Noetherianity up to symmetry

Jan Draisma
TU Eindhoven and VU Amsterdam

Singular Landscapes in honour of Bernard Teissier Aussois, June 2015

A landscape, and a disclaimer

I. Equivariant Noetherianity

$K\left[x_{1}, x_{2}, x_{3}, \ldots\right]$

For K a field, $R:=K\left[x_{1}, x_{2}, \ldots\right]$ is not a Noetherian ring \ldots but:

```
\(K\left[x_{1}, x_{2}, x_{3}, \ldots\right]\)
```

For K a field, $R:=K\left[x_{1}, x_{2}, \ldots\right]$ is not a Noetherian ring \ldots but:

Let $\operatorname{Sym}(\mathbb{N})$ act on R by $\pi x_{i}=x_{\pi(i)}$. Every chain $I_{1} \subseteq I_{2} \subseteq \ldots$ of $\operatorname{Sym}(\mathbb{N})$-stable ideals of R stabilises, i.e., I_{n} is constant for $n \gg 0$.

```
\(K\left[x_{1}, x_{2}, x_{3}, \ldots\right]\)
```

For K a field, $R:=K\left[x_{1}, x_{2}, \ldots\right]$ is not a Noetherian ring \ldots but:
Theorem [Cohen 1967/Aschenbrenner-Hillar 2007]
Let $\operatorname{Sym}(\mathbb{N})$ act on R by $\pi x_{i}=x_{\pi(i)}$. Every chain $I_{1} \subseteq I_{2} \subseteq \ldots$ of $\operatorname{Sym}(\mathbb{N})$-stable ideals of R stabilises, i.e., I_{n} is constant for $n \gg 0$.

Definition

Given a commutative ring R, a monoid Π, and an action of Π on R by algebra homomorphisms, R is Π-Noetherian if every chain $I_{1} \subseteq I_{2} \subseteq \ldots$ of Π-stable ideals stabilises.
$K\left[x_{1}, x_{2}, x_{3}, \ldots\right]$
For K a field, $R:=K\left[x_{1}, x_{2}, \ldots\right]$ is not a Noetherian ring \ldots but:
Theorem
[Cohen 1967/Aschenbrenner-Hillar 2007]
Let $\operatorname{Sym}(\mathbb{N})$ act on R by $\pi x_{i}=x_{\pi(i)}$. Every chain $I_{1} \subseteq I_{2} \subseteq \ldots$ of $\operatorname{Sym}(\mathbb{N})$-stable ideals of R stabilises, i.e., I_{n} is constant for $n \gg 0$.

Definition

Given a commutative ring R, a monoid Π, and an action of Π on R by algebra homomorphisms, R is Π-Noetherian if every chain $I_{1} \subseteq I_{2} \subseteq \ldots$ of Π-stable ideals stabilises.

Equivalently:

- each Π-stable ideal I is generated by finitely many Π-orbits in R.
- R is a Noetherian $R * \Pi$-module (multiplication: $\pi * r=\pi(r) * \pi)$.

Increasing maps

$\operatorname{Inc}(\mathbb{N}):=\{\pi: \mathbb{N} \rightarrow \mathbb{N} \mid \pi(1)<\pi(2)<\ldots\}$ is a monoid, and it acts on $R=K\left[x_{1}, x_{2}, \ldots\right]$ by $\pi x_{i}:=x_{\pi(i)}$. For example, if $\pi: 1 \mapsto 2,2 \mapsto 4,3 \mapsto 5, \ldots$, then $\pi x_{1}^{2} x_{3}^{3}=x_{2}^{2} x_{5}^{2}$.

Increasing maps

$\operatorname{Inc}(\mathbb{N}):=\{\pi: \mathbb{N} \rightarrow \mathbb{N} \mid \pi(1)<\pi(2)<\ldots\}$ is a monoid, and it acts on $R=K\left[x_{1}, x_{2}, \ldots\right]$ by $\pi x_{i}:=x_{\pi(i)}$. For example, if $\pi: 1 \mapsto 2,2 \mapsto 4,3 \mapsto 5, \ldots$, then $\pi x_{1}^{2} x_{3}^{3}=x_{2}^{2} x_{5}^{2}$.

Cohen's theorem follows from:
Claim: $K\left[x_{1}, x_{2}, \ldots\right]$ is $\operatorname{Inc}(\mathbb{N})$-Noetherian.

Increasing maps

$\operatorname{Inc}(\mathbb{N}):=\{\pi: \mathbb{N} \rightarrow \mathbb{N} \mid \pi(1)<\pi(2)<\ldots\}$ is a monoid, and it acts on $R=K\left[x_{1}, x_{2}, \ldots\right]$ by $\pi x_{i}:=x_{\pi(i)}$. For example, if $\pi: 1 \mapsto 2,2 \mapsto 4,3 \mapsto 5, \ldots$, then $\pi x_{1}^{2} x_{3}^{3}=x_{2}^{2} x_{5}^{2}$.

Cohen's theorem follows from:
Claim: $K\left[x_{1}, x_{2}, \ldots\right]$ is $\operatorname{Inc}(\mathbb{N})$-Noetherian.

Proof

Increasing maps

$\operatorname{Inc}(\mathbb{N}):=\{\pi: \mathbb{N} \rightarrow \mathbb{N} \mid \pi(1)<\pi(2)<\ldots\}$ is a monoid, and it acts on $R=K\left[x_{1}, x_{2}, \ldots\right]$ by $\pi x_{i}:=x_{\pi(i)}$. For example, if $\pi: 1 \mapsto 2,2 \mapsto 4,3 \mapsto 5, \ldots$, then $\pi x_{1}^{2} x_{3}^{3}=x_{2}^{2} x_{5}^{2}$.

Cohen's theorem follows from:
Claim: $K\left[x_{1}, x_{2}, \ldots\right]$ is $\operatorname{Inc}(\mathbb{N})$-Noetherian.

Proof

- reduce to monomial ideals $(\operatorname{Inc}(\mathbb{N})$ preserves monomial orders).

Increasing maps

$\operatorname{Inc}(\mathbb{N}):=\{\pi: \mathbb{N} \rightarrow \mathbb{N} \mid \pi(1)<\pi(2)<\ldots\}$ is a monoid, and it acts on $R=K\left[x_{1}, x_{2}, \ldots\right]$ by $\pi x_{i}:=x_{\pi(i)}$. For example, if $\pi: 1 \mapsto 2,2 \mapsto 4,3 \mapsto 5, \ldots$, then $\pi x_{1}^{2} x_{3}^{3}=x_{2}^{2} x_{5}^{2}$.

Cohen's theorem follows from:
Claim: $K\left[x_{1}, x_{2}, \ldots\right]$ is $\operatorname{Inc}(\mathbb{N})$-Noetherian.

Proof

- reduce to monomial ideals $(\operatorname{Inc}(\mathbb{N})$ preserves monomial orders).
- show that for any sequence m_{1}, m_{2}, \ldots of monomials in x, there are $i<j, \pi \in \operatorname{Inc}(\mathbb{N}):\left(\pi m_{i}\right) \mid m_{j}$ (well-partial order).

Further examples: matrices

Theorem
[Cohen 98/Hillar-Sullivant 09]
$K\left[x_{i j} \mid 1 \leq i \leq k, j \in \mathbb{N}\right]$ is also $\operatorname{Inc}(\mathbb{N})$-Noetherian $\left(\pi x_{i j}=x_{i \pi(j)}\right)$.

Further examples: matrices

Theorem
[Cohen 98/Hillar-Sullivant 09]
$K\left[x_{i j} \mid 1 \leq i \leq k, j \in \mathbb{N}\right]$ is also $\operatorname{Inc}(\mathbb{N})$-Noetherian $\left(\pi x_{i j}=x_{i \pi(j)}\right)$.
Unfortunately, $K\left[x_{i j} \mid i, j \in \mathbb{N}\right]$ with $\pi x_{i j}=x_{\pi(i), \pi(j)}$ is not. But:

Theorem [Cohen 98/Hillar-Sullivant 09] $K\left[x_{i j} \mid 1 \leq i \leq k, j \in \mathbb{N}\right]$ is also $\operatorname{Inc}(\mathbb{N})$-Noetherian $\left(\pi x_{i j}=x_{i \pi(j)}\right)$.

Unfortunately, $K\left[x_{i j} \mid i, j \in \mathbb{N}\right]$ with $\pi x_{i j}=x_{\pi(i), \pi(j)}$ is not. But:

Proposition

If $\operatorname{char} K=0$, then $K\left[x_{i j} \mid i, j \in \mathbb{N}\right] /((k+1) \times(k+1)$-minors of $x)$ is $\operatorname{Inc}(\mathbb{N})$-Noetherian. (It is an invariant ring of GL_{k-1}.)

Theorem
$K\left[x_{i j} \mid 1 \leq i \leq k, j \in \mathbb{N}\right]$ is also $\operatorname{Inc}(\mathbb{N})$-Noetherian $\left(\pi x_{i j}=x_{i \pi(j)}\right)$.
Unfortunately, $K\left[x_{i j} \mid i, j \in \mathbb{N}\right]$ with $\pi x_{i j}=x_{\pi(i), \pi(j)}$ is not. But:
Proposition
If char $K=0$, then $K\left[x_{i j} \mid i, j \in \mathbb{N}\right] /((k+1) \times(k+1)$-minors of $x)$ is $\operatorname{Inc}(\mathbb{N})$-Noetherian. (It is an invariant ring of GL_{k-1}.)

Theorem
[Sam-Snowden 15]
If char $K=0$, then $K\left[x_{i j} \mid i, j \in \mathbb{N}\right]$ is $\mathrm{GL}_{\mathbb{N}} \times \mathrm{GL}_{\mathbb{N}}$-Noetherian.

Here $\mathrm{GL}_{\mathbb{N}}=\{$
\} acts by left and right multiplication.

Topological Noetherianity

Definition

A topological space X equipped with an action of a monoid Π by continuous maps is called Π-Noetherian if every chain $X_{1} \supseteq X_{2} \supseteq \ldots$ of Π-stable closed subsets stabilises.

Topological Noetherianity

Definition

A topological space X equipped with an action of a monoid Π by continuous maps is called Π-Noetherian if every chain $X_{1} \supseteq X_{2} \supseteq \ldots$ of Π-stable closed subsets stabilises.

If a K-algebra R is Π-Noetherian as a ring, then $\operatorname{Hom}(R, K)$ is a Π-Noetherian topological space. But there are many examples where the converse is unknown or false.

Definition

A topological space X equipped with an action of a monoid Π by continuous maps is called Π-Noetherian if every chain $X_{1} \supseteq X_{2} \supseteq \ldots$ of Π-stable closed subsets stabilises.

If a K-algebra R is Π-Noetherian as a ring, then $\operatorname{Hom}(R, K)$ is a Π-Noetherian topological space. But there are many examples where the converse is unknown or false.

Lemma

- П-equivariant images and finite unions of $П$-Noetherian spaces are Π-Noetherian.
- If a group G acts on X by homeo, and $Z \subseteq X$ is H-Noetherian for a subgroup $H \subseteq G$, then $G Z:=\bigcup_{g \in G} g Z$ is G-Noetherian.

Tuples of matrices

Theorem

For any K and p, the space $\left(K^{\mathbb{N} \times \mathbb{N}}\right)^{p}$ is $\mathrm{GL}_{\mathbb{N}} \times \mathrm{GL}_{\mathbb{N}}-$ Noetherian.

Theorem
For any K and p, the space $\left(K^{\mathbb{N} \times \mathbb{N}}\right)^{p}$ is $\mathrm{GL}_{\mathbb{N}} \times \mathrm{GL}_{\mathbb{N}}-$ Noetherian.
We don't know if this holds ring-theoretically.

Tuples of matrices

Theorem
For any K and p, the space $\left(K^{\mathbb{N} \times \mathbb{N}}\right)^{p}$ is $\mathrm{GL}_{\mathbb{N}} \times \mathrm{GL}_{\mathbb{N}}-$ Noetherian.
We don't know if this holds ring-theoretically.

Key notion

The rank of a tuple $\left(A_{1}, \ldots, A_{p}\right)$ is $\min \left\{\mathrm{rk} \sum_{i} c_{i} A_{i} \mid c \in \mathbb{P}^{p-1}\right\}$.

Tuples of matrices

Theorem

For any K and p, the space $\left(K^{\mathbb{N} \times \mathbb{N}}\right)^{p}$ is $\mathrm{GL}_{\mathbb{N}} \times \mathrm{GL}_{\mathbb{N}}-$ Noetherian.
We don't know if this holds ring-theoretically.

Key notion

The rank of a tuple $\left(A_{1}, \ldots, A_{p}\right)$ is $\min \left\{\mathrm{rk} \sum_{i} c_{i} A_{i} \mid c \in \mathbb{P}^{p-1}\right\}$.

Dichotomy

For $X \subseteq\left(K^{\mathbb{N} \times \mathbb{N}}\right)^{p}$ closed and $\mathrm{GL}_{\mathbb{N}} \times \mathrm{GL}_{\mathbb{N}}$-stable, either:

1. $\sup _{A \in X} \mathrm{rk} A<\infty \leadsto$ can do induction on p; or
2. $\sup _{A \in X} \operatorname{rk} A=\infty \leadsto X=\left(K^{\mathbb{N} \times \mathbb{N}}\right)^{p}$.

II. Why?

Motivating question
X_{1}, X_{2}, \ldots algebraic varieties
$X_{n} \subseteq A_{n}$ closed embedding \leadsto stabilise for $n \gg 0$?

Motivating question
X_{1}, X_{2}, \ldots algebraic varieties
$X_{n} \subseteq A_{n}$ closed embedding \leadsto stabilise for $n \gg 0$?

Running example

$A_{n}=K^{n \times n}(n \times n$-matrices over a field $K)$
$X_{n}=\left\{x \in A_{n} \mid \operatorname{rank} x \leq 1\right\}$
defined by equations $x_{i j} x_{k l}-x_{i l} x_{k j}=0$ for all $n \geq 2$

Passing to a limit

Set-up

A_{n} a finite-dimensional vector space, $\pi_{n}: A_{n+1} \rightarrow A_{n}$ linear $X_{n} \subseteq A_{n}$ a closed subvariety, fitting in a commutative diagram

Passing to a limit

Set-up

A_{n} a finite-dimensional vector space, $\pi_{n}: A_{n+1} \rightarrow A_{n}$ linear $X_{n} \subseteq A_{n}$ a closed subvariety, fitting in a commutative diagram

Passing to a limit

Set-up
A_{n} a finite-dimensional vector space, $\pi_{n}: A_{n+1} \rightarrow A_{n}$ linear $X_{n} \subseteq A_{n}$ a closed subvariety, fitting in a commutative diagram

Running example
$A_{n}=K^{n \times n} \supseteq X_{n}=\{$ rank ≤ 1 matrices $\}$
π_{n} forgets the last row and column
$A_{\infty}=K^{\mathbb{N} \times \mathbb{N}}$ space with coordinates $x_{i j}, i, j \in \mathbb{N}$
$X_{\infty}=\{\mathbb{N} \times \mathbb{N}$ rank ≤ 1 matrices $\}$

Set-up

Set-up

Set-up

Running example

$A_{n}=K^{n \times n}, G_{n}=\mathrm{GL}_{n}(K)$ acting by $(g, a) \mapsto g a g^{-1}$
$G_{\infty}=\mathrm{GL}_{\mathbb{N}}(K)$, preserves X_{∞}

Summary

X_{∞} is a variety in the vector space A_{∞} with countably many coordinates. If f is a polynomial that vanishes everywhere on X_{∞}, then so is $g f:=f \circ g^{-1}$ for all $g \in G_{\infty}$.

Formalising stabilisation

Summary

X_{∞} is a variety in the vector space A_{∞} with countably many
coordinates. If f is a polynomial that vanishes everywhere on X_{∞}, then so is $g f:=f \circ g^{-1}$ for all $g \in G_{\infty}$.

Question (with many variants)
Is X_{∞} the common zero set of finitely many orbits $G_{\infty} f_{1}, \ldots, G_{\infty} f_{s}$ of polynomial equations? Typical proof strategy: find a G_{∞}-Noetherian subvariety Y_{∞} of A_{∞} containing X_{∞}.

Formalising stabilisation

Summary

X_{∞} is a variety in the vector space A_{∞} with countably many
coordinates. If f is a polynomial that vanishes everywhere on X_{∞}, then so is $g f:=f \circ g^{-1}$ for all $g \in G_{\infty}$.

Question (with many variants)
Is X_{∞} the common zero set of finitely many orbits $G_{\infty} f_{1}, \ldots, G_{\infty} f_{s}$ of polynomial equations? Typical proof strategy: find a G_{∞}-Noetherian subvariety Y_{∞} of A_{∞} containing X_{∞}.

Example: rank-one matrices

X_{∞} is defined by the $\mathrm{GL}_{\mathbb{N}}(K)$-orbit of $x_{11} x_{22}-x_{12} x_{21}$
so the family $\left\{X_{n}\right\}_{n}$ stabilises.

III. Topics

Definition

Rank of $\omega \in V_{1} \otimes \cdots \otimes V_{n}$ is the minimal k in any expression $\omega=\sum_{i=1}^{k} v_{i 1} \otimes \cdots \otimes v_{i n}$. (For $n=2$ this is matrix rank.)

Topic 1: bounded-rank tensors

Definition

Rank of $\omega \in V_{1} \otimes \cdots \otimes V_{n}$ is the minimal k in any expression $\omega=\sum_{i=1}^{k} v_{i 1} \otimes \cdots \otimes v_{i n}$. (For $n=2$ this is matrix rank.)

Theorem [D-Kuttler, 2014]
For any fixed k there is a d, independent of n and the V_{i}, such that $\overline{\{\omega \mid \operatorname{rank} \omega \leq k\}}$ is defined by polynomials of degree $\leq d$.

Topic 1: bounded-rank tensors

Definition

Rank of $\omega \in V_{1} \otimes \cdots \otimes V_{n}$ is the minimal k in any expression $\omega=\sum_{i=1}^{k} v_{i 1} \otimes \cdots \otimes v_{i n}$. (For $n=2$ this is matrix rank.)

Theorem

[D-Kuttler, 2014]
For any fixed k there is a d, independent of n and the V_{i}, such that $\overline{\{\omega \mid \operatorname{rank} \omega \leq k\}}$ is defined by polynomials of degree $\leq d$.

Table

k	0	1	2	3	4
d	1	2	3^{\dagger}	4^{\bullet}	$\geq 9^{*}$

\dagger [Landsberg-Manivel, 2004]

- [Qi, 2014]
* [Strassen,1983]

Topic 1: bounded-rank tensors

Definition

Rank of $\omega \in V_{1} \otimes \cdots \otimes V_{n}$ is the minimal k in any expression $\omega=\sum_{i=1}^{k} v_{i 1} \otimes \cdots \otimes v_{i n}$. (For $n=2$ this is matrix rank.)

Theorem

[D-Kuttler, 2014]
For any fixed k there is a d, independent of n and the V_{i}, such that $\overline{\{\omega \mid \operatorname{rank} \omega \leq k\}}$ is defined by polynomials of degree $\leq d$.

Table

k	0	1	2	3	4
d	1	2	3^{\dagger}	4^{\bullet}	$\geq 9^{*}$

\dagger [Landsberg-Manivel, 2004]

- [Qi, 2014]
* [Strassen,1983]

Proof set-up

$$
\begin{aligned}
& A_{n}=\left(K^{k+1}\right)^{\otimes n} \supseteq X_{n}=\overline{\{r a n k \leq k\}} \text { ○ } G_{n}=S_{n} \ltimes \mathrm{GL}_{k+1}^{n} \\
& \pi_{n}: A_{n+1} \rightarrow A_{n},\left(v_{1} \otimes \cdots \otimes v_{n+1}\right) \mapsto x_{0}\left(v_{n+1}\right) \cdot v_{1} \otimes \cdots \otimes v_{n}
\end{aligned}
$$

Topic 2: Markov bases

Second hypersimplex

$P_{n}:=\left\{v_{i j}=e_{i}+e_{j} \mid 1 \leq i \neq j \leq n\right\}$

Topic 2: Markov bases

Second hypersimplex
$P_{n}:=\left\{v_{i j}=e_{i}+e_{j} \mid 1 \leq i \neq j \leq n\right\}$
Theorem
[De Loera-Sturmfels-Thomas 1995]
P_{n} has a Markov basis consisting of moves $v_{i j}+v_{k l} \rightarrow v_{i l}+v_{k j}$ and $v_{i j} \rightarrow v_{j i}$ for i, j, k, l distinct; i.e., if $\sum_{i j} c_{i j} v_{i j}=\sum_{i j} d_{i j} v_{i j}$ with $c_{i j}, d_{i j} \in \mathbb{Z}_{\geq 0}$, then the expressions are connected by such moves without creating negative coefficients.

Second hypersimplex
$P_{n}:=\left\{v_{i j}=e_{i}+e_{j} \mid 1 \leq i \neq j \leq n\right\}$

Theorem

[De Loera-Sturmfels-Thomas 1995]
P_{n} has a Markov basis consisting of moves $v_{i j}+v_{k l} \rightarrow v_{i l}+v_{k j}$ and $v_{i j} \rightarrow v_{j i}$ for i, j, k, l distinct; i.e., if $\sum_{i j} c_{i j} v_{i j}=\sum_{i j} d_{i j} v_{i j}$ with $c_{i j}, d_{i j} \in \mathbb{Z}_{\geq 0}$, then the expressions are connected by such moves without creating negative coefficients.

Theorem
[D-Eggermont-Krone-Leykin 2013]
For any family ($P_{n} \subseteq \mathbb{Z}^{k \times n}$), if $P_{n}=S_{n} P_{n_{0}}$ for $n \geq n_{0}$, then $\exists n_{1}$: for $n \geq n_{1}$ has a Markov basis M_{n} with $M_{n}=S_{n} M_{n_{1}}$. \leadsto we also have an algorithm for computing n_{1} and $M_{n_{1}}$

Grassmannians

$\mathbf{G r}_{k}(V) \subseteq \mathbb{P}\left(\bigwedge^{k} V\right)$ is functorial in V, and the "Hodge dual" $\bigwedge^{k} V \rightarrow \bigwedge^{n-k} V^{*}$ with $\operatorname{dim} V=n$ maps $\mathbf{G r}_{k}(V) \rightarrow \mathbf{G r}_{n-k}\left(V^{*}\right)$.

Topic 3: Plücker varieties

Grassmannians

$\mathbf{G r}_{k}(V) \subseteq \mathbb{P}\left(\bigwedge^{k} V\right)$ is functorial in V, and the "Hodge dual" $\bigwedge^{k} V \rightarrow \bigwedge^{n-k} V^{*}$ with $\operatorname{dim} V=n$ maps $\mathbf{G r}_{k}(V) \rightarrow \mathbf{G r}_{n-k}\left(V^{*}\right)$.

Definition

A sequence $\left(\mathbf{X}_{k}\right)_{k}$ of rules $\mathbf{X}_{k}: V \mapsto X_{k}(V) \subseteq \mathbb{P}\left(\bigwedge^{k}(V)\right)$ with these two properties is a Plücker variety.

Topic 3: Plücker varieties

Grassmannians

$\mathbf{G r}_{k}(V) \subseteq \mathbb{P}\left(\bigwedge^{k} V\right)$ is functorial in V, and the "Hodge dual"
$\bigwedge^{k} V \rightarrow \bigwedge^{n-k} V^{*}$ with $\operatorname{dim} V=n$ maps $\mathbf{G r}_{k}(V) \rightarrow \mathbf{G r}_{n-k}\left(V^{*}\right)$.

Definition

A sequence $\left(\mathbf{X}_{k}\right)_{k}$ of rules $\mathbf{X}_{k}: V \mapsto X_{k}(V) \subseteq \mathbb{P}\left(\bigwedge^{k}(V)\right)$ with these two properties is a Plücker variety.

Construction of new Plücker varieties tangential variety, secant variety, etc.

Grassmannians

$\mathbf{G r}_{k}(V) \subseteq \mathbb{P}\left(\bigwedge^{k} V\right)$ is functorial in V, and the "Hodge dual"
$\bigwedge^{k} V \rightarrow \bigwedge^{n-k} V^{*}$ with $\operatorname{dim} V=n \operatorname{maps} \mathbf{G r}_{k}(V) \rightarrow \mathbf{G r}_{n-k}\left(V^{*}\right)$.

Definition

A sequence $\left(\mathbf{X}_{k}\right)_{k}$ of rules $\mathbf{X}_{k}: V \mapsto X_{k}(V) \subseteq \mathbb{P}\left(\bigwedge^{k}(V)\right)$ with these two properties is a Plücker variety.

Construction of new Plücker varieties tangential variety, secant variety, etc.

Theorem [D-Eggermont 2014]
For a bounded Plücker variety $\mathbf{X},\left(\mathbf{X}_{k}\left(K^{n}\right)\right)_{k, n-k}$ is defined in bounded degree.

$$
\begin{aligned}
& V_{\infty}:=\left\langle\ldots, x_{-3}, x_{-2}, x_{-1}, x_{1}, x_{2}, x_{3}, \ldots\right\rangle_{K} \\
& V_{n, p}:=\left\langle x_{-n}, \ldots, x_{-1}, x_{1}, \ldots, x_{p}\right\rangle \subseteq V_{\infty}
\end{aligned}
$$

The infinite wedge

$$
\begin{aligned}
& V_{\infty}:=\left\langle\ldots, x_{-3}, x_{-2}, x_{-1}, x_{1}, x_{2}, x_{3}, \ldots\right\rangle_{K} \\
& V_{n, p}:=\left\langle x_{-n}, \ldots, x_{-1}, x_{1}, \ldots, x_{p}\right\rangle \subseteq V_{\infty}
\end{aligned}
$$

Diagram
$\wedge^{0} V_{00}$
$\wedge^{1} V_{01}$
$\wedge^{2} V_{02}$

$\bigwedge^{p} V_{n p} \quad \bigwedge^{p+1} V_{n, p+1}$

\downarrow

$$
\begin{aligned}
& V_{\infty}:=\left\langle\ldots, x_{-3}, x_{-2}, x_{-1}, x_{1}, x_{2}, x_{3}, \ldots\right\rangle_{K} \\
& V_{n, p}:=\left\langle x_{-n}, \ldots, x_{-1}, x_{1}, \ldots, x_{p}\right\rangle \subseteq V_{\infty}
\end{aligned}
$$

Diagram

$$
\begin{aligned}
& \left.\begin{array}{cc}
\Lambda^{0} V_{00} \\
\downarrow & \rightarrow \Lambda^{1} V_{01} \\
\downarrow & \rightarrow \bigwedge^{2} V_{02} \\
\downarrow & \downarrow
\end{array} \begin{array}{c}
\bigwedge^{p} V_{n p} \\
\downarrow
\end{array}\right] \bigwedge^{p+1} V_{n, p+1} \\
& \bigwedge^{0} V_{10} \rightarrow \bigwedge^{1} V_{11} \rightarrow \bigwedge^{2} V_{12} \rightarrow \bigwedge^{p} V_{n+1, p}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\infty}:=\left\langle\ldots, x_{-3}, x_{-2}, x_{-1}, x_{1}, x_{2}, x_{3}, \ldots\right\rangle_{K} \\
& V_{n, p}:=\left\langle x_{-n}, \ldots, x_{-1}, x_{1}, \ldots, x_{p}\right\rangle \subseteq V_{\infty}
\end{aligned}
$$

Diagram

Definition
$\bigwedge^{\infty / 2} V_{\infty}:=\lim _{\rightarrow} \bigwedge^{p} V_{n, p}$ the infinite wedge (charge-0 part); basis $\left\{x_{I}:=x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots\right\}_{I}, I=\left\{i_{1}<i_{2}<\ldots\right\}, i_{k}=k$ for $k \gg 0$

The infinite wedge

$V_{\infty}:=\left\langle\ldots, x_{-3}, x_{-2}, x_{-1}, x_{1}, x_{2}, x_{3}, \ldots\right\rangle_{K}$
$V_{n, p}:=\left\langle x_{-n}, \ldots, x_{-1}, x_{1}, \ldots, x_{p}\right\rangle \subseteq V_{\infty}$
Diagram

Definition
$\bigwedge^{\infty / 2} V_{\infty}:=\lim _{\rightarrow} \bigwedge^{p} V_{n, p}$ the infinite wedge (charge-0 part); basis $\left\{x_{I}:=x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots\right\}_{I}, I=\left\{i_{1}<i_{2}<\ldots\right\}, i_{k}=k$ for $k \gg 0$

On $\bigwedge^{\infty / 2} V_{\infty}$ acts $\mathrm{GL}_{\infty}:=\bigcup_{n, p} \mathrm{GL}\left(V_{n, p}\right)$.

The limit of a Plücker variety

Dual diagram

$$
\begin{aligned}
& \bigwedge^{p} V_{n p}^{*} \longleftarrow \bigwedge^{p+1} V_{n, p+1}^{*} \\
& \bigwedge^{p} V_{n+1, p}^{*}
\end{aligned}
$$

The limit of a Plücker variety

Dual diagram

$$
\begin{aligned}
& \bigwedge^{p} V_{n p}^{*} \longleftarrow \bigwedge^{p+1} V_{n, p+1}^{*} \\
& \bigwedge^{p} V_{n+1, p}^{*}
\end{aligned}
$$

$\left\{\mathbf{X}_{p}\right\}_{p \geq 0}$ a Plücker variety $\leadsto \leadsto$ varieties $X_{n, p}:=\mathbf{X}_{p}\left(V_{n, p}^{*}\right)$

Dual diagram

$\left\{\mathbf{X}_{p}\right\}_{p \geq 0}$ a Plücker variety $\leadsto \leadsto$ varieties $X_{n, p}:=\mathbf{X}_{p}\left(V_{n, p}^{*}\right)$

The limit of a Plücker variety

Dual diagram

$\left\{\mathbf{X}_{p}\right\}_{p \geq 0}$ a Plücker variety $\leadsto \leadsto$ varieties $X_{n, p}:=\mathbf{X}_{p}\left(V_{n, p}^{*}\right)$ $\leadsto \mathbf{X}_{\infty}:=\lim _{\leftarrow} X_{n, p}$ is GL_{∞}-stable subvariety of $\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$ ($\mathbf{G r}_{\infty}$ is Sato's Grassmannian)

The limit of a Plücker variety

Dual diagram

$\left\{\mathbf{X}_{p}\right\}_{p \geq 0}$ a Plücker variety $\leadsto \rightarrow$ varieties $X_{n, p}:=\mathbf{X}_{p}\left(V_{n, p}^{*}\right)$ $\leadsto \mathbf{X}_{\infty}:=\lim _{\leftarrow} X_{n, p}$ is GL_{∞}-stable subvariety of $\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$ ($\mathbf{G r}_{\infty}$ is Sato's Grassmannian)

Theorem

\mathbf{X} bounded $\Rightarrow \mathbf{X}_{\infty}$ cut out by finitely many GL_{∞}-orbits of eqs.

- By boundedness, $\mathbf{X}_{\infty} \subseteq \mathbf{Y}_{\infty}^{(k)}$, where latter is defined in the dual infinite wedge by the orbit of a certain ($2 k \times 2 k$)-Pfaffian.
- By boundedness, $\mathbf{X}_{\infty} \subseteq \mathbf{Y}_{\infty}^{(k)}$, where latter is defined in the dual infinite wedge by the orbit of a certain $(2 k \times 2 k)$-Pfaffian.
- Prove by induction on k that $\mathbf{Y}_{\infty}^{(k)}$ is GL_{∞}-Noetherian, as follows:
- By boundedness, $\mathbf{X}_{\infty} \subseteq \mathbf{Y}_{\infty}^{(k)}$, where latter is defined in the dual infinite wedge by the orbit of a certain $(2 k \times 2 k)$-Pfaffian.
- Prove by induction on k that $\mathbf{Y}_{\infty}^{(k)}$ is GL_{∞}-Noetherian, as follows:
- $\mathbf{Y}^{(k)}=\mathbf{Y}^{(k-1)} \cup \mathrm{GL}_{\infty} Z$, where Z is an open subset where a specific $(2 k-2) \times(2 k-2)$-Pfaffian does not vanish.
- By boundedness, $\mathbf{X}_{\infty} \subseteq \mathbf{Y}_{\infty}^{(k)}$, where latter is defined in the dual infinite wedge by the orbit of a certain $(2 k \times 2 k)$-Pfaffian.
- Prove by induction on k that $\mathbf{Y}_{\infty}^{(k)}$ is GL_{∞}-Noetherian, as follows:
- $\mathbf{Y}^{(k)}=\mathbf{Y}^{(k-1)} \cup \mathrm{GL}_{\infty} Z$, where Z is an open subset where a specific $(2 k-2) \times(2 k-2)$-Pfaffian does not vanish.
- Z is stable under a subgroup $\mathrm{GL}_{\mathbb{N}} \times \mathrm{GL}_{\mathbb{N}} \cong H \subseteq \mathrm{GL}_{\infty}$, and embeds equivariantly into some $\left(K^{\mathbb{N} \times \mathbb{N}}\right)^{p}$.
- By boundedness, $\mathbf{X}_{\infty} \subseteq \mathbf{Y}_{\infty}^{(k)}$, where latter is defined in the dual infinite wedge by the orbit of a certain $(2 k \times 2 k)$-Pfaffian.
- Prove by induction on k that $\mathbf{Y}_{\infty}^{(k)}$ is GL_{∞}-Noetherian, as follows:
- $\mathbf{Y}^{(k)}=\mathbf{Y}^{(k-1)} \cup \mathrm{GL}_{\infty} Z$, where Z is an open subset where a specific $(2 k-2) \times(2 k-2)$-Pfaffian does not vanish.
- Z is stable under a subgroup $\mathrm{GL}_{\mathbb{N}} \times \mathrm{GL}_{\mathbb{N}} \cong H \subseteq \mathrm{GL}_{\infty}$, and embeds equivariantly into some $\left(K^{\mathbb{N} \times \mathbb{N}}\right)^{p}$.
- So Z is $\mathrm{GL}_{\mathbb{N}} \times \mathrm{GL}_{\mathbb{N}}-$ Noetharian, and $\mathrm{GL}_{\infty} Z$ is GL_{∞}-Noetherian, and so is $\mathbf{Y}_{\infty}^{(k)}$, and hence \mathbf{X}_{∞} is defined by finitely many further GL_{∞}-orbits of equations.

IV. Further areas

Stabilisation in other areas

Algebraic statistics

families of graphical models where the graph grows [Hillar-Sullivant, Takemura, Yoshida, D-Eggermont,...]

Stabilisation in other areas

Algebraic statistics families of graphical models where the graph grows [Hillar-Sullivant, Takemura, Yoshida, D-Eggermont,...]

Commutative algebra and representation theory higher syzygies, sequences of modules [Sam-Snowden, Church-Ellenberg-Farb, ...]

Stabilisation in other areas

Algebraic statistics families of graphical models where the graph grows [Hillar-Sullivant, Takemura, Yoshida, D-Eggermont,...]

Commutative algebra and representation theory higher syzygies, sequences of modules [Sam-Snowden, Church-Ellenberg-Farb, ...]

Combinatorics

matroid minor theory
[Geelen-Gerards-Whittle, ...]

From very diverse areas of pure and applied mathematics large algebraic structures arise with remarkable finiteness properties.

From very diverse areas of pure and applied mathematics large algebraic structures arise with remarkable finiteness properties.

Keywords include FI-modules (Church-Ellenberg-Farb), Delta-modules (Snowden), twisted commutative algebras (Sam-Snowden), equivariant Noetherianity, and equivariant Gröbner bases.

