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Aim: geometric interpretation for Block and Gottsche’s tropical
refined multiplicities in enumerative geometry, using
Hrushovski-Kazhdan motivic integration.

Joint work with Sam Payne and Franziska Schroter.
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Motivation

Counting curves on toric surfaces
Refined curve counting

Motivation

Starting point: classical question in enumerative geometry.

What is the number ny of rational degree d curves through 3d — 1
general points in ]P’(% ?
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Motivation

Counting curves on toric surfaces
Refined curve counting

Motivation

Starting point: classical question in enumerative geometry.

What is the number ny of rational degree d curves through 3d — 1
general points in ]P’(% ?

Examples: n; =1, np =1, n3 = 12 (later), ...
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Motivation q g
Counting curves on toric surfaces

Refined curve counting

More generally: linear systems on projective toric surfaces.

Question
Let A be a lattice polytope in R? containing n+ 1 lattice points
and g interior lattice points.

What is the number of rational curves in the linear system
L(A) = P(g: of hyperplane sections through n — g general points on
the projective toric surface X(A)?

v

We will denote this number by na.
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Motivation q g
Counting curves on toric surfaces

Refined curve counting

Geometric interpretation:

Theorem (Beauville, Fantechi-Gottsche-van Straaten)

If every curve in the linear system L(A) is integral, then na equals
the Euler characteristic of the relative compactified Jacobian of the
universal curve

C — L(A) = PE.
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Motivation q g
Counting curves on toric surfaces

Refined curve counting

Example

Set A = Conv{(0,0),(0,3),(3,0)}. Then n=9, g =1 and
X(8) = (P, O(3)).

Thus na = n3 and L(A) is the pencil of cubics in P2 through 8
general points. This linear system has 9 base points, and blowing
up these points we get an elliptic fibration

C — P

with 12 = x(C) singular fibers.
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Motivation q g
Counting curves on toric surfaces

Refined curve counting

Combinatorial computation:

Theorem (Mikhalkin, 2005)

The invariant npa is equal to the number of rational tropical curves
of degree A through n — g general points in R?, counted with
appropriate multiplicities.

Mikhalkin's multiplicities are defined combinatorially and express
how many curves in the linear system L(A) have the given
tropicalization.
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Motivation . A
Counting curves on toric surfaces

Refined curve counting

Gottsche and Shende: refinement of na to a Laurent polynomial

Na(y) € Zly,y™]
such that
Q Na(1) = na,
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Motivation . A
Counting curves on toric surfaces

Refined curve counting

Gottsche and Shende: refinement of na to a Laurent polynomial

Na(y) € Zly,y™]
such that
Q Na(1) = na,

@ Na(—1) is a similar invariant in real algebraic geometry
(Welschinger).
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Motivation . A
Counting curves on toric surfaces

Refined curve counting

Geometric meaning: if every curve in the linear system L(A) is
integral, then Na(y) equals the x,-genus of the relative
compactified Jacobian of the universal curve

C — PE.
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Motivation . A
Counting curves on toric surfaces

Refined curve counting

Block-Gottsche: tropical computation of Na(y), refining
Mikhalkin's multiplicities to Laurent polynomials in y
(BG-multiplicities).
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Motivation . A
Counting curves on toric surfaces

Refined curve counting

Block-Gottsche: tropical computation of Na(y), refining
Mikhalkin's multiplicities to Laurent polynomials in y
(BG-multiplicities).

What is the geometric meaning of the BG-multiplicity BG(I") of an
individual tropical curve I'?
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Motivation . A
Counting curves on toric surfaces

Refined curve counting

Conjecture (N.-Payne-Schroter)

If every curve in L(A) is integral, then the invariant BG(T') is equal
to the limit x-genus of the relative compactified Jacobian of the
locus of curves in C with tropicalization T .
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Motivation . A
Counting curves on toric surfaces

Refined curve counting

Conjecture (N.-Payne-Schroter)

If every curve in L(A) is integral, then the invariant BG(T') is equal
to the limit x-genus of the relative compactified Jacobian of the
locus of curves in C with tropicalization T .

We proved this conjecture in the case g = 1, and showed that our
invariant specializes to na for y = 1.
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Motivation . A
Counting curves on toric surfaces

Refined curve counting

Conjecture (N.-Payne-Schroter)

If every curve in L(A) is integral, then the invariant BG(T') is equal
to the limit x-genus of the relative compactified Jacobian of the
locus of curves in C with tropicalization T .

We proved this conjecture in the case g = 1, and showed that our
invariant specializes to na for y = 1.

Important difficulty: x, is not multiplicative in smooth and proper
families, knowing X, for the fibers is not enough.
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Motivation

Counting curves on toric surfaces
Refined curve counting

We must make sense of the phrase

“limit x,-genus of the relative compactified Jacobian of the locus
of curves in C with tropicalization I'."

Our definition is based on the theory of motivic integration of
Hrushovski-Kazhdan.
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Motivation Counting curves on toric surfaces

Refined curve counting

Some notation

@ K algebraically closed complete real valued field with
valuation ring R, maximal ideal m and residue field k of
characteristic zero.
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Motivation Counting curves on toric surfaces

Refined curve counting

Some notation

@ K algebraically closed complete real valued field with
valuation ring R, maximal ideal m and residue field k of
characteristic zero.

o We assume that the valuation map
v:K* =R

is surjective. We set v(0) = oo.
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Motivation Counting curves on toric surfaces

Refined curve counting

notation

@ K algebraically closed complete real valued field with
valuation ring R, maximal ideal m and residue field k of
characteristic zero.

o We assume that the valuation map
v:K* =R
is surjective. We set v(0) = oo.
@ Tropicalization map

trop : (K*)" = R": (x1,..., %) = (v(x1),...,v(xn))
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Motivation Counting curves on toric surfaces

Refined curve counting

Basic philosophy of tropical geometry: transplant geometric
problem to K and study degeneration at closed point of Spec R
using tropicalization.

Johannes Nicaise Refined curve counting



Motivation Counting curves on toric surfaces

Refined curve counting

Basic philosophy of tropical geometry: transplant geometric
problem to K and study degeneration at closed point of Spec R
using tropicalization.

For our problem: study locus in L(A) of curves with fixed
tropicalization under

trop : X(A)(K) D (K*)? — R
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.. . Semi-algebraic sets
The motivic volume of Hrushovski-Kazhdan 8¢’ o
Construction of the motivic volume

Semi-algebraic sets

Definition
A semi-algebraic subset of K" is a finite Boolean combination of
subsets of the form

{x € K"|v(f(x)) = v(g(x))}

where f and g are polynomials in K[x, ..., Xp].
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan ; o
Construction of the motivic volume

Semi-algebraic sets

Definition

A semi-algebraic subset of K" is a finite Boolean combination of
subsets of the form

{x € K"|v(f(x)) = v(g(x))}

where f and g are polynomials in K[x, ..., Xp].

Using affine charts, one can define semi-algebraic subsets of any
algebraic variety X over K. We will often simply speak of
semi-algebraic sets and leave the ambient variety X implicit.
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan ; o
Construction of the motivic volume

Some examples

@ Every constructible subset of a K-variety is semi-algebraic.
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.. . Semi-algebraic sets
The motivic volume of Hrushovski-Kazhdan 8¢’ o
Construction of the motivic volume

Some examples

@ Every constructible subset of a K-variety is semi-algebraic.

@ If o is a polyhedron in R”, then trop~!(c) is a semi-algebraic
subset of G} .
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan ; o
Construction of the motivic volume

examples

@ Every constructible subset of a K-variety is semi-algebraic.

@ If o is a polyhedron in R”, then trop~!(c) is a semi-algebraic
subset of G} .

@ If 2 is an R-scheme of finite type, then Z°(R) is a
semi-algebraic subset of Zk.

More generally, for every locally closed subset Y of 2%,
sp,A(Y)={xe€ Z(R)|xx € Y}

is semi-algebraic.
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan ; o
Construction of the motivic volume

examples

@ Every constructible subset of a K-variety is semi-algebraic.

@ If o is a polyhedron in R”, then trop~!(c) is a semi-algebraic
subset of G} .

@ If 2 is an R-scheme of finite type, then Z°(R) is a
semi-algebraic subset of Zk.

More generally, for every locally closed subset Y of 2,
sp, (V) ={x€ Z(R)|x € Y}
is semi-algebraic.

Q The locus of curves in L(A) 2 P§ with fixed tropicalization is
semi-algebraic [Katz].
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan ; o
Construction of the motivic volume

The Grothendieck ring of semi-algebraic sets

A morphism of semi-algebraic sets is a map whose graph is
semi-algebraic. The image (resp. inverse image) of a semi-algebraic
set under a semi-algebraic morphism is semi-algebraic (Robinson’s
QE for ACVF).
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan ; o
Construction of the motivic volume

The Grothendieck ring of semi-algebraic sets

A morphism of semi-algebraic sets is a map whose graph is
semi-algebraic. The image (resp. inverse image) of a semi-algebraic
set under a semi-algebraic morphism is semi-algebraic (Robinson’s
QE for ACVF).

VFi: category of semi-algebraic sets.
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan ; o
Construction of the motivic volume

The Grothendieck ring of semi-algebraic sets

A morphism of semi-algebraic sets is a map whose graph is
semi-algebraic. The image (resp. inverse image) of a semi-algebraic
set under a semi-algebraic morphism is semi-algebraic (Robinson’s
QE for ACVF).

VFi: category of semi-algebraic sets.
Ko(VFk): Grothendieck ring, with usual scissor relations:
[S]+[T]=[SUT]+[SNT]

if S, T are semi-algebraic subsets of some K-variety X.
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Semi-algebraic sets
Construction of the motivic volume

The motivic volume of Hrushovski-Kazhdan

To construct interesting invariants (e.g. “limit x,-genus”) of
semi-algebraic sets, we will make use of the motivic volume

Vol : Ko(VFK) — Ko(VaI‘k)

of Hrushovski-Kazhdan.
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan g o
Construction of the motivic volume

The motivic volume of Hrushovski-Kazhdan

Idea: express the structure of Ko(VFk) in terms of the value
group R and the residue field k. J
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan g o
Construction of the motivic volume

The motivic volume of Hrushovski-Kazhdan

Idea: express the structure of Ko(VFk) in terms of the value
group R and the residue field k.

We will describe two natural constructions to produce classes in
Ko(VF k) from objects that live over the value group or the residue
field.
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan g o
Construction of the motivic volume

First construction

Let n be a non-negative integer and let o be a real polyhedron of
dimension at most n. We embed ¢ in R" and we denote by
©(o, n) the class of

trop (o) C (K*)"

in Ko(VFk). It does not depend on the chosen embedding.
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan g o
Construction of the motivic volume

Second construction

Let n be a non-negative integer and let Y be a k-variety of
dimension at most n. Then we can decompose Y into locally
closed subsets U such that there exists a connected smooth
R-scheme 2" of relative dimension n and an immersion U — Z%.
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan g o
Construction of the motivic volume

Second construction

Let n be a non-negative integer and let Y be a k-variety of
dimension at most n. Then we can decompose Y into locally
closed subsets U such that there exists a connected smooth
R-scheme 2~ of relative dimension n and an immersion U — Z.

We set
O(U,n) = [sp%( )] € Ko(VFk)

and we define ©(Y, n) additively. This definition is independent of
all choices (because R is henselian).
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The motivic volume of Hrushovski-Kazhdan Stemi-elfgEireite e

Construction of the motivic volume

These constructions are not completely orthogonal: denoting by
Ay the O-simplex (i.e., a point), we have

O(L0,1) = O(Gmy, 1) = [R¥]

in Ko(VFK).
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The motivic volume of Hrushovski-Kazhdan Stemi-elfgEireite e

Construction of the motivic volume

We now consider the graded rings

Ko(R[«]) = D Ko(R[n]) and  Ko(Vary[+]) = €D Ko(Var[n])

n>0 n>0

where the summands are the Grothendieck groups of real
polyhedra, resp. k-varieties, of dimension < n.
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Semi-algebraic sets
Construction of the motivic volume

The motivic volume of Hrushovski-Kazhdan

We now consider the graded rings

Ko(R[«]) = D Ko(R[n]) and  Ko(Vary[+]) = €D Ko(Var[n])

n>0 n>0

where the summands are the Grothendieck groups of real
polyhedra, resp. k-varieties, of dimension < n.

We view these graded rings as Z[7] algebras by sending 7 to
[AO]I € Ko(R[].]) and [Gm,k]l S Ko(VaI‘k[l]),

respectively.
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.. . Semi-algebraic sets
The motivic volume of Hrushovski-Kazhdan =

Construction of the motivic volume

Remarkable results (Hrushovski-Kazhdan, 2006):
@ The morphism

©: KO(R[*]) ®Z[’T] Ko(Vark[*]) — Ko(VFK)

is surjective.
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.. . Semi-algebraic sets
The motivic volume of Hrushovski-Kazhdan =

Construction of the motivic volume

Remarkable results (Hrushovski-Kazhdan, 2006):
@ The morphism

O: KO(R[*]) ®Z[’T] Ko(Vark[*]) — Ko(VFK)
is surjective.

@ We can explicitly describe its kernel, denoted /.
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan g o
Construction of the motivic volume

Description of the kernel

The class in Ko(VFk) of the open unit disc
D={xeK|v(x)>0}

can be written in two different ways:

@ [D] =[D\ {0}] + [Spec K] = ©(Rx0, 1) + ©(Speck, 0),

Johannes Nicaise Refined curve counting



Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan g o
Construction of the motivic volume

Description of the kernel

The class in Ko(VFk) of the open unit disc
D={xeK|v(x)>0}

can be written in two different ways:

@ [D] =[D\ {0}] + [Spec K] = ©(Rx0, 1) + ©(Speck, 0),

@ [D] = O(Speck,1).
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan g o
Construction of the motivic volume

Description of the kernel

The class in Ko(VFk) of the open unit disc
D={xeK|v(x)>0}

can be written in two different ways:

@ [D] =[D\ {0}] + [Spec K] = ©(Rx0, 1) + ©(Speck, 0),

@ [D] = O(Speck,1).
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Semi-algebraic sets

The motivic volume of Hrushovski-Kazhdan g o
Construction of the motivic volume

Description of the kernel

The class in Ko(VFk) of the open unit disc
D={xeK|v(x)>0}

can be written in two different ways:

@ [D] =[D\ {0}] + [Spec K] = ©(Rx0, 1) + ©(Speck, 0),
@ [D] = O(Speck,1).

Thus [Rso]1 + [Spec k]o — [Spec k]; lies in I. The striking fact is
that it even generates /.
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.. . Semi-algebraic sets
The motivic volume of Hrushovski-Kazhdan =

Construction of the motivic volume

By inverting ©, we obtain a ring isomorphism
Ko(VFk) — (KO(R[*]) ®zr] Ko(Vark[*])) /1.
We will now use it to construct a ring morphism
Vol : Ko(VFk) — Ko(Varg)

that we call the motivic volume.

Johannes Nicaise Refined curve counting



. . Semi-algebraic se
The motivic volume of Hrushovski-Kazhdan = is

Construction of the motivic volume

There is an obvious ring morphism
Ko(Var[*]) — Ko(Var)

that forgets the grading.
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.. . Semi-algebraic sets
The motivic volume of Hrushovski-Kazhdan =

Construction of the motivic volume

We can also define a ring morphism
Ko(R[x]) — Ko(Vark) : [o]n — X/ (o)(L — 1)"
where L = [A}l] and

X' ()= lim x(cN[-r,r]").

r—-+o0o
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The motivic volume of Hrushovski-Kazhdan Stemi-elfgEireite e

Construction of the motivic volume

We can also define a ring morphism
Ko(R[x]) — Ko(Vark) : [o]n — X/ (o)(L — 1)"
where L = [A}l] and

X' (o) = lim x(oN[-r,r]").

r—-+o0o

The invariant X’ is fully characterized by the property that it is
additive and x/(0) = 1 for every closed polyhedron o.

Johannes Nicaise Refined curve counting



The motivic volume of Hrushovski-Kazhdan Stemi-elfgEireite e

Construction of the motivic volume

These morphisms send [Spec k], to 1 and [Rs¢], to zero for all
n > 0. Thus they induce a ring morphism

Vol : Ko(VFK) = (Ko(R[*]) ®Z[T] Ko(Val"k[*])) // — Ko(Val"k).
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The motivic volume of Hrushovski-Kazhdan Stemi-elfgEireite e

Construction of the motivic volume

Q If 2 is a smooth R-scheme and Y is a subvariety of 2%, then

Vol(sp3}(Y)) = [Y].
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The motivic volume of Hrushovski-Kazhdan Stemi-elfgEireite e

Construction of the motivic volume

Q If 2 is a smooth R-scheme and Y is a subvariety of 2%, then

Vol(sp3}(Y)) = [Y].

@ If o is a polyhedron in R” then

Vol(trop (o)) = x/(o)(L — 1)".
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The motivic volume of Hrushovski-Kazhdan Stemi-elfgEireite e

Construction of the motivic volume

Definition

The limit x,-genus of a semi-algebraic set is defined by composing
Vol : Ko(VFK) — Ko(VaI‘k)

with the x,-realization

Xy : Ko(Varg) = Z[y,y'].
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Strictly semi-stable schemes
Tropical computation of the motivic volume

Computing the motivic volume

Computing the motivic volume

Definition
A strictly semi-stable R-scheme is an R-scheme 2 of finite type
that admits locally an étale morphism to a scheme of the form

Sn,r,a = SpeCR[X(),...,Xn]/(XQ- 'Xr—a)

with r < nand a € m\ {0}.
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Strictly semi-stable schemes

. L. Tropical computation of the motivic volume
Computing the motivic volume

Note that

spg,,l,,,,a(o) — (xem™lxp-... xo=a}

trop™ (A7) € (KX)"

1

with

Az,a:{(tla"'vt”)ER;O|tI+---+tn<V(a)}.
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Strictly semi-stable schemes

. L. Tropical computation of the motivic volume
Computing the motivic volume

Note that

spg,,l,,,,a(o) — (xem™lxp-... xo=a}

trop™ (A7) € (KX)"

1

with

Az,a:{(tla"'vt”)ER;O|tI+---+tn<V(a)}.

Since x'(Af ,) = (—1)", it follows that

Vol(spst, (0)) = (1~ L)"
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Strictly semi-stable schemes

Tropical computation of the motivic volume

Computing the motivic volume

Writing

2= E,
iel
a slight generalization of this computation yields the familiar
formula

Vol(Z'(R)) = > (1-L)MEF] € Ko(Vary).
0£JcCl
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Strictly semi-stable schemes

. L. Tropical computation of the motivic volume
Computing the motivic volume

Writing
2= E,
iel
a slight generalization of this computation yields the familiar
formula

Vol(Z'(R)) = > (1-L)MEF] € Ko(Vary).
0£JcCl

Corollary (NPS)

Assume that an embedding of k((t)) in K is given. For every
generically smooth k|[[t]]-variety 2", the image of Vol(2'(R)) in
Ko(Vark)[LL™1] coincides with Denef and Loeser’s motivic nearby
fiber of 2 (forgetting the monodromy).
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Strictly semi-stable schemes
Tropical computation of the motivic volume

Computing the motivic volume

By its very definition, the motivic volume is also well-suited for
tropical computations. This played a crucial role in our proof of
the conjecture in the genus one case.
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Strictly semi-stable schemes
Tropical computation of the motivic volume

Computing the motivic volume

By its very definition, the motivic volume is also well-suited for
tropical computations. This played a crucial role in our proof of
the conjecture in the genus one case.

We will only give a sample formula, which generalizes [Katz -
Stapledon] (with a more direct proof).
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Strictly semi-stable schemes

Tropical computation of the motivic volume

Computing the motivic volume

Theorem (NPS)

Let X be a schén subvariety of Gy,  of dimension d and let X be
a tropical polyhedral decomposition of trop(X). Then we have

[X] = Z © ([Y(U)]d—dim(a) ® [U]dim(o)) € KO(VF)
oEL
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Strictly semi-stable schemes

Computing the motivic volume Tropical computation of the motivic volume

Theorem (NPS)

Let X be a schén subvariety of Gy,  of dimension d and let X be
a tropical polyhedral decomposition of trop(X). Then we have

[X] = Z © ([Y(U)]d—dim(a) ® [U]dim(o)) € KO(VF)
oEL

It follows that
Vol(X) = > (=1)4™ )i, (X)]
oc€EYb

where the sum is taken over the bounded cells o of X.
Moreover, there exists a similar formula for the tropical
compactification of X.
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