-}R$ of all right R-modules.

Let $\mathcal C$ be a category

Classes of right R-modules will be seen as full subcategories of the category $\operatorname{Mod-}R$ of all right R-modules.

Let $\mathcal C$ be a category and $V(\mathcal C)$ denote a *skeleton* of $\mathcal C$, that is, a class of representatives of the objects of $\mathcal C$ modulo isomorphism.

Classes of right R-modules will be seen as full subcategories of the category $\operatorname{Mod-}R$ of all right R-modules.

Let $\mathcal C$ be a category and $V(\mathcal C)$ denote a *skeleton* of $\mathcal C$, that is, a class of representatives of the objects of $\mathcal C$ modulo isomorphism. For every object A in $\mathcal C$, there is a unique object $\langle A \rangle$ in $V(\mathcal C)$ isomorphic to A.

Classes of right R-modules will be seen as full subcategories of the category $\operatorname{Mod-}R$ of all right R-modules.

Let $\mathcal C$ be a category and $V(\mathcal C)$ denote a *skeleton* of $\mathcal C$, that is, a class of representatives of the objects of $\mathcal C$ modulo isomorphism. For every object A in $\mathcal C$, there is a unique object $\langle A \rangle$ in $V(\mathcal C)$ isomorphic to A. Thus there is a mapping $\mathrm{Ob}(\mathcal C) \to V(\mathcal C)$, $A \mapsto \langle A \rangle$, that associates to every object A of $\mathcal C$ the unique object $\langle A \rangle$ in $V(\mathcal C)$ isomorphic to A.

Classes of right R-modules will be seen as full subcategories of the category $\operatorname{Mod-}R$ of all right R-modules.

Let $\mathcal C$ be a category and $V(\mathcal C)$ denote a *skeleton* of $\mathcal C$, that is, a class of representatives of the objects of $\mathcal C$ modulo isomorphism. For every object A in $\mathcal C$, there is a unique object $\langle A \rangle$ in $V(\mathcal C)$ isomorphic to A. Thus there is a mapping $\mathrm{Ob}(\mathcal C) \to V(\mathcal C)$, $A \mapsto \langle A \rangle$, that associates to every object A of $\mathcal C$ the unique object $\langle A \rangle$ in $V(\mathcal C)$ isomorphic to A.

Assume that a product $A \times B$ exists in $\mathcal C$ for every pair A,B of objects of $\mathcal C$.

Classes of right R-modules will be seen as full subcategories of the category $\operatorname{Mod-}R$ of all right R-modules.

Let $\mathcal C$ be a category and $V(\mathcal C)$ denote a *skeleton* of $\mathcal C$, that is, a class of representatives of the objects of $\mathcal C$ modulo isomorphism. For every object A in $\mathcal C$, there is a unique object $\langle A \rangle$ in $V(\mathcal C)$ isomorphic to A. Thus there is a mapping $\mathrm{Ob}(\mathcal C) \to V(\mathcal C)$, $A \mapsto \langle A \rangle$, that associates to every object A of $\mathcal C$ the unique object $\langle A \rangle$ in $V(\mathcal C)$ isomorphic to A.

Assume that a product $A \times B$ exists in $\mathcal C$ for every pair A,B of objects of $\mathcal C$. Define an addition + in $V(\mathcal C)$ by $A+B:=\langle A\times B\rangle$ for every $A,B\in V(\mathcal C)$.

Lemma

Let $\mathcal C$ be a category with a terminal object and in which a product $A \times B$ exists for every pair A, B of objects of $\mathcal C$. Then $V(\mathcal C)$ is a large reduced commutative monoid.

Bergman and Dicks, 1974-1978

Theorem

Let k be a field and let M be a commutative reduced monoid. Then there exists a class $\mathcal C$ of finitely generated projective right modules over a right and left hereditary k-algebra R such that $M\cong V(\mathcal C)$.

Uniserial modules

A module U_R is *uniserial* if the lattice $\mathcal{L}(U_R)$ of its submodules is linearly ordered under inclusion.

Uniserial modules

A module U_R is *uniserial* if the lattice $\mathcal{L}(U_R)$ of its submodules is linearly ordered under inclusion.

The endomorphism ring of a uniserial module has at most two maximal right (left) ideals:

Theorem

 $[\mathrm{F.,\,T.A.M.S.\,\,1996}]$ Let U_R be a uniserial module over a ring R,

Theorem

[F., T.A.M.S. 1996] Let U_R be a uniserial module over a ring R, $E := \operatorname{End}(U_R)$ its endomorphism ring,

Theorem

[F., T.A.M.S. 1996] Let U_R be a uniserial module over a ring R, $E := \operatorname{End}(U_R)$ its endomorphism ring, $I := \{ f \in E \mid f \text{ is not injective} \}$

Theorem

[F., T.A.M.S. 1996] Let U_R be a uniserial module over a ring R, $E := \operatorname{End}(U_R)$ its endomorphism ring, $I := \{ f \in E \mid f \text{ is not injective} \}$ and $K := \{ f \in E \mid f \text{ is not surjective} \}$.

Theorem

[F., T.A.M.S. 1996] Let U_R be a uniserial module over a ring R, $E := \operatorname{End}(U_R)$ its endomorphism ring, $I := \{ f \in E \mid f \text{ is not injective} \}$ and $K := \{ f \in E \mid f \text{ is not surjective} \}$. Then I and K are two two-sided completely prime ideals of E,

Theorem

[F., T.A.M.S. 1996] Let U_R be a uniserial module over a ring R, $E := \operatorname{End}(U_R)$ its endomorphism ring, $I := \{ f \in E \mid f \text{ is not injective} \}$ and $K := \{ f \in E \mid f \text{ is not surjective} \}$. Then I and K are two two-sided completely prime ideals of E, and every proper right ideal of E and every proper left ideal of E is contained either in I or in K.

Theorem

[F., T.A.M.S. 1996] Let U_R be a uniserial module over a ring R, $E := \operatorname{End}(U_R)$ its endomorphism ring, $I := \{ f \in E \mid f \text{ is not injective} \}$ and $K := \{ f \in E \mid f \text{ is not surjective} \}$. Then I and K are two two-sided completely prime ideals of E, and every proper right ideal of E and every proper left ideal of E is contained either in I or in K. Moreover,

(a) either E is a local ring with maximal ideal $I \cup K$, or

Uniserial modules and their endomorphism rings

Theorem

[F., T.A.M.S. 1996] Let U_R be a uniserial module over a ring R, $E := \operatorname{End}(U_R)$ its endomorphism ring, $I := \{ f \in E \mid f \text{ is not injective} \}$ and $K := \{ f \in E \mid f \text{ is not surjective} \}$. Then I and K are two two-sided completely prime ideals of E, and every proper right ideal of E and every proper left ideal of E is contained either in I or in K. Moreover,

- (a) either E is a local ring with maximal ideal $I \cup K$, or
- (b) E/I and E/K are division rings, and $E/J(E) \cong E/I \times E/K$.

Monogeny class, epigeny class

Two modules U and V are said to have

1. the same monogeny class, denoted $[U]_m = [V]_m$, if there exist a monomorphism $U \to V$ and a monomorphism $V \to U$;

Monogeny class, epigeny class

Two modules U and V are said to have

- 1. the same monogeny class, denoted $[U]_m = [V]_m$, if there exist a monomorphism $U \to V$ and a monomorphism $V \to U$;
- 2. the same epigeny class, denoted $[U]_e = [V]_e$, if there exist an epimorphism $U \to V$ and an epimorphism $V \to U$.

Monogeny class, epigeny class

Two modules U and V are said to have

- 1. the same monogeny class, denoted $[U]_m = [V]_m$, if there exist a monomorphism $U \to V$ and a monomorphism $V \to U$;
- 2. the same epigeny class, denoted $[U]_e = [V]_e$, if there exist an epimorphism $U \to V$ and an epimorphism $V \to U$.

For instance, two injective modules have the same monogeny class if and only if they are isomorphic (Bumby's Theorem).

Weak Krull-Schmidt Theorem

Theorem

[F., T.A.M.S. 1996] Let $U_1, \ldots, U_n, V_1, \ldots, V_t$ be n+t non-zero uniserial right modules over a ring R. Then the direct sums $U_1 \oplus \cdots \oplus U_n$ and $V_1 \oplus \cdots \oplus V_t$ are isomorphic R-modules if and only if n=t and there exist two permutations σ and τ of $\{1,2,\ldots,n\}$ such that $[U_i]_m=[V_{\sigma(i)}]_m$ and $[U_i]_e=[V_{\tau(i)}]_e$ for every $i=1,2,\ldots,n$.

The behavior of uniserial modules is enjoyed by other classes of modules.

The behavior of uniserial modules is enjoyed by other classes of modules.

First example [B. Amini, A. Amini and A. Facchini, J. Algebra 2008].

The behavior of uniserial modules is enjoyed by other classes of modules.

First example [B. Amini, A. Amini and A. Facchini, J. Algebra 2008].

A right module over a ring R is cyclically presented if it is isomorphic to R/aR for some element $a \in R$.

The behavior of uniserial modules is enjoyed by other classes of modules.

First example [B. Amini, A. Amini and A. Facchini, J. Algebra 2008].

A right module over a ring R is cyclically presented if it is isomorphic to R/aR for some element $a \in R$. For any ring R, we will denote with U(R) the group of all invertible elements of R.

If R/aR and R/bR are cyclically presented modules over a local ring R, we say that R/aR and R/bR have the same lower part, and write $[R/aR]_I = [R/bR]_I$, if there exist $u, v \in U(R)$ and $r, s \in R$ with au = rb and bv = sa.

If R/aR and R/bR are cyclically presented modules over a local ring R, we say that R/aR and R/bR have the same lower part, and write $[R/aR]_I = [R/bR]_I$, if there exist $u, v \in U(R)$ and $r, s \in R$ with au = rb and bv = sa.

(Two cyclically presented modules over a local ring have the same lower part if and only if their Auslander-Bridger transposes have the same epigeny class.)

Cyclically presented modules and idealizer

The endomorphism ring $\operatorname{End}_R(R/aR)$ of a non-zero cyclically presented module R/aR is isomorphic to E/aR, where $E := \{ r \in R \mid ra \in aR \}$ is the *idealizer* of aR.

 $E := \{ r \in R \mid ra \in aR \} \text{ is the } idealizer \text{ of } aR.$

 $E := \{ r \in R \mid ra \in aR \} \text{ is the } idealizer \text{ of } aR.$

Theorem

Let a be a non-zero non-invertible element of an arbitrary local ring R, let E be the idealizer of aR, and let E/aR be the endomorphism ring of the cyclically presented right R-module R/aR.

 $E := \{ r \in R \mid ra \in aR \} \text{ is the } idealizer \text{ of } aR.$

Theorem

Let a be a non-zero non-invertible element of an arbitrary local ring R, let E be the idealizer of aR, and let E/aR be the endomorphism ring of the cyclically presented right R-module R/aR. Set $I:=\{r\in R\mid ra\in aJ(R)\}$ and $K:=J(R)\cap E$. Then I and K are two two-sided completely prime ideals of E containing aR, the union $(I/aR)\cup (K/aR)$ is the set of all non-invertible elements of E/aR, and every proper right ideal of E/aR and every proper left ideal of E/aR is contained either in I/aR or in K/aR.

 $E := \{ r \in R \mid ra \in aR \} \text{ is the idealizer of } aR.$

Theorem

Let a be a non-zero non-invertible element of an arbitrary local ring R, let E be the idealizer of aR, and let E/aR be the endomorphism ring of the cyclically presented right R-module R/aR. Set $I:=\{r\in R\mid ra\in aJ(R)\}$ and $K:=J(R)\cap E$. Then I and K are two two-sided completely prime ideals of E containing aR, the union $(I/aR)\cup (K/aR)$ is the set of all non-invertible elements of E/aR, and every proper right ideal of E/aR and every proper left ideal of E/aR is contained either in I/aR or in K/aR. Moreover, exactly one of the following two conditions holds:

- (a) Either I and K are comparable (that is, $I \subseteq K$ or $K \subseteq I$), in which case E/aR is a local ring, or
- (b) I and K are not comparable, and in this case E/I and E/K are division rings, $J(E/aR) = (I \cap K)/aR$, and (E/aR)/J(E/aR) is canonically isomorphic to the direct product $E/I \times E/K$.

Weak Krull-Schmidt Theorem for cyclically presented modules over local rings

Theorem

(Weak Krull-Schmidt Theorem) Let $a_1, \ldots, a_n, b_1, \ldots, b_t$ be n+t non-invertible elements of a local ring R. Then the direct sums $R/a_1R \oplus \cdots \oplus R/a_nR$ and $R/b_1R \oplus \cdots \oplus R/b_tR$ are isomorphic right R-modules if and only if n=t and there exist two permutations σ, τ of $\{1, 2, \ldots, n\}$ such that $[R/a_iR]_i = [R/b_{\sigma(i)}R]_i$ and $[R/a_iR]_e = [R/b_{\tau(i)}R]_e$ for every $i=1,2,\ldots,n$.

The Weak Krull-Schmidt Theorem for cyclically presented modules has an immediate consequence as far as equivalence of matrices is concerned. Recall that two $m \times n$ matrices A and B with entries in a ring R are said to be *equivalent* matrices, denoted $A \sim B$, if there exist an $m \times m$ invertible matrix P and an $n \times n$ invertible matrix P with entries in P (that is, matrices invertible in the rings P and P0 and P1, respectively) such that P2 are

The Weak Krull-Schmidt Theorem for cyclically presented modules has an immediate consequence as far as equivalence of matrices is concerned. Recall that two $m \times n$ matrices A and B with entries in a ring R are said to be *equivalent* matrices, denoted $A \sim B$, if there exist an $m \times m$ invertible matrix P and an $n \times n$ invertible matrix Q with entries in R (that is, matrices invertible in the rings $M_m(R)$ and $M_n(R)$, respectively) such that B = PAQ. We denote by $\operatorname{diag}(a_1, \ldots, a_n)$ the $n \times n$ diagonal matrix whose (i, i) entry is a_i and whose other entries are zero.

If R is a *commutative* local ring and $a_1,\ldots,a_n,b_1,\ldots,b_n$ are elements of R, then $\mathrm{diag}(a_1,\ldots,a_n)\sim\mathrm{diag}(b_1,\ldots,b_n)$ if and only if there exists a permutation σ of $\{1,2,\ldots,n\}$ with a_i and $b_{\sigma(i)}$ associate elements of R for every $i=1,2,\ldots,n$. Here $a,b\in R$ are associate elements if they generate the same principal ideal of R.

If R is a commutative local ring and $a_1,\ldots,a_n,b_1,\ldots,b_n$ are elements of R, then $\mathrm{diag}(a_1,\ldots,a_n)\sim\mathrm{diag}(b_1,\ldots,b_n)$ if and only if there exists a permutation σ of $\{1,2,\ldots,n\}$ with a_i and $b_{\sigma(i)}$ associate elements of R for every $i=1,2,\ldots,n$. Here $a,b\in R$ are associate elements if they generate the same principal ideal of R. If the ring R is local, but non-necessarily commutative, we have the following result:

Proposition

Let $a_1, \ldots, a_n, b_1, \ldots, b_n$ be elements of a local ring R. Then $\operatorname{diag}(a_1, \ldots, a_n) \sim \operatorname{diag}(b_1, \ldots, b_n)$ if and only if there exist two permutations σ, τ of $\{1, 2, \ldots, n\}$ with

$$[R/a_iR]_I = [R/b_{\sigma(i)}R]_I$$
 and $[R/a_iR]_e = [R/b_{\tau(i)}R]_e$

for every $i = 1, 2, \ldots, n$.

For a right module A_R over a ring R, let $E(A_R)$ denote the injective envelope of A_R . We say that two modules A_R and B_R have the same upper part, and write $[A_R]_u = [B_R]_u$, if there exist a homomorphism $\varphi \colon E(A_R) \to E(B_R)$ and a homomorphism $\psi \colon E(B_R) \to E(A_R)$ such that $\varphi^{-1}(B_R) = A_R$ and $\psi^{-1}(A_R) = B_R$.

A standard technique of homological algebra to extend a morphism between two modules to their injective resolutions.

A standard technique of homological algebra to extend a morphism between two modules to their injective resolutions.

Notation. Assume that E_0, E_1, E_0', E_1' are indecomposable injective right modules over a ring R, and that $\varphi \colon E_0 \to E_1, \varphi' \colon E_0' \to E_1'$ are two right R-module morphisms. A morphism $f \colon \ker \varphi \to \ker \varphi'$ extends to a morphism $f_0 \colon E_0 \to E_0'$. Now f_0 induces a morphism $\widetilde{f}_0 \colon E_0 / \ker \varphi \to E_0' / \ker \varphi'$, which extends to a morphism $f_1 \colon E_1 \to E_1'$.

A standard technique of homological algebra to extend a morphism between two modules to their injective resolutions.

Notation. Assume that E_0, E_1, E_0', E_1' are indecomposable injective right modules over a ring R, and that $\varphi \colon E_0 \to E_1, \varphi' \colon E_0' \to E_1'$ are two right R-module morphisms. A morphism $f \colon \ker \varphi \to \ker \varphi'$ extends to a morphism $f_0 \colon E_0 \to E_0'$. Now f_0 induces a morphism $\widetilde{f_0} \colon E_0 / \ker \varphi \to E_0' / \ker \varphi'$, which extends to a morphism $f_1 \colon E_1 \to E_1'$. Thus we get a commutative diagram with exact rows

$$0 \longrightarrow \ker \varphi \longrightarrow E_0 \xrightarrow{\varphi} E_1$$

$$\downarrow f \qquad \qquad \downarrow f_0 \qquad \downarrow f_1$$

$$0 \longrightarrow \ker \varphi' \longrightarrow E'_0 \xrightarrow{\varphi'} E'_1.$$

$$(1)$$

The morphisms f_0 and f_1 are not uniquely determined by f.

Theorem

Let E_0 and E_1 be indecomposable injective right modules over a ring R, and let $\varphi \colon E_0 \to E_1$ be a non-zero non-injective morphism. Let $S := \operatorname{End}_R(\ker \varphi)$ denote the endomorphism ring of $\ker \varphi$. Set $I := \{ f \in S \mid \text{the endomorphism } f \text{ of } \ker \varphi \text{ is not a monomorphism} \}$ and $K := \{ f \in S \mid \text{the endomorphism } f_1 \text{ of } E_1 \text{ is not a monomorphism} \} = \{ f \in S \mid \ker \varphi \subset f_0^{-1}(\ker \varphi) \}.$

Theorem

Let E_0 and E_1 be indecomposable injective right modules over a ring R, and let $\varphi \colon E_0 \to E_1$ be a non-zero non-injective morphism. Let $S := \operatorname{End}_R(\ker \varphi)$ denote the endomorphism ring of $\ker \varphi$. Set $I := \{f \in S \mid \text{the endomorphism } f \text{ of } \ker \varphi \text{ is not a monomorphism} \}$ and $K := \{f \in S \mid \text{the endomorphism } f_1 \text{ of } E_1 \text{ is not a monomorphism} \} = \{f \in S \mid \ker \varphi \subset f_0^{-1}(\ker \varphi)\}$. Then I and K are two two-sided completely prime ideals of S, and every proper right ideal of S and every proper left ideal of S is contained either in I or in K.

Theorem

Let E_0 and E_1 be indecomposable injective right modules over a ring R, and let $\varphi \colon E_0 \to E_1$ be a non-zero non-injective morphism. Let $S := \operatorname{End}_R(\ker \varphi)$ denote the endomorphism ring of $\ker \varphi$. Set $I := \{f \in S \mid \text{the endomorphism } f \text{ of } \ker \varphi \text{ is not a monomorphism} \}$ and $K := \{f \in S \mid \text{the endomorphism } f_1 \text{ of } E_1 \text{ is not a monomorphism} \} = \{f \in S \mid \ker \varphi \subset f_0^{-1}(\ker \varphi)\}$. Then I and K are two two-sided completely prime ideals of S, and every proper right ideal of S and every proper left ideal of S is contained either in I or in K. Moreover, exactly one of the following two conditions holds:

- (a) Either I and K are comparable (that is, $I \subseteq K$ or $K \subseteq I$), in which case S is a local ring with maximal ideal $I \cup K$, or
- (b) I and K are not comparable, and in this case S/I and S/K are division rings and $S/J(S) \cong S/I \times S/K$.

Theorem

(Weak Krull-Schmidt Theorem) Let $\varphi_i \colon E_{i,0} \to E_{i,1}$ ($i=1,2,\ldots,n$) and $\varphi_j' \colon E_{j,0}' \to E_{j,1}'$ ($j=1,2,\ldots,t$) be n+t non-injective morphisms between indecomposable injective right modules $E_{i,0}, E_{i,1}, E_{j,0}', E_{j,1}'$ over an arbitrary ring R. Then the direct sums $\bigoplus_{i=0}^n \ker \varphi_i$ and $\bigoplus_{j=0}^t \ker \varphi_j'$ are isomorphic R-modules if and only if n=t and there exist two permutations σ,τ of $\{1,2,\ldots,n\}$ such that $[\ker \varphi_i]_m = [\ker \varphi_{\sigma(i)}']_m$ and $[\ker \varphi_i]_u = [\ker \varphi_{\tau(i)}']_u$ for every $i=1,2,\ldots,n$.

Other classes of modules with the same behaviour

(1) Couniformly presented modules.

Other classes of modules with the same behaviour

- (1) Couniformly presented modules.
- (2) Biuniform modules (modules of Goldie dimension one and dual Goldie dimension one).

Other classes of modules with the same behaviour

- (1) Couniformly presented modules.
- (2) Biuniform modules (modules of Goldie dimension one and dual Goldie dimension one).
- (3) Another class of modules that can be described via two invariants is that of Auslander-Bridger modules. For Auslander-Bridger modules, the two invariants are epi-isomorphism and lower-isomorphism.

Let $\mathcal C$ be a full subcategory of the category $\operatorname{Mod-}R$ for some ring R and assume that every object of $\mathcal C$ is an indecomposable right R-module.

Let $\mathcal C$ be a full subcategory of the category $\operatorname{Mod-}R$ for some ring R and assume that every object of $\mathcal C$ is an indecomposable right R-module. Define a completely prime ideal $\mathcal P$ of $\mathcal C$ as an assignement of a subgroup $\mathcal P(A,B)$ of the additive abelian group $\operatorname{Hom}_R(A,B)$ to every pair (A,B) of objects of $\mathcal C$ with the following two properties: (1) for every $A,B,C\in\operatorname{Ob}(\mathcal C)$, every $f\colon A\to B$ and every $g\colon B\to \mathcal C$, one has that $gf\in\mathcal P(A,C)$ if and only if either $f\in\mathcal P(A,B)$ or $g\in\mathcal P(B,C)$; (2) $\mathcal P(A,A)$ is a proper subgroup of $\operatorname{Hom}_R(A,A)$ for every object $A\in\operatorname{Ob}(\mathcal C)$.

Let $\mathcal C$ be a full subcategory of the category $\operatorname{Mod-}R$ for some ring R and assume that every object of $\mathcal C$ is an indecomposable right R-module. Define a completely prime ideal $\mathcal P$ of $\mathcal C$ as an assignement of a subgroup $\mathcal P(A,B)$ of the additive abelian group $\operatorname{Hom}_R(A,B)$ to every pair (A,B) of objects of $\mathcal C$ with the following two properties: (1) for every $A,B,C\in\operatorname{Ob}(\mathcal C)$, every $f\colon A\to B$ and every $g\colon B\to \mathcal C$, one has that $gf\in\mathcal P(A,C)$ if and only if either $f\in\mathcal P(A,B)$ or $g\in\mathcal P(B,C)$; (2) $\mathcal P(A,A)$ is a proper subgroup of $\operatorname{Hom}_R(A,A)$ for every object $A\in\operatorname{Ob}(\mathcal C)$.

Let \mathcal{P} be a completely prime ideal of \mathcal{C} . If A,B are objects of \mathcal{C} , we say that A and B have the same \mathcal{P} class, and write $[A]_{\mathcal{P}} = [B]_{\mathcal{P}}$, if $\mathcal{P}(A,B) \neq \operatorname{Hom}_R(A,B)$ and $\mathcal{P}(B,A) \neq \operatorname{Hom}_R(B,A)$.

A general pattern

Theorem

[F.-Příhoda, Algebr. Represent. Theory 2011] Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-R}$ and $\mathcal P, \mathcal Q$ be two completely prime ideals of $\mathcal C$. Assume that all objects of $\mathcal C$ are indecomposable right R-modules and that, for every $A \in \operatorname{Ob}(\mathcal C)$, $f:A \to A$ is an automorphism of A if and only if $f \notin \mathcal P(A,A) \cup \mathcal Q(A,A)$. Then, for every $A_1,\ldots,A_n,B_1,\ldots,B_t \in \operatorname{Ob}(\mathcal C)$, the modules $A_1 \oplus \cdots \oplus A_n$ and $B_1 \oplus \cdots \oplus B_t$ are isomorphic if and only if n=t and there exist two permutations σ,τ of $\{1,2,\ldots,n\}$ such that $[A_i]_{\mathcal P} = [B_{\sigma(i)}]_{\mathcal P}$ and $[A_i]_{\mathcal Q} = [B_{\tau(i)}]_{\mathcal Q}$ for all $i=1,\ldots,n$.

For the classes $\mathcal C$ of modules described until now, the fact that the weak form of the Krull-Schmidt Theorem holds can be described saying that the corresponding monoid $V(\mathcal C)$ is a subdirect product of two free monoids.

Let's go back to the case of $C = \{ \text{uniserial modules } \}.$

Let's go back to the case of $\mathcal{C} = \{$ uniserial modules $\}$. Until now we have considered direct sums of *finite* families of uniserial modules.

Let's go back to the case of $\mathcal{C} = \{$ uniserial modules $\}$. Until now we have considered direct sums of *finite* families of uniserial modules. What happens for *infinite* families of uniserial modules?

Theorem

[F.-Dung, J. Algebra 1997] Let $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$ be two families of uniserial right R-modules. Assume that there exist two bijections $\sigma, \tau \colon I \to J$ such that $[A_i]_m = [B_{\sigma(i)}]_m$ and $[A_i]_e = [B_{\tau(i)}]_e$ for every $i \in I$. Then

$$\oplus_{i\in I}A_i\cong \oplus_{j\in J}B_j.$$

A module N_R is *quasismall* if for every set $\{M_i \mid i \in I\}$ of R-modules such that N_R is isomorphic to a direct summand of $\bigoplus_{i \in I} M_i$, there exists a finite subset F of I such that N_R is isomorphic to a direct summand of $\bigoplus_{i \in F} M_i$.

For instance:

(1) Every finitely generated module is quasismall.

- (1) Every finitely generated module is quasismall.
- (2) Every module with local endomorphism ring is quasismall.

- (1) Every finitely generated module is quasismall.
- (2) Every module with local endomorphism ring is quasismall.
- (3) Every uniserial module is either quasismall or countably generated.

- (1) Every finitely generated module is quasismall.
- (2) Every module with local endomorphism ring is quasismall.
- (3) Every uniserial module is either quasismall or countably generated.
- (4) There exist uniserial modules that are not quasismall (Puninski 2001).

Theorem

[Příhoda 2006] Let $\{U_i \mid i \in I\}$ and $\{V_j \mid j \in J\}$ be two families of uniserial modules over an arbitrary ring R. Let I' be the sets of all indices $i \in I$ with U_i quasismall, and similarly for J'. Then $\bigoplus_{i \in I} U_i \cong \bigoplus_{j \in J} V_j$ if and only if there exist a bijection $\sigma \colon I \to J$ such that $[U_i]_m = [V_{\sigma(i)}]_m$ and a bijection $\tau \colon I' \to J'$ such that $[U_i]_e = [V_{\tau(i)}]_e$ for every $i \in I'$.

Until now: direct sums.

Until now: direct sums.

What about direct products?

Theorem

[Alahmadi-F. 2014] Let $\{U_i \mid i \in I\}$ and $\{V_j \mid j \in J\}$ be two families of uniserial modules over an arbitrary ring R. Assume that there exist two bijections $\sigma, \tau \colon I \to J$ such that $[U_i]_m = [V_{\sigma(i)}]_m$ and $[U_i]_e = [V_{\tau(i)}]_e$ for every $i \in I$. Then $\prod_{i \in I} U_i \cong \prod_{j \in J} V_j$.

A full subcategory $\mathcal C$ of $\operatorname{Mod-}R$ is said to satisfy Condition (DSP) (direct summand property) if whenever A,B,C,D are right R-modules with $A\oplus B\cong C\oplus D$ and $A,B,C\in\operatorname{Ob}(\mathcal C)$, then also $D\in\operatorname{Ob}(\mathcal C)$.

Theorem

Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-R}$ in which all objects are indecomposable right R-modules and let $\mathcal P, \mathcal Q$ be two completely prime ideals of $\mathcal C$ with the property that, for every $A \in \operatorname{Ob}(\mathcal C)$, an endomorphism $f:A \to A$ is an automorphism if and only if $f \notin \mathcal P(A,A) \cup \mathcal Q(A,A)$. Assume that $\mathcal C$ satisfies Condition (DSP).

Theorem

Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-R}$ in which all objects are indecomposable right R-modules and let $\mathcal P, \mathcal Q$ be two completely prime ideals of $\mathcal C$ with the property that, for every $A\in\operatorname{Ob}(\mathcal C)$, an endomorphism $f\colon A\to A$ is an automorphism if and only if $f\notin\mathcal P(A,A)\cup\mathcal Q(A,A)$. Assume that $\mathcal C$ satisfies Condition (DSP). Let $\{A_i\mid i\in I\}$ and $\{B_j\mid j\in J\}$ be two families of objects of $\mathcal C$. Assume that there exist two bijections $\sigma,\tau\colon I\to J$ such that $[A_i]_{\mathcal P}=[B_{\sigma(i)}]_{\mathcal P}$ and $[A_i]_{\mathcal Q}=[B_{\tau(i)}]_{\mathcal Q}$ for every $i\in I$. Then the R-modules $\prod_{i\in I}A_i$ and $\prod_{j\in J}B_j$ are isomorphic.

Cyclically presented modules

Theorem

Let R be a local ring and $\{U_i \mid i \in I\}$ and $\{V_j \mid j \in J\}$ be two families of cyclically presented right R-modules. Suppose that there exist two bijections $\sigma, \tau \colon I \to J$ such that $[U_i]_I = [V_{\sigma(i)}]_I$ and and $[U_i]_e = [V_{\tau(i)}]_e$ for every $i \in I$. Then $\prod_{i \in I} U_i \cong \prod_{j \in J} V_j$.

Kernels of morphisms between indecomposable injective modules

Theorem

Let R be a ring and $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$ be two families of right R-modules that are all kernels of non-injective morphisms between indecomposable injective modules. Suppose that there exist bijections $\sigma, \tau \colon I \to J$ such that $[A_i]_m = [B_{\sigma(i)}]_m$ and $[A_i]_u = [B_{\tau(i)}]_u$ for every $i \in I$. Then $\prod_{i \in I} A_i \cong \prod_{j \in J} B_j$.

Another example

Let R be a ring and let S_1, S_2 be two fixed non-isomorphic simple right R-modules.

Another example

Let R be a ring and let S_1, S_2 be two fixed non-isomorphic simple right R-modules. Let $\mathcal C$ be the full subcategory of $\operatorname{Mod-}R$ whose objects are all artinian right R-modules A_R with $\operatorname{soc}(A_R) \cong S_1 \oplus S_2$. Set $\mathcal P_i(A,B) := \{ f \in \operatorname{Hom}_R(A,B) \mid f(\operatorname{soc}_{S_i}(A)) = 0 \}.$

Another example

Let R be a ring and let S_1, S_2 be two fixed non-isomorphic simple right R-modules. Let $\mathcal C$ be the full subcategory of $\operatorname{Mod-}R$ whose objects are all artinian right R-modules A_R with $\operatorname{soc}(A_R) \cong S_1 \oplus S_2$. Set $\mathcal P_i(A,B) := \{ f \in \operatorname{Hom}_R(A,B) \mid f(\operatorname{soc}_{S_i}(A)) = 0 \}.$

Theorem

Let $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$ be two families of objects of C. Suppose that there exist two bijections $\sigma_k \colon I \to J$, k = 1, 2, such that $[A_i]_k = [B_{\sigma_k(i)}]_k$ for both k = 1, 2. Then $\prod_{i \in I} A_i \cong \prod_{j \in J} B_j$.

Is it possible to invert our result?

Is it possible to invert our result? For example,

Is it possible to invert our result?

For example, does a direct product of uniserial modules determine the monogeny classes and the epigeny classes of the factors?

 $R = \text{localization of the ring } \mathbb{Z} \text{ of integers at a maximal ideal } (p),$

 $R = \text{localization of the ring } \mathbb{Z} \text{ of integers at a maximal ideal } (p),$ $\mathbb{Q} \oplus (\mathbb{Z}(p^{\infty}))^{\mathbb{N}^*} \cong (\mathbb{Z}(p^{\infty}))^{\mathbb{N}^*},$

 $R = \text{localization of the ring } \mathbb{Z} \text{ of integers at a maximal ideal } (p),$ $\mathbb{Q} \oplus (\mathbb{Z}(p^{\infty}))^{\mathbb{N}^*} \cong (\mathbb{Z}(p^{\infty}))^{\mathbb{N}^*}, \text{ all the factors are uniserial } R\text{-modules with a local endomorphism ring,}$

 $R = \text{localization of the ring } \mathbb{Z}$ of integers at a maximal ideal (p), $\mathbb{Q} \oplus (\mathbb{Z}(p^{\infty}))^{\mathbb{N}^*} \cong (\mathbb{Z}(p^{\infty}))^{\mathbb{N}^*}$, all the factors are uniserial R-modules with a local endomorphism ring, but there are no bijections preserving the monogeny classes and the epigeny classes.

$$R=\mathbb{Z}$$
,

 $R = \mathbb{Z}$, \mathcal{C} be the full subcategory of $\operatorname{Mod-}R$ whose objects are all injective indecomposable R-modules. If A and B are objects of \mathcal{C} , let $\mathcal{P}(A,B)$ be the group of all morphisms $A \to B$ that are not automorphisms, so that \mathcal{P} is a completely prime ideal of \mathcal{C} ,

 $R=\mathbb{Z}$, \mathcal{C} be the full subcategory of $\operatorname{Mod-}R$ whose objects are all injective indecomposable R-modules. If A and B are objects of \mathcal{C} , let $\mathcal{P}(A,B)$ be the group of all morphisms $A\to B$ that are not automorphisms, so that \mathcal{P} is a completely prime ideal of \mathcal{C} , $\mathbb{Q}\oplus\prod_{p}\mathbb{Z}(p^{\infty})\cong\prod_{p}\mathbb{Z}(p^{\infty})$,

 $R=\mathbb{Z}$, \mathcal{C} be the full subcategory of $\operatorname{Mod-}R$ whose objects are all injective indecomposable R-modules. If A and B are objects of \mathcal{C} , let $\mathcal{P}(A,B)$ be the group of all morphisms $A\to B$ that are not automorphisms, so that \mathcal{P} is a completely prime ideal of \mathcal{C} , $\mathbb{Q}\oplus\prod_p\mathbb{Z}(p^\infty)\cong\prod_p\mathbb{Z}(p^\infty)$, but there does not exist a bijection σ preserving the \mathcal{P} classes.

p = prime number,

$$p = \text{prime number}, \ \widehat{\mathbb{Z}_p} = \text{ring of } p\text{-adic integers},$$

p= prime number, $\widehat{\mathbb{Z}_p}=$ ring of p-adic integers, so that $\mathbb{Z}/p^n\mathbb{Z}$ is a module over $\widehat{\mathbb{Z}_p}$ for every integer $n\geq 1$.

p= prime number, $\widehat{\mathbb{Z}_p}=$ ring of p-adic integers, so that $\mathbb{Z}/p^n\mathbb{Z}$ is a module over $\widehat{\mathbb{Z}_p}$ for every integer $n\geq 1$. Then $\widehat{\mathbb{Z}_p}\oplus\prod_{n\geq 1}\mathbb{Z}/p^n\mathbb{Z}\cong\prod_{n\geq 1}\mathbb{Z}/p^n\mathbb{Z}$. In these direct products, all the factors $\widehat{\mathbb{Z}_p}$ and $\mathbb{Z}/p^n\mathbb{Z}$ $(n\geq 1)$ are pair-wise non-isomorphic uniserial $\widehat{\mathbb{Z}_p}$ -modules, have distinct monogeny classes and distinct epigeny classes \Rightarrow there cannot be bijections σ and τ preserving the monogeny and the epigeny classes in the two direct-product decompositions.

R = a ring,

R = a ring,

 $R^{\omega} = \prod_{n < \omega} e_n R$ right R-module that is the direct product of countably many copies of the right R-module R_R , where e_n is the element of R^{ω} with support $\{n\}$ and equal to 1 in n.

R = a ring,

 $R^{\omega} = \prod_{n < \omega} e_n R$ right R-module that is the direct product of countably many copies of the right R-module R_R , where e_n is the element of R^{ω} with support $\{n\}$ and equal to 1 in n.

A right *R*-module M_R is *slender* if, for every homomorphism $f: R^\omega \to M$ there exists $n_0 < \omega$ such that $f(e_n) = 0$ for all $n \ge n_0$.

R = a ring,

 $R^{\omega} = \prod_{n < \omega} e_n R$ right R-module that is the direct product of countably many copies of the right R-module R_R , where e_n is the element of R^{ω} with support $\{n\}$ and equal to 1 in n.

A right *R*-module M_R is slender if, for every homomorphism $f: R^\omega \to M$ there exists $n_0 < \omega$ such that $f(e_n) = 0$ for all $n \ge n_0$.

Theorem

A module M_R is slender if and only if for every countable family $\{P_n \mid n \geq 0\}$ of right R-modules and any homomorphism $f \colon \prod_{n \geq 0} P_n \to M_R$ there exists $m \geq 0$ such that $f(\prod_{n \geq m} P_n) = 0$.

A cardinal α is *measurable* if it is an uncountable cardinal with an α -complete, non-principal ultrafilter.

A cardinal α is *measurable* if it is an uncountable cardinal with an α -complete, non-principal ultrafilter.

lpha-complete = the intersection of any *strictly less than* lpha-many sets in the ultrafilter is also in the ultrafilter.

A cardinal α is *measurable* if it is an uncountable cardinal with an α -complete, non-principal ultrafilter.

 α -complete = the intersection of any *strictly less than* α -many sets in the ultrafilter is also in the ultrafilter.

If a cardinal is not measurable, then neither are all smaller cardinals.

A cardinal α is *measurable* if it is an uncountable cardinal with an α -complete, non-principal ultrafilter.

 α -complete = the intersection of any *strictly less than* α -many sets in the ultrafilter is also in the ultrafilter.

If a cardinal is not measurable, then neither are all smaller cardinals. Thus if there exists a measurable cardinal, then there is a smallest one and all larger cardinals are measurable.

A cardinal α is *measurable* if it is an uncountable cardinal with an α -complete, non-principal ultrafilter.

 α -complete = the intersection of any *strictly less than* α -many sets in the ultrafilter is also in the ultrafilter.

If a cardinal is not measurable, then neither are all smaller cardinals. Thus if there exists a measurable cardinal, then there is a smallest one and all larger cardinals are measurable.

It is not known whether ZFC $\Rightarrow \exists$ a measurable cardinal.

Slender modules

Theorem

If M_R is slender and $\{P_i \mid i \in I\}$ is a family of right R-modules with |I| non-measurable, then $\operatorname{Hom}(\prod_{i \in I} P_i, M_R) \cong \bigoplus_{i \in I} \operatorname{Hom}(P_i, M_R)$.

Slender modules

Theorem

If M_R is slender and $\{P_i \mid i \in I\}$ is a family of right R-modules with |I| non-measurable, then $\operatorname{Hom}(\prod_{i \in I} P_i, M_R) \cong \bigoplus_{i \in I} \operatorname{Hom}(P_i, M_R)$.

Every submodule of a slender module is a slender module.

Slender modules

Theorem

If M_R is slender and $\{P_i \mid i \in I\}$ is a family of right R-modules with |I| non-measurable, then $\operatorname{Hom}(\prod_{i \in I} P_i, M_R) \cong \bigoplus_{i \in I} \operatorname{Hom}(P_i, M_R)$.

Every submodule of a slender module is a slender module.

Theorem

A \mathbb{Z} -module is slender if and only if it does not contains a copy of \mathbb{Q} , \mathbb{Z}^{ω} , $\mathbb{Z}/p\mathbb{Z}$ or $\widehat{\mathbb{Z}_p}$ for any prime p.

Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-}R$ in which all objects are indecomposable slender right R-modules and let $\mathcal P, \mathcal Q$ be a pair of completely prime ideals of $\mathcal C$ with the property that, for every $A \in \operatorname{Ob}(\mathcal C)$, $f:A \to A$ is an automorphism if and only if $f \notin \mathcal P(A,A) \cup \mathcal Q(A,A)$. Assume that $\mathcal C$ satisfies Condition (DSP). Let $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$ be two families of objects of $\mathcal C$ with |I| and |J| non-measurable.

Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-}R$ in which all objects are indecomposable slender right R-modules and let $\mathcal P, \mathcal Q$ be a pair of completely prime ideals of $\mathcal C$ with the property that, for every $A \in \operatorname{Ob}(\mathcal C)$, $f:A \to A$ is an automorphism if and only if $f \notin \mathcal P(A,A) \cup \mathcal Q(A,A)$. Assume that $\mathcal C$ satisfies Condition (DSP). Let $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$ be two families of objects of $\mathcal C$ with |I| and |J| non-measurable. Assume that:

- (a) In both families, there are at most countably many modules in each ${\mathcal P}$ class.
- (b) In both families, there are at most countably many modules in each Q class.
- (c) The R-modules $\prod_{i \in I} A_i$ and $\prod_{j \in J} B_j$ are isomorphic.

Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-}R$ in which all objects are indecomposable slender right R-modules and let $\mathcal P, \mathcal Q$ be a pair of completely prime ideals of $\mathcal C$ with the property that, for every $A \in \operatorname{Ob}(\mathcal C)$, $f:A \to A$ is an automorphism if and only if $f \notin \mathcal P(A,A) \cup \mathcal Q(A,A)$. Assume that $\mathcal C$ satisfies Condition (DSP). Let $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$ be two families of objects of $\mathcal C$ with |I| and |J| non-measurable. Assume that:

- (a) In both families, there are at most countably many modules in each ${\cal P}$ class.
- (b) In both families, there are at most countably many modules in each $\mathcal Q$ class.
- (c) The R-modules $\prod_{i\in I}A_i$ and $\prod_{j\in J}B_j$ are isomorphic. Then there exist two bijections $\sigma,\tau\colon I\to J$ such that $[A_i]_{\mathcal{P}}=[B_{\sigma(i)}]_{\mathcal{P}}$ and $[A_i]_{\mathcal{Q}}=[B_{\tau(i)}]_{\mathcal{Q}}$ for every $i\in I$.

Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-}R$ in which all objects are indecomposable slender right R-modules and let $\mathcal P, \mathcal Q$ be a pair of completely prime ideals of $\mathcal C$ with the property that, for every $A \in \operatorname{Ob}(\mathcal C)$, $f: A \to A$ is an automorphism if and only if $f \notin \mathcal P(A,A) \cup \mathcal Q(A,A)$. Assume that $\mathcal C$ satisfies Condition (DSP).

Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-}R$ in which all objects are indecomposable slender right R-modules and let $\mathcal P, \mathcal Q$ be a pair of completely prime ideals of $\mathcal C$ with the property that, for every $A \in \operatorname{Ob}(\mathcal C)$, $f:A \to A$ is an automorphism if and only if $f \notin \mathcal P(A,A) \cup \mathcal Q(A,A)$. Assume that $\mathcal C$ satisfies Condition (DSP). Let $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$ be two countable families of objects of $\mathcal C$. Assume that $\prod_{i \in I} A_i \cong \prod_{j \in J} B_j$.

Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-}R$ in which all objects are indecomposable slender right R-modules and let $\mathcal P, \mathcal Q$ be a pair of completely prime ideals of $\mathcal C$ with the property that, for every $A\in\operatorname{Ob}(\mathcal C)$, $f:A\to A$ is an automorphism if and only if $f\notin\mathcal P(A,A)\cup\mathcal Q(A,A)$. Assume that $\mathcal C$ satisfies Condition (DSP). Let $\{A_i\mid i\in I\}$ and $\{B_j\mid j\in J\}$ be two countable families of objects of $\mathcal C$. Assume that $\prod_{i\in I}A_i\cong\prod_{j\in J}B_j$. Then there exist two bijections $\sigma,\tau\colon I\to J$ such that $[A_i]_{\mathcal P}=[B_{\sigma(i)}]_{\mathcal P}$ and $[A_i]_{\mathcal Q}=[B_{\tau(i)}]_{\mathcal Q}$ for every $i\in I$.

Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-}R$ in which all objects are slender right R-modules and let $\mathcal P$ be a completely prime ideal of $\mathcal C$. Let $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$ be two families of objects of $\mathcal C$ with |I| and |J| non-measurable.

Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-}R$ in which all objects are slender right R-modules and let $\mathcal P$ be a completely prime ideal of $\mathcal C$. Let $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$ be two families of objects of $\mathcal C$ with |I| and |J| non-measurable. Assume that:

- (a) For every object A of C, $\mathcal{P}(A, A)$ is a maximal right ideal of $\operatorname{End}_{R}(A)$.
- (b) There are at most countably many modules in each \mathcal{P} class in both families $\{A_i \mid i \in I\}$ and $\{B_i \mid j \in J\}$.
- (c) The R-modules $\prod_{i \in I} A_i$ and $\prod_{j \in J} B_j$ are isomorphic.

Let $\mathcal C$ be a full subcategory of $\operatorname{Mod-}R$ in which all objects are slender right R-modules and let $\mathcal P$ be a completely prime ideal of $\mathcal C$. Let $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$ be two families of objects of $\mathcal C$ with |I| and |J| non-measurable. Assume that:

- (a) For every object A of C, $\mathcal{P}(A, A)$ is a maximal right ideal of $\operatorname{End}_{R}(A)$.
- (b) There are at most countably many modules in each \mathcal{P} class in both families $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$.
- (c) The R-modules $\prod_{i \in I} A_i$ and $\prod_{j \in J} B_j$ are isomorphic. Then there is a bijection $\sigma_{\mathcal{P}} \colon I \to J$ such that $[A_i]_{\mathcal{P}} = [B_{\sigma_{\mathcal{P}}(i)}]_{\mathcal{P}}$ for every $i \in I$.

[Franetič, 2014] Let R be a ring and $\{A_i \mid i \in I\}$ be a family of slender right R-modules with local endomorphism rings. Let $\{B_j \mid j \in J\}$ be a family of indecomposable slender right R-modules. Assume that:

- (a) |I| and |J| are non-measurable cardinals.
- (b) There are at most countably many mutually isomorphic modules in each of the two families $\{A_i \mid i \in I\}$ and $\{B_j \mid j \in J\}$.
- (c) The R-modules $\prod_{i\in I}A_i$ and $\prod_{j\in J}B_j$ are isomorphic. Then there exists a bijection $\sigma\colon I\to J$ such that $A_i\cong B_{\sigma(i)}$ for every $i\in I$.