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This talk is based on joint work with Andy Kustin and Claudia

Polini.

Let f1, . . . , fn be forms of the same degree in k[x1, . . . , xd ].

They define a rational map

Φ : Pd−1
k

[f1:...:fn]− −→ Pn−1
k .

Let X = im Φ be the variety parametrized by f1, . . . , fn.

Problem A: Determine the implicit equations defining X ⊂ Pn−1.

Problem B: Determine the implicit equations defining

graph Φ ⊂ Pd−1 × Pn−1.

Problem B =⇒ Problem A
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Algebraic formulation

R := k[x1, . . . , xd ] ⊃ I := (f1, . . . , fn)

R[t] ⊃ R[f1t, . . . , fnt] =: R(I ) the Rees algebra of I

⊃ k[f1t, . . . , fnt] =: A(X ) homogeneous coordinate ring of X

∼= k[f1, . . . , fn] ⊂ R .

The Rees algebra is the bi-homogeneous coordinate ring of the

graph of Φ.
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In fact, the diagram

graph Φ

����

⊂ Pd−1 × Pn−1

����
X = im Φ ⊂ Pn−1

corresponds to the diagram

R(I ) � k[x1, . . . , xd , y1, . . . , yn] =: S⋃ ⋃
A(X ) � k[y1, . . . , yn] =: T

fj t � yj

where all rings are standard bi-graded with deg xi = (1, 0) and

deg yj = (0, 1).
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The defining ideal of the Rees ring is the bi-homogeneous ideal J
with R(I ) ∼= S/J . Restricting to the component of x-degree zero,

one obtains a presentation A(X ) ∼= T/I (X ).

If, conversely, the defining ideal J of R(I ) can be reconstructed

from I (X ), one says that I is of fiber type.

Problems:

Find generators of the defining ideal J of R(I ).

Find bounds for the bi-degrees of these generators.

When is I of fiber type?
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There is a vast body of work on these questions, in commutative

algebra, elimination theory, algebraic geometry, and applied

mathematics. Some of the articles relevant to this talk are:

Herzog-Simis-Vasconcelos (1982), Vasconcelos (1991),

Geramita-Gimigliano (1991), Morey (1996), Morey-Ulrich (1996),

Johnson (1997), Jouanolou (1997), Busé-Chardin (2005),

Eisenbud-Huneke-Ulrich (2006), Song-Chen-Goldman (2006),

Hong-Simis-Vasconcelos (2008), Cox-Hoffman-Wang (2008),

Busé-Chardin-Jouanolou (2009), Busé-Chardin-Simis (2010),

Kustin-Polini-Ulrich (2011), Cortadellas-D’Andrea (2013), Nguyen

(2014)
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Using the symmetric algebra

R = k[x1, . . . , xd ] ⊃ I = (f1, . . . , fn), fi forms of the same degree δ

⊕R(−εj)
ϕ−→ Rn [f1...fn]−−−−→ I (δ) −→ 0

0 −→ A −→ Sym(I (δ)) −→ R(I ) −→ 0

‖
S/L

where L is generated by the entries of the vector [y1 . . . yn] · ϕ.

Hence: To describe the defining ideal J of R(I ) it suffices to

determine A = J /L.
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I is of linear type ⇐⇒ R(I ) ∼= Sym(I (δ))

⇐⇒ J = L
⇐⇒ J is generated in degrees (−, 1)

I is of fiber type ⇐⇒ A = I (X ) · Sym(I (δ))

⇐⇒ J = L+ I (X ) · S
⇐⇒ J is generated in degrees (−, 1), (0,−)

Theorem [Herzog-Simis-Vasconcelos]

I is of linear type if

I is SCM: the Koszul homology of I is Cohen-Macaulay, and

I is G∞: µ(Ip) ≤ codim p ∀p ∈ V (I ).
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Theorem [Herzog-Simis-Vasconcelos]

I is of linear type if

I is SCM: the Koszul homology of I is Cohen-Macaulay, and

I is G∞: µ(Ip) ≤ codim p ∀p ∈ V (I ).

SCM
[Huneke]⇐= I is in the linkage class of a complete intersection

⇐= codim I = 2 with R/I is CM, or

codim I = 3 with R/I Gorenstein

G∞ =⇒ µ(I ) ≤ d
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Zeroth local cohomology

Write m = (x1, . . . , xd) ⊂ R and S = Sym(I (δ))

Recall A = ker(S � R(I ))

A = R-torsion of S ⊃ 0 :S m∞ = H0
m(S)

A = H0
m(S) ⇐⇒ J = L : m∞

⇐⇒ Ip is of linear type ∀p 6= m

⇐= I is SCM and Gd : µ(Ip) ≤ codim p ∀p 6= m
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Constructing elements in L : m∞

Assume I is linearly presented:

⊕R(−1)
ϕ−→ Rn [f1...fn]−−−−→ I (δ) −→ 0

Write

[y1 . . . yn] · ϕ = [x1 . . . xd ] · B

with B a matrix with linear entries in T = k[y1, . . . , yn].

This matrix is called the Jacobian dual or adjoint of ϕ.

Recall: [x1 . . . xd ] · B ≡ 0 in S = Sym(I (δ))

Hence: Id(B) · xi ≡ 0 in S ∀i

Hence: Id(B) ⊂ L : m in S = k[x , y ]
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The defining ideal J of R(I ) is said to have the expected form if

J = L+ Id(B).

Notice: linear type =⇒ expected form =⇒ fiber type

Theorem [Morey-U]

Assume codim I = 2 and R/I is Cohen-Macaulay. If I is Gd and

linearly presented, then J has the expected form:

R(I ) ∼= S/L+ Id(B) and A(X ) ∼= T/Id(B) .

Moreover, both rings are Cohen-Macaulay.
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Codimension 3 Gorenstein ideals

In joint work with Andy Kustin and Claudia Polini, we consider the

next case: linearly presented ideals with codim I = 3 and R/I

Gorenstein.

R(−1)n ϕ−→ Rn [f1...fn]−−−−→ I (δ) −→ 0

Theorem [Buchsbaum-Eisenbud]

n is odd, ϕ can be chosen to be alternating, and

fi = c (−1)i Pf i (ϕ) for some c ∈ k and ∀i .

In this case, J does not have the expected form in general. In

fact, the alternating property of ϕ is responsible for ‘unexpected’

elements in J :
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Recall: y · ϕ = x · B and ϕ alternating

=⇒ x · B · y t = y · ϕ · y t = 0

=⇒ B · y t = 0 and y · Bt = 0
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Write

B =

[
ϕ Bt

−B 0

]

Fi = (−1)i · Pf i (B) and F = Fn+d

Recall: y · ϕ− x · B = 0 and y · Bt = 0

Hence: [y , x ] · B = 0

Also: F · B = 0

=⇒ If F 6= 0 then F ∼ [y , x ]

=⇒ ∀i with 1 ≤ i ≤ n : yi F = xd Fi ∈ Id(B) · S
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Consider F ∈ S = T [x ] and let c(F ) be its content ideal in

T = k[y ].

Recall: yi F ∈ Id(B) · T [x ] ∀i and Id(B) ⊂ T

=⇒ c(yiF ) ⊂ Id(B) ∀i

=⇒ yi c(F ) ⊂ Id(B) ⊂ J ∀i

=⇒ c(F ) ⊂ J

Main Theorem [Kustin-Polini-U]

Assume codim I = 3 and R/I is Gorenstein. If I is Gd and linearly

presented, then

R(I ) ∼= S/(L+ Id(B)S + c(F )S) and A(X ) ∼= T/(Id(B) + c(F )) .
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Main Theorem [Kustin-Polini-U]

Assume codim I = 3 and R/I is Gorenstein. If I is Gd and linearly

presented, then

R(I ) ∼= S/(L+ Id(B)S + c(F )S) and A(X ) ∼= T/(Id(B) + c(F )) .

Notice that in the setting of the Main Theorem,

I is of fiber type

If d is odd, then F = 0 and hence J has the expected form.
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Corollary

X is Cohen-Macaulay.

depth A(X ) =

{
1 if d is odd and n > d + 1

2 if d is even and n > d + 1

and A(X ) is Cohen-Macaulay otherwise.

If d is odd, then I (X ) has a linear resolution.

Theorem [Polini-U]

R(I ) is Cohen-Macaulay ⇐⇒ n ≤ d + 1.
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The steps in the proof of the Main Theorem

(I) I is of fiber type.

=⇒ it remains to prove that I (X ) = Id(B) + c(F ).

(II) codim Id(B) ≥ n − d

=⇒ codim (Id(B) + c(F )) = codim I (X )

(III) Id(B) + c(F ) is unmixed.

(IV) Express deg X in terms of the j-multiplicity of the ideal I .

=⇒ A(X ) and T/Id(B) + c(F ) have the same multiplicity.

=⇒ The two rings are isomorphic.
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(I) Bounding generator degrees of J

R = k[x1, . . . , xd ] ⊃ I = (f1, . . . , fn), fi forms of the same degree δ

0 −→ A −→ S = Sym(I (δ)) −→ R(I ) −→ 0

Assume: Ip is of linear type ∀p 6= m, equivalently, A = H0
m(S)

Hence:

I is of fiber type ⇐⇒ H0
m(S) generated in (x)-degree 0

⇐⇒ H0
m(Symi (I (δ))) generated in degree 0 ∀i .
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Let

C• : . . . → C1 → C0 → 0

be a homogeneous complex of finite R-modules with H0(C•) =: M

and assume that dim Hj(C•) ≤ j ∀j > 0 .

We think of C• as an approximate resolution of M.

Proposition

If depth Cj ≥ j + 1 for 0 ≤ j ≤ d − 1, then

H0
m(M) is concentrated in degrees ≤ b(Cd)− d ,

where b(Cd) denotes the largest generator degree of Cd .
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Proposition

If depth Cj ≥ j + 1 for 0 ≤ j ≤ d − 1, then

H0
m(M) is concentrated in degrees ≤ b(Cd)− d ,

where b(Cd) denotes the largest generator degree of Cd .

Theorem

If depth Cj ≥ min{j + 2, d} for 0 ≤ j ≤ d − 1, then

H0
m(M) is generated in degrees ≤ b(Cd−1)− d + 1.
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Back to Rees algebras

R = k[x1, . . . , xd ] ⊃ I = (f1, . . . , fn) with fi forms of degree δ.

Consider a minimal homogeneous presentation

⊕R(−εj)
ϕ−→ Rn [f1...fn]−−−−→ I (δ) −→ 0

with ε1 ≥ ε2 ≥ . . . . We may assume that n = µ(I ) > d .

Corollary

Assume codim I = 2 and R/I is Cohen-Macaulay. If I is Gd , then

A = H0
m(S) is concentrated in x-degrees ≤

∑d
j=1 εj − d and is

generated in x-degrees ≤
∑d−1

j=1 εj − d + 1.
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Now assume that codim I = 3 and R/I is Gorenstein. In this case

complexes of free modules were constructed by Kustin-U that are

approximate resolutions of Symi (I ) if µ(Ip) ≤ codim p + 1

whenever codim p ≤ d − 2.

Corollary

Assume codim I = 3 and R/I is Gorenstein. In this case

ε1 = ε2 = . . . =: ε. If I is Gd , then A = H0
m(S) is concentrated in

x-degrees

≤

{
d(ε− 1) if d is odd

d(ε− 1) + n−d−1
2 ε if d is even

and is generated in x-degrees ≤ (d − 1)(ε− 1).

In particular, if I is linearly presented, then I is of fiber type. So it

remains to prove that I (X ) = Id(B) + c(F ).
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(II) The codimension of Id(B)

R = k[x1, . . . , xd ] ⊃ I a linearly presented ideal:

⊕R(−1)
ϕ−→ Rn [f1...fn]−−−−→ I (δ) −→ 0

Recall: y · ϕ = x · B

Theorem

Assume Ip is of linear type ∀p 6= m. If Symt(I (δ)), for some

t � 0, has an approximate free resolution that is linear for the first

d steps, then

J =
√
L+ Id(B) and I (X ) =

√
Id(B).

In particular, codim Id(B) = codim I (X ).
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The assumptions of the Theorem are satisfied if codim I = 3, R/I

is Gorenstein, and I is Gd and linearly presented – as approximate

resolution one takes the complexes of [Kustin-U]. Hence

codim Id(B) = codim I (X ).

Proof of the Theorem: Recall

L+ Id(B) ⊂ L : m ⊂ J

We prove that both containments are equalities up to radical.
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Symt(I (δ)) has an approximate free resolution that is linear for the

first d steps

=⇒ H0
m(Symt(I (δ))) = A(−,t) is concentrated in x-degree 0

Moreover: A is generated in y -degrees ≤ t

=⇒ (y)tA is concentrated in x-degree 0

=⇒ (y)tA is generated in x-degree 0 and m (y)tA = 0

=⇒ Locally on the punctured spectrum of k[x , y ] = S ,

J = L+ I (X )S and mA = 0 which means J = L : m

=⇒ J =
√
L+ I (X )S and J =

√
L : m

Bernd Ulrich Purdue University Rees algebras of codimension three Gorenstein ideals



Symt(I (δ)) has an approximate free resolution that is linear for the

first d steps

=⇒ H0
m(Symt(I (δ))) = A(−,t) is concentrated in x-degree 0

Moreover: A is generated in y -degrees ≤ t

=⇒ (y)tA is concentrated in x-degree 0

=⇒ (y)tA is generated in x-degree 0 and m (y)tA = 0

=⇒ Locally on the punctured spectrum of k[x , y ] = S ,

J = L+ I (X )S and mA = 0 which means J = L : m

=⇒ J =
√
L+ I (X )S and J =

√
L : m

Bernd Ulrich Purdue University Rees algebras of codimension three Gorenstein ideals



Symt(I (δ)) has an approximate free resolution that is linear for the

first d steps

=⇒ H0
m(Symt(I (δ))) = A(−,t) is concentrated in x-degree 0

Moreover: A is generated in y -degrees ≤ t

=⇒ (y)tA is concentrated in x-degree 0

=⇒ (y)tA is generated in x-degree 0 and m (y)tA = 0

=⇒ Locally on the punctured spectrum of k[x , y ] = S ,

J = L+ I (X )S and mA = 0 which means J = L : m

=⇒ J =
√
L+ I (X )S and J =

√
L : m

Bernd Ulrich Purdue University Rees algebras of codimension three Gorenstein ideals



Symt(I (δ)) has an approximate free resolution that is linear for the

first d steps

=⇒ H0
m(Symt(I (δ))) = A(−,t) is concentrated in x-degree 0

Moreover: A is generated in y -degrees ≤ t

=⇒ (y)tA is concentrated in x-degree 0

=⇒ (y)tA is generated in x-degree 0 and m (y)tA = 0

=⇒ Locally on the punctured spectrum of k[x , y ] = S ,

J = L+ I (X )S and mA = 0 which means J = L : m

=⇒ J =
√
L+ I (X )S and J =

√
L : m

Bernd Ulrich Purdue University Rees algebras of codimension three Gorenstein ideals



Symt(I (δ)) has an approximate free resolution that is linear for the

first d steps

=⇒ H0
m(Symt(I (δ))) = A(−,t) is concentrated in x-degree 0

Moreover: A is generated in y -degrees ≤ t

=⇒ (y)tA is concentrated in x-degree 0

=⇒ (y)tA is generated in x-degree 0 and m (y)tA = 0

=⇒ Locally on the punctured spectrum of k[x , y ] = S ,

J = L+ I (X )S and mA = 0 which means J = L : m

=⇒ J =
√
L+ I (X )S and J =

√
L : m

Bernd Ulrich Purdue University Rees algebras of codimension three Gorenstein ideals



Symt(I (δ)) has an approximate free resolution that is linear for the

first d steps

=⇒ H0
m(Symt(I (δ))) = A(−,t) is concentrated in x-degree 0

Moreover: A is generated in y -degrees ≤ t

=⇒ (y)tA is concentrated in x-degree 0

=⇒ (y)tA is generated in x-degree 0 and m (y)tA = 0

=⇒ Locally on the punctured spectrum of k[x , y ] = S ,

J = L+ I (X )S and mA = 0 which means J = L : m

=⇒ J =
√
L+ I (X )S and J =

√
L : m
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We have J =
√
L+ I (X )S and J =

√
L : m

The second equation gives

J =
√
L :S m =

√
annS(mS/L) =

√
Fitt0(mS/L)

⊂
√

Id(B)S + mS

Taking the x-degree 0 component, we obtain

I (X ) =
√

Id(B)

Substituting this into the first equation above gives

J =
√
L+ Id(B)S
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(III) The unmixedness of Id(B) + c(F ), or minors of

matrices annihilated by a column of indeterminates

Let d and n be any integers with 1 < d < n, T = k[y1, . . . , yn],

B a d × n matrix of linear forms

Assume

B · y t = 0

Notice: codim Id(B) ≤ n − d

We construct complexes of free T -modules that are resolutions of

T/Id(B) and T/Id(B) + c(F ) if codim Id(B) = n − d . These

resolutions show:
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Theorem

Assume codim Id(B) = n − d

pdTT/Id(B) =

{
n − 1 if n − d is even

n if n − d is odd

pdTT/(Id(B) + c(F )) =


n − 1 if n − d is even

n − 2 if n − d ≥ 3 is odd

1 if n − d = 1

e(T/Id(B)) = e(T/Id(B) + c(F )) =
∑b n−d

2
c

i=0

(n−2−2i
d−2

)
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Proposition

If codim Id(B) = n − d , then Id(B)yi = (Id(B) + c(F ))yi define

Cohen-Macaulay rings ∀i .

Proof The equality holds because yi c(F ) ⊂ Id(B).

To show Cohen-Macaulayness, let Bi be the matrix obtained from

B by deleting column i .

B · y t = 0 =⇒ Id(B)yi = Id(Bi )yi

But Id(Bi )yi is the ideal of d × d minors of a d × n − 1 matrix

having codimension ≥ n − d = (n − 1)− d + 1.

Corollary

If codim Id(B) = n − d , then

Id(B) + c(F ) = Id(B)unm

= Id(B) iff n − d is even.
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Back to Rees algebras

By now we have seen that

Id(B) + c(F ) ⊂ I (X )

are unmixed ideals of the same codimension. Therefore these ideals

are equal if the rings they define have the same multiplicity. It

remains to compute the multiplicity of A(X ) = T/I (X ).
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(IV) The multiplicity of A(X )

R = k[x1, . . . , xd ] ⊃ I = (f1, . . . , fn) with fi forms of degree δ

Φ : Pd−1
k

[f1:...:fn]− −→ Pn−1
k

Assume: dim X = d − 1

Write: r := deg Φ = [k(mδ) : k(Iδ)]

Assume |k | =∞ and let a be an ideal generated by d − 1 general

forms of degree δ in I .

Proposition

e(A(X )) =
1

r
e(R/a : I∞) =

1

r δ
j(I )
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Proposition

e(A(X )) =
1

r
e(R/a : I∞) =

1

r δ
j(I )

If I is linearly presented, then r = 1 [Eisenbud-U, Simis]

If codim I = 3, R/I is Gorenstein, and I is Gd , then

R/a : I∞ = R/a : I and free R-resolutions of the latter have

been worked out [Kustin-U].

Under the two combined assumptions, one obtains a formula for

e(A(X )), which shows that A(X ) and T/Id(B) + c(F ) have indeed

the same multiplicity.
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