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Introduction Outline

Conventiones

We consider only integral schemes. This simplifies formulations
and does not really restrict the generality.

char(X ) = {p ≥ 2| p = char(k(x)) for x ∈ X}
An alteration is a proper dominant morphism f : X ′ → X of a finite
degree deg(f ) = [k(X ′) : k(X )].
An alteration f is Galois if Y = X ′/G→ X is generically radicial for
G = AutX (X ′). In particular, k(X ′)/k(Y ) is Galois and k(Y )/k(X )
is purely inseparable.
Let T ⊆ P = {2,3,5, . . . } be a set of primes. Then f is a
T-alteration if any prime dividing deg(f ) is in T . Examples:

If T = ∅ then f is a modification.
If T = {p} then f is a p-alteration.
If T = P \ {l} then f is an l ′-alteration.
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Introduction Outline

Main results

We will discuss the following results from [IT14] (exposé X in
"Travaux de Gabber sur ...", Asterisque 363-364):
(0) l ′-altered resolution of varieties (Illusie-T, after Gabber).
(1) l ′-altered semistable reduction over an excellent curve (Illusie-T,

after Gabber).
(d) l ′-altered resolution of a morphism X → S (Illusie-T).

(d) subsumes (0) and (1) when d = dim(S) ≤ 1. The main
ingredients in all three results are de Jong’s Galois alteration
theorem and Gabber’s torification theorem, but the scheme used
to prove (d) differs from that for (0), (1).
In the end, we will discuss a new approach (work in progress) that
aims to upgrade (d), and hence also (0) and (1), to
char(X )-alterations (e.g. p-alteration when X → Spec(Z) factors
through Spec(Fp)).
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Introduction l′-altered resolution theorem

Resolution of morphism

The aim is to approximate a morphism f : X → S with a mildly
singular f ′ : X ′ → S′: find suitable coverings α : S′ → S and
β : X ′ → X , and a morphism f ′ compatible with f

X ′
β′
//

β

))

f ′ $$

X ×S S′

��

// X

f
��

S′ α // S

Typically, the base change α is an alteration, at least if one wants
f ′ to have reduced fibers.
In the ideal situation, β′ is a modification of an irreducible
component of X ×S S′.
Can also consider a divisor in X (omitted for simplicity). If α, β′ are
T -alterations then f ′ is called a T-alteration of f .
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Introduction l′-altered resolution theorem

Examples of relative resolution

Here are the main examples that were known when dim(S) ≥ 1.

(1) Semistable modification of relative curves (de Jong): dim(f ) = 1, α
is an alteration, β′ is a modification, f ′ is semistable.

(2) Semistable modification over a curve of char = 0 (Hironaka):
dim(S) = 1, α is an alteration, β′ is a modification, f ′ is semistable.

(3) Semistable modification over a curve (de Jong): same as (2) with
β′ an alteration.

(4) So-called weak semistable reduction of Abramovich-Karu:
char = 0, α is an alteration, β′ is a modification, f ′ is log smooth (or
toroidal) for appropriate toroidal structures and saturated.

By an example of Karu, semistable alterations do not have to exist
when dim(f ) ≥ 2 and dim(S) ≥ 2. So, the log smoothness condition
seems to be the one with mildest possible singularities.
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Introduction l′-altered resolution theorem

l ′-altered resolution of morphisms

Definition
An integral X is universally T -resolvable if for any alteration X1 → X
and a closed subset Z1 ( X1 there exists a T -alteration f : X ′ → X1
such that X ′ is regular and f−1(Z1) is an snc divisor.

Theorem
Assume that f : X → S is of finite type, l is a prime invertible on S and
S is universally l ′-resolvable. Then X is universally l ′-resolvable and for
any closed Z ( X where exist regular schemes with snc divisors
(X ′,Z ′) and (S′,W ′) and l ′-alteration f ′ : X ′ → S′ of f such that
Z ′ = β−1(Z ) ∪ f ′−1(W ′) and (X ′,Z ′)→ (S′,W ′) is log smooth.
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Introduction l′-altered resolution theorem

Addenda

The same proof shows that if char = 0 then one can even achieve
that both α and β are modifications.
Using log geometry it is easy to see that enlarging α (and loosing
the l ′-property and regularity of X ′) one can make f ′ saturated (flat
with reduced fibers). In char = 0 this extends Abramovich-Karu to
the case when S is not a field.
If S = Spec(k) for a perfect field k then can also achieve that β is
separable.
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Introduction l′-altered resolution theorem

A low-dimensional S

(0) If dim(S) = 0 then S = Spec(k) for a field k , W = ∅ and
(X ′,Z ′)→ S′ is log smooth iff X ′ is smooth and Z ′ is snc, so we
obtain l ′-altered resolution of varieties with closed subsets. (In
addition, X ′ is smooth over a finite extension S′ = Spec(k ′), but
this is not a real strengthening.)

(1) If dim(S) = 1 then S′ is a regular curve and a saturated log
smooth (X ′,Z ′)→ (S′,W ′) is necessarily semistable (also,
saturation is very simple here). So, we obtain altered semistable
modification of X → S with a closed Z ↪→ X , plus precise control
on the toroidal divisor Z ′: the horizontal component is the
preimage of Z . (In the l ′-altered version there might be
non-reduced fibers.)
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de Jong’s Galois alteration theorem

Formulations

Theorem
Let X be a variety over a field k and Z ( X a closed subset. Then
there exists a Galois alteration f : X ′ → X such that X ′ is regular and
Z ′ = f−1(Z ) is an snc divisor. If k is perfect, one can also achieve that
f is generically étale (or separable).

de Jong also proves a similar theorem for X of finite type over S
assuming that any Galois alteration of S can be resolved by a
larger Galois alteration of S.
If S is a trait, a semistable reduction analogue of this theorem was
proved by Gabber-Vidal in 2003.
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de Jong’s Galois alteration theorem

The induction step

de Jong’s theorem is proved by induction on dimension. One finds a
curve fibration g : X → Y , applies induction assumption to Y and
resolves the relative curve g by the following theorem:

Theorem
If g : X → Y is a proper morphism of integral qe schemes and the
generic fiber is a curve then there exists a semistable alteration
g′ : X ′ → Y ′ such that α is a Galois alteration and β′ is a modification.
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de Jong’s Galois alteration theorem

Comments

Resolution of relative curves is much more precise since β′ is a
modification. However, α has to be an alteration, and this results
in an accumulated alteration of β′ once one applies induction on
dim(f ) in the higher-dimensional cases.

The proof uses moduli space of proper curves and a three points
stabilization trick.
de Jong also treats divisors and group actions (critical, but
skipped for shortness).
The main inconvenience is that f should be proper; sometimes
one has to work hard for compactification.
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de Jong’s Galois alteration theorem

Stable modification theorem

A slightly stronger stable modification theorem was proved in
[Tem10]. It applies to any relative curve f (even non-separated)
and claims that there exists a unique minimal semistable (or
stable) modification β′ once a sufficiently large α is chosen.
The proof is by a completely different technique. First one proves
this over Sv = Spec(Rv ) for a valuation ring Rv . Since the
Riemann-Zariski space of S is quasi-compact this implies that
stable modification exists after a base change α′ which is a
Zariski-alteration covering of S. Since the stable modification is
unique, this descends to an actual alteration α.
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Gabber’s torification theorem

Toroidal schemes and log smooth morphisms

By a toroidal scheme (X ,D) we mean Kato’s log regular log
scheme (X ,MX ) with D the divisor where the log structure is
non-trivial.

The rank of the monoid of toroidal Cartier divisors passing through
x ∈ X induce the log stratification of (X ,D). A pair (X ,D) is
toroidal iff the log strata are regular of expected codimension.
Kato: in the equicharacteristic case this just means that (X ,X \ D)
is toroidal (i.e. formally-locally isomorphic to a toric one).
Kato: in the mixed characteristic, formally-locally X is of the form
Spec(C[[M]][[t1, . . . , .tn]]/(θ)) with θ = p mod (p2,M, t1, . . . , .tn)
and C a complete DVR with maximal ideal (p).
Assume X is regular. Then D is snc iff (X ,D) is toroidal.
If (X ,D) is log regular, then X possesses a canonical
"combinatorial" resolution f(X ,D) : X ′ → X (Kato, Niziol, Gabber).

M. Temkin (Hebrew University) Resolution by alterations 14 / 26
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Gabber’s torification theorem

Log smooth morphisms

Informally speaking, log smooth morphisms are the toroidal ones
(i.e. given by monomials formally-locally) with a restriction on p-th
powers for non-invertible primes p (e.g. Frobenius is not log
smooth).
Log smoothness is a more flexible and functorial notion than
toroidality (e.g. it makes sense for not log regular log schemes).
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Gabber’s torification theorem

Toroidal action

Assume that a finite group G acts on a toroidal scheme (X ,D).
The action is tame at x ∈ X if the stabilizer Gx has order invertible
in k(x).
The action is simple at x if Gx preserves the components of D at x
(i.e. acts trivially on the monoid Mx ).
The action is toroidal (very tame in [IT14]) at x if it is simple and
tame at x and Gx acts trivially on the log stratum of D at x .

Theorem
If G acts toroidally on (X ,D) then (X/G,D/G) is toroidal and
(X ,D)→ (X/G,D/G) is log smooth.
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Gabber’s torification theorem

Torification theorem

Definition
A torification of an action of G on a toroidal scheme (X ,D) is a
G-equivariant toroidal morphism (X ′,D′)→ (X ,D) such that X ′ → X is
a modification and the action on (X ′,D′) is toroidal.

Theorem
If G acts tamely on a toroidal scheme (X ,D) then there exists a
canonical projective torification (X ′,D′)→ (X ,D).

Locally one can simply increase D (i.e. X ′ = X ), but this is not
canonical and does not globalize.
Nevertheless, in two existing proofs this is a start point, and after
blowings up in non-reduced centers one manages to remove the
added components.
No proof going by blowing up smooth centers is known!
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Gabber’s torification theorem

Gabber’s proof

Gabber’s proof is in [IT14] and it is very complicated. Main idea: find a
resolution Y ′ → Y = X/G and pull it back to X . Since Y is only locally
(and non-canonically) toroidal, one can resolve Y locally, but it is
difficult to show that this is canonical and hence globalize to the whole
Y . Gabber does this by lifting the situation to characteristic zero and
using that there exists canonical resolution there.
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Gabber’s torification theorem

"Its torific" (from an email of Abramovich to de Jong)

Another, and historically first, approach is by blowing up an explicit
so-called torific ideal associated to (X ,D,G).

Abramovich and de Jong (1997) invented this to deduce resolution
of varieties in char = 0 from altered resolution. In this case, X was
a curve over S with a trivial action.

Abramovich-Karu-Matsuki-Włodarczyk (2001) established
torification for an action of Gm on toroidal varieties of char = 0.
This is an essential step in establishing factorization of birational
maps between regular varieties.
Abramovich-T (2015) used torific blow up to prove torification in
general. Here G is any diagonalizable group and (I think) the
argument is simpler than Gabber’s. (We use this with G = Gm to
extend factorization to general toroidal schemes, assuming
desingularization.)
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Proofs of l′-alteration results

First method: single factorization

Gabber’s proof of l ′-resolution when dim(S) ≤ 1 goes as follows:
(0) Preparation: can assume X → S is proper, etc.
(1) By de Jong’s (resp. Gabber-Vidal) theorem find a G-Galois

alteration f ′ : X ′ → S′ of f which is smooth (resp. semistable).
(2) Torify the action of an l-Sylow Gl ⊆ G on (X ′,Z ′) by an additional

modification.
(3) Divide (X ′,Z ′) by Gl and resolve the singularities of the quotient

toroidal scheme.
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Proofs of l′-alteration results

Second method: step-wise factorization

The proof of Illusie-T applies to any universally l ′-resolvable S and
runs as follows:
(0) A preparation.
(1) Establish the case of dim(f ) = 1: apply de Jong’s semistable

modification of curves and divide by an l-Sylow subgroup using
the torification theorem.

(2) Run induction on dim(f ) pretty similarly to the original de Jong’s
argument.

Gabber’s method divides by l-Sylow once, while we divide on each
step. In particular, the resulting log smooth map (X ′,Z ′)→ (S′,W ′) is
a composition of log smooth but not semistable curves (their fibers
may be non-reduced). This is one of advantages of working with log
smooth maps.
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Towards char(X)-alteration

Disclaimer

In resolution of singularities it is always safer to write down the
result with all details before announcing it.

I am going to talk about a few new ideas that look very promising,
but nothing has been written down so far!
It seems certain that one can achieve p-altered local
uniformization in this way, but it is too early to talk about a global
result.
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Towards char(X)-alteration

Distillation of alterations

The main idea is to use the following

Conjecture (Tame distillation of alterations)

Any alteration Y → X can be enlarged to a Galois alteration Y ′ → X
that splits to a tame alteration Y ′ → X ′ and a char(X )-alteration
X ′ → X .

(It seems that) once the distillation theorem is proved, one can
strengthen l ′-altered resolution of morphisms to char(X )-altered
resolution assuming the base S is universally char(X )-resolvable.
The proof is the same, but thanks to distillation we divide at once
by the whole non-char(X ) packet.
This time it is critical to divide on each step, because the control
on the alteration is tight only for relative curves: β′ is a modification
and for the base we do have the induction assumption.
This approach unifies the general and the char = 0 cases.
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Towards char(X)-alteration

Why is distillation plausible?

By Pank’s theorem any finite extension of henselian valued fields
L/K can be enlarged to a finite extension L′/K that splits to a
tame extension L′/K ′ and a purely wild extension K ′/K (so,
[K ′ : K ] = pn where p is the residue characteristic).

Using decompletion for rank one valuations and induction on
height one can extend Pank’s theorem to arbitrary valuation rings.
This, gives tame distillation when X = Spec(R) and R is a
valuation ring.
For any valuation v of the Riemann-Zariski space of X we obtain a
(non-Galois) p-extension Kv/k(X ) that provides tame distillation of
Y ×X Spec(Rv )→ Spec(Rv ). By quasi-compactness of RZ(X ), only
finitely many Kv are needed to distill any valuation of RZ(X ).
If Kv1 , . . . , .KVn lie in a char(X )-extension K ′/K then K ′ induces a
distillation of X .
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Towards char(X)-alteration

The composite obstacle

The only obstacle is that any composite of p-extensions does not
have to be a p-extension.

One salvation is to control Galois properties of Kv/k(X ) (e.g.
solvability of the normal closure would suffice). This solves the
problem for curves over algebraically closed filed, but seems to be
impossible in general (when the residue fields have p-extensions).
However, this obstacle shows up only when we really have a bad
luck: "random" extensions K1,K2 of k(X ) have linearly disjoint
Galois closures and hence K1 ⊗k(X) K2 is a field of degree
[K1 : k(X )] · [K2 : k(X )] over k(X ).
This both indicates that the distillation conjecture should hold and
suggests a way to by-pass the obstacle: deform Kvi slightly (e.g.
in the decompletion stage) so that it still distills valuations near vi
and Kvi ’s become independent.
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Towards char(X)-alteration

Happy Birthday Bernard!
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Towards char(X)-alteration

Luc Illusie and Michael Temkin, Gabber’s modification theorem (log
smooth case), exposé X, Astérisque 363-364 (2014), 169–216.

Michael Temkin, Stable modification of relative curves, J. Algebraic
Geom. 19 (2010), no. 4, 603–677. MR 2669727 (2011j:14064)
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