
1

Noetherianity up to symmetry

Jan Draisma
TU Eindhoven and VU Amsterdam

Singular Landscapes
in honour of Bernard Teissier

Aussois, June 2015



2A landscape, and a disclaimer



2A landscape, and a disclaimer
#

pa
rt

ic
ip

an
ts



2A landscape, and a disclaimer
#

pa
rt

ic
ip

an
ts

Teissier #



2A landscape, and a disclaimer
#

pa
rt

ic
ip

an
ts

Erdős #
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I. Equivariant Noetherianity
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For K a field, R := K[x1, x2, . . .] is not a Noetherian ring . . . but:

Theorem [Cohen 1967/Aschenbrenner-Hillar 2007]
Let Sym(N) act on R by πxi = xπ(i). Every chain I1 ⊆ I2 ⊆ . . . of
Sym(N)-stable ideals of R stabilises, i.e., In is constant for n � 0.

Definition
Given a commutative ring R, a monoid Π, and an action of Π on R
by algebra homomorphisms, R is Π-Noetherian if every chain
I1 ⊆ I2 ⊆ . . . of Π-stable ideals stabilises.

Equivalently:
• each Π-stable ideal I is generated by finitely many Π-orbits in R.
• R is a Noetherian R ∗Π-module (multiplication: π ∗ r = π(r) ∗π).
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Increasing maps
Inc(N) := {π : N→ N | π(1) < π(2) < . . .} is a monoid, and it acts
on R = K[x1, x2, . . .] by πxi := xπ(i). For example, if
π : 1 7→ 2, 2 7→ 4, 3 7→ 5, . . ., then πx2

1x3
3 = x2

2x2
5.

Cohen’s theorem follows from:
Claim: K[x1, x2, . . .] is Inc(N)-Noetherian.

Proof

• show that for any sequence m1,m2, . . . of monomials in x, there
are i < j, π ∈ Inc(N) : (πmi)|m j (well-partial order). �

• reduce to monomial ideals (Inc(N) preserves monomial orders).
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Theorem [Cohen 98/Hillar-Sullivant 09]
K[xi j | 1 ≤ i ≤ k, j ∈ N] is also Inc(N)-Noetherian (πxi j = xiπ( j)).

Unfortunately, K[xi j | i, j ∈ N] with πxi j = xπ(i),π( j) is not. But:

Proposition
If charK = 0, then K[xi j | i, j ∈ N]/((k + 1) × (k + 1)-minors of x)
is Inc(N)-Noetherian. (It is an invariant ring of GLk−1.)

Theorem [Sam-Snowden 15]
If charK = 0, then K[xi j | i, j ∈ N] is GLN × GLN-Noetherian.

1

g

1 . . .

Here GLN = { } acts by left and right multiplication.
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Definition
A topological space X equipped with an action of a monoid Π by
continuous maps is called Π-Noetherian if every chain
X1 ⊇ X2 ⊇ . . . of Π-stable closed subsets stabilises.

If a K-algebra R is Π-Noetherian as a ring, then Hom(R,K) is a
Π-Noetherian topological space. But there are many examples
where the converse is unknown or false.

Lemma
• Π-equivariant images and finite unions of Π-Noetherian spaces
are Π-Noetherian.
• If a group G acts on X by homeo, and Z ⊆ X is H-Noetherian
for a subgroup H ⊆ G, then GZ :=

⋃
g∈G gZ is G-Noetherian.
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Theorem
For any K and p, the space (KN×N)p is GLN × GLN-Noetherian.

We don’t know if this holds ring-theoretically.

Key notion
The rank of a tuple (A1, . . . , Ap) is min{rk

∑
i ciAi | c ∈ Pp−1}.

Dichotomy
For X ⊆ (KN×N)p closed and GLN × GLN-stable, either:
1. supA∈X rkA < ∞ can do induction on p; or
2. supA∈X rkA = ∞ X = (KN×N)p.
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II. Why?
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Motivating question
X1, X2, . . . algebraic varieties
Xn ⊆ An closed embedding stabilise for n � 0?

Running example
An = Kn×n (n × n-matrices over a field K)
Xn = {x ∈ An | rank x ≤ 1}
defined by equations xi jxkl − xilxk j = 0 for all n ≥ 2
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Set-up
An a finite-dimensional vector space, πn : An+1 → An linear
Xn ⊆ An a closed subvariety, fitting in a commutative diagram

A1 A2 A3 . . .

X1 X2 X3 . . .

π1 π2 π3
A∞ : dual of a countable-

dimensional space

X∞ :∞-dim variety

Running example
An = Kn×n ⊇ Xn = {rank ≤ 1 matrices}
πn forgets the last row and column
A∞ = KN×N space with coordinates xi j, i, j ∈ N
X∞ = {N × N rank ≤ 1 matrices}
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Set-up

A1 A2 A3 . . .

X1 X2 X3 . . .

A∞

X∞

G1 G2 G3 G∞. . .

π1 π2 π3

Assumptions:
• Gn acts linearly
• Gn preserves Xn

• πn is Gn-equivariant
 G∞ acts on A∞
and preserves X∞

Running example
An = Kn×n, Gn = GLn(K) acting by (g, a) 7→ gag−1

G∞ = GLN(K), preserves X∞
1

g

1 . . .
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Summary
X∞ is a variety in the vector space A∞ with countably many
coordinates. If f is a polynomial that vanishes everywhere on X∞,
then so is g f := f ◦ g−1 for all g ∈ G∞.

Question (with many variants)
Is X∞ the common zero set of finitely many orbits G∞ f1,. . . ,G∞ fs

of polynomial equations? Typical proof strategy: find a
G∞-Noetherian subvariety Y∞ of A∞ containing X∞.

Example: rank-one matrices
X∞ is defined by the GLN(K)-orbit of x11x22 − x12x21
so the family {Xn}n stabilises.
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III. Topics
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Definition
Rank of ω ∈ V1 ⊗ · · · ⊗ Vn is the minimal k in any expression
ω =
∑k

i=1 vi1 ⊗ · · · ⊗ vin. (For n = 2 this is matrix rank.)

Theorem [D-Kuttler, 2014]
For any fixed k there is a d, independent of n and the Vi, such that
{ω | rank ω ≤ k} is defined by polynomials of degree ≤ d.

Table
k
d

0 1 2 3 4
1 2 3† 4• ≥ 9∗

† [Landsberg-Manivel, 2004]
• [Qi, 2014]
∗ [Strassen,1983]

Proof set-up
An = (Kk+1)⊗n ⊇ Xn = {rank ≤ k} Gn = S n n GLn

k+1
πn : An+1 → An, (v1 ⊗ · · · ⊗ vn+1) 7→ x0(vn+1) · v1 ⊗ · · · ⊗ vn
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Second hypersimplex
Pn := {vi j = ei + e j | 1 ≤ i , j ≤ n}

Theorem [De Loera-Sturmfels-Thomas 1995]
Pn has a Markov basis consisting of moves vi j + vkl → vil + vk j

and vi j → v ji for i, j, k, l distinct; i.e., if
∑

i j ci jvi j =
∑

i j di jvi j with
ci j, di j ∈ Z≥0, then the expressions are connected by such moves
without creating negative coefficients.

Theorem [D-Eggermont-Krone-Leykin 2013]
For any family (Pn ⊆ Z

k×n), if Pn = S nPn0 for n ≥ n0, then
∃n1: for n ≥ n1 has a Markov basis Mn with Mn = S nMn1 .

 we also have an algorithm for computing n1 and Mn1
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17Topic 3: Plücker varieties

Grassmannians
Grk(V) ⊆ P(

∧k V) is functorial in V , and the “Hodge dual”∧k V →
∧n−k V∗ with dim V = n maps Grk(V)→ Grn−k(V∗).

Definition
A sequence (Xk)k of rules Xk : V 7→ Xk(V) ⊆ P(

∧k(V)) with these
two properties is a Plücker variety.
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Grassmannians
Grk(V) ⊆ P(

∧k V) is functorial in V , and the “Hodge dual”∧k V →
∧n−k V∗ with dim V = n maps Grk(V)→ Grn−k(V∗).

Definition
A sequence (Xk)k of rules Xk : V 7→ Xk(V) ⊆ P(

∧k(V)) with these
two properties is a Plücker variety.

Construction of new Plücker varieties
tangential variety, secant variety, etc.

Theorem [D-Eggermont 2014]
For a bounded Plücker variety X, (Xk(Kn))k,n−k is defined in
bounded degree.
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∧p Vnp

∧p Vn+1,p

∧p+1 Vn,p+1
t 7→ t ∧ xp+1

Definition∧∞/2 V∞ := lim→
∧p Vn,p the infinite wedge (charge-0 part);

basis {xI := xi1 ∧ xi2 ∧ · · ·}I , I = {i1 < i2 < . . .}, ik = k for k � 0

On
∧∞/2 V∞ acts GL∞ :=

⋃
n,p GL(Vn,p).
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{Xp}p≥0 a Plücker variety varieties Xn,p := Xp(V∗n,p)

Dual diagram∧0 V∗00
∧1 V∗01∧0 V∗10
∧1 V∗11

∧p V∗np

∧p V∗n+1,p

∧p+1 V∗n,p+1

Xn,p Xn,p+1

Xn+1,p

Theorem
X bounded⇒ X∞ cut out by finitely many GL∞-orbits of eqs.

 X∞ := lim← Xn,p is GL∞-stable subvariety of (
∧∞/2 V∞)∗

(Gr∞ is Sato’s Grassmannian)
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• By boundedness, X∞ ⊆ Y(k)
∞ , where latter is defined in the dual

infinite wedge by the orbit of a certain (2k × 2k)-Pfaffian.

• Prove by induction on k that Y(k)
∞ is GL∞-Noetherian, as follows:

• Y(k) = Y(k−1) ∪ GL∞Z, where Z is an open subset where a
specific (2k − 2) × (2k − 2)-Pfaffian does not vanish.
• Z is stable under a subgroup GLN × GLN � H ⊆ GL∞, and
embeds equivariantly into some (KN×N)p.
• So Z is GLN ×GLN-Noetharian, and GL∞Z is GL∞-Noetherian,
and so is Y(k)

∞ , and hence X∞ is defined by finitely many further
GL∞-orbits of equations. �
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Commutative algebra and representation theory
higher syzygies, sequences of modules
[Sam-Snowden, Church-Ellenberg-Farb, . . . ]

Combinatorics
matroid minor theory
[Geelen-Gerards-Whittle, . . . ]
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From very diverse areas of pure and applied mathematics large
algebraic structures arise with remarkable finiteness properties.
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From very diverse areas of pure and applied mathematics large
algebraic structures arise with remarkable finiteness properties.

Keywords include FI-modules (Church-Ellenberg-Farb),
Delta-modules (Snowden), twisted commutative algebras
(Sam-Snowden), equivariant Noetherianity, and equivariant
Gröbner bases.
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