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Aim: geometric interpretation for Block and Göttsche’s tropical
refined multiplicities in enumerative geometry, using
Hrushovski-Kazhdan motivic integration.
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Counting curves on toric surfaces
Refined curve counting

Motivation

Starting point: classical question in enumerative geometry.

Question

What is the number nd of rational degree d curves through 3d − 1
general points in P2

C?

Examples: n1 = 1, n2 = 1, n3 = 12 (later), . . .
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More generally: linear systems on projective toric surfaces.

Question

Let ∆ be a lattice polytope in R2 containing n + 1 lattice points
and g interior lattice points.

What is the number of rational curves in the linear system
L(∆) ∼= Pg

C of hyperplane sections through n − g general points on
the projective toric surface X (∆)?

We will denote this number by n∆.
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Geometric interpretation:

Theorem (Beauville, Fantechi-Göttsche-van Straaten)

If every curve in the linear system L(∆) is integral, then n∆ equals
the Euler characteristic of the relative compactified Jacobian of the
universal curve

C → L(∆) ∼= Pg
C.
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Example

Set ∆ = Conv{(0, 0), (0, 3), (3, 0)}. Then n = 9, g = 1 and
X (∆) = (P2

C,O(3)).

Thus n∆ = n3 and L(∆) is the pencil of cubics in P2
C through 8

general points. This linear system has 9 base points, and blowing
up these points we get an elliptic fibration

C → P1
C

with 12 = χ(C) singular fibers.
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Combinatorial computation:

Theorem (Mikhalkin, 2005)

The invariant n∆ is equal to the number of rational tropical curves
of degree ∆ through n − g general points in R2, counted with
appropriate multiplicities.

Mikhalkin’s multiplicities are defined combinatorially and express
how many curves in the linear system L(∆) have the given
tropicalization.
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Göttsche and Shende: refinement of n∆ to a Laurent polynomial

N∆(y) ∈ Z[y , y−1]

such that

1 N∆(1) = n∆,

2 N∆(−1) is a similar invariant in real algebraic geometry
(Welschinger).
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Geometric meaning: if every curve in the linear system L(∆) is
integral, then N∆(y) equals the χy -genus of the relative
compactified Jacobian of the universal curve

C → Pg
C.
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Block-Göttsche: tropical computation of N∆(y), refining
Mikhalkin’s multiplicities to Laurent polynomials in y
(BG-multiplicities).

Question

What is the geometric meaning of the BG-multiplicity BG (Γ) of an
individual tropical curve Γ?
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Conjecture (N.-Payne-Schröter)

If every curve in L(∆) is integral, then the invariant BG (Γ) is equal
to the limit χy -genus of the relative compactified Jacobian of the
locus of curves in C with tropicalization Γ.

We proved this conjecture in the case g = 1, and showed that our
invariant specializes to n∆ for y = 1.

Important difficulty: χy is not multiplicative in smooth and proper
families, knowing χy for the fibers is not enough.
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¿Qué?

We must make sense of the phrase

“limit χy -genus of the relative compactified Jacobian of the locus
of curves in C with tropicalization Γ.”

Our definition is based on the theory of motivic integration of
Hrushovski-Kazhdan.
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Some notation

K algebraically closed complete real valued field with
valuation ring R, maximal ideal m and residue field k of
characteristic zero.

We assume that the valuation map

v : K× → R

is surjective. We set v(0) =∞.

Tropicalization map

trop : (K×)n → Rn : (x1, . . . , xn) 7→ (v(x1), . . . , v(xn))
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Basic philosophy of tropical geometry: transplant geometric
problem to K and study degeneration at closed point of SpecR

using tropicalization.

For our problem: study locus in L(∆) of curves with fixed
tropicalization under

trop : X (∆)(K ) ⊃ (K×)2 → R2.
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Semi-algebraic sets

Definition

A semi-algebraic subset of Kn is a finite Boolean combination of
subsets of the form

{x ∈ Kn | v(f (x)) ≥ v(g(x))}

where f and g are polynomials in K [x1, . . . , xn].

Using affine charts, one can define semi-algebraic subsets of any
algebraic variety X over K . We will often simply speak of
semi-algebraic sets and leave the ambient variety X implicit.
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Some examples

1 Every constructible subset of a K -variety is semi-algebraic.

2 If σ is a polyhedron in Rn, then trop−1(σ) is a semi-algebraic
subset of Gn

m,K .

3 If X is an R-scheme of finite type, then X (R) is a
semi-algebraic subset of XK .

More generally, for every locally closed subset Y of Xk ,

sp−1
X (Y ) = {x ∈X (R) | xk ∈ Y }

is semi-algebraic.

4 The locus of curves in L(∆) ∼= Pg
K with fixed tropicalization is

semi-algebraic [Katz].
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The Grothendieck ring of semi-algebraic sets

A morphism of semi-algebraic sets is a map whose graph is
semi-algebraic. The image (resp. inverse image) of a semi-algebraic
set under a semi-algebraic morphism is semi-algebraic (Robinson’s
QE for ACVF).

VFK : category of semi-algebraic sets.

K0(VFK ): Grothendieck ring, with usual scissor relations:

[S ] + [T ] = [S ∪ T ] + [S ∩ T ]

if S ,T are semi-algebraic subsets of some K -variety X .
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To construct interesting invariants (e.g. “limit χy -genus”) of
semi-algebraic sets, we will make use of the motivic volume

Vol : K0(VFK )→ K0(Vark)

of Hrushovski-Kazhdan.
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The motivic volume of Hrushovski-Kazhdan

Idea: express the structure of K0(VFK ) in terms of the value
group R and the residue field k.

We will describe two natural constructions to produce classes in
K0(VFK ) from objects that live over the value group or the residue
field.
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First construction

Let n be a non-negative integer and let σ be a real polyhedron of
dimension at most n. We embed σ in Rn and we denote by
Θ(σ, n) the class of

trop−1(σ) ⊂ (K ∗)n

in K0(VFK ). It does not depend on the chosen embedding.
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Second construction

Let n be a non-negative integer and let Y be a k-variety of
dimension at most n. Then we can decompose Y into locally
closed subsets U such that there exists a connected smooth
R-scheme X of relative dimension n and an immersion U →Xk .

We set
Θ(U, n) = [sp−1

X (U)] ∈ K0(VFK )

and we define Θ(Y , n) additively. This definition is independent of
all choices (because R is henselian).
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These constructions are not completely orthogonal: denoting by
∆0 the 0-simplex (i.e., a point), we have

Θ(∆0, 1) = Θ(Gm,k , 1) = [R×]

in K0(VFK ).
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We now consider the graded rings

K0(R[∗]) =
⊕
n≥0

K0(R[n]) and K0(Vark [∗]) =
⊕
n≥0

K0(Vark [n])

where the summands are the Grothendieck groups of real
polyhedra, resp. k-varieties, of dimension ≤ n.

We view these graded rings as Z[τ ] algebras by sending τ to

[∆0]1 ∈ K0(R[1]) and [Gm,k ]1 ∈ K0(Vark [1]),

respectively.
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Remarkable results (Hrushovski-Kazhdan, 2006):

1 The morphism

Θ : K0(R[∗])⊗Z[τ ] K0(Vark [∗])→ K0(VFK )

is surjective.

2 We can explicitly describe its kernel, denoted I .
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Description of the kernel

The class in K0(VFK ) of the open unit disc

D = {x ∈ K | v(x) > 0}

can be written in two different ways:

1 [D] = [D \ {0}] + [SpecK ] = Θ(R>0, 1) + Θ(Spec k , 0),

2 [D] = Θ(Spec k, 1).

Thus [R>0]1 + [Spec k]0 − [Spec k]1 lies in I . The striking fact is
that it even generates I .
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By inverting Θ, we obtain a ring isomorphism

K0(VFK )→
(
K0(R[∗])⊗Z[τ ] K0(Vark [∗])

)
/I .

We will now use it to construct a ring morphism

Vol : K0(VFK )→ K0(Vark)

that we call the motivic volume.
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There is an obvious ring morphism

K0(Vark [∗])→ K0(Vark)

that forgets the grading.
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We can also define a ring morphism

K0(R[∗])→ K0(Vark) : [σ]n 7→ χ′(σ)(L− 1)n

where L = [A1
k ] and

χ′(σ) = lim
r→+∞

χ(σ ∩ [−r , r ]n).

The invariant χ′ is fully characterized by the property that it is
additive and χ′(σ) = 1 for every closed polyhedron σ.
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These morphisms send [Spec k]n to 1 and [R>0]n to zero for all
n ≥ 0. Thus they induce a ring morphism

Vol : K0(VFK ) ∼=
(
K0(R[∗])⊗Z[τ ] K0(Vark [∗])

)
/I → K0(Vark).
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Example

1 If X is a smooth R-scheme and Y is a subvariety of Xk , then

Vol(sp−1
X (Y )) = [Y ].

2 If σ is a polyhedron in Rn then

Vol(trop−1(σ)) = χ′(σ)(L− 1)n.
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Definition

The limit χy -genus of a semi-algebraic set is defined by composing

Vol : K0(VFK )→ K0(Vark)

with the χy -realization

χy : K0(Vark)→ Z[y , y−1].
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Computing the motivic volume

Definition

A strictly semi-stable R-scheme is an R-scheme X of finite type
that admits locally an étale morphism to a scheme of the form

Sn,r ,a = SpecR[x0, . . . , xn]/(x0 · . . . · xr − a)

with r ≤ n and a ∈ m \ {0}.
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Note that

sp−1
Sn,n,a

(O) = {x ∈ mn+1 | x0 · . . . · xn = a}
∼= trop−1(∆o

n,a) ⊂ (K×)n

with

∆o
n,a = {(t1, . . . , tn) ∈ Rn

>0 | t1 + . . .+ tn < v(a)}.

Since χ′(∆o
n,a) = (−1)n, it follows that

Vol(sp−1
Sn,n,a

(O)) = (1− L)n.
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Writing

Xk =
∑
i∈I

Ei ,

a slight generalization of this computation yields the familiar
formula

Vol(X (R)) =
∑
∅6=J⊂I

(1− L)|J|−1[E o
J ] ∈ K0(Vark).

Corollary (NPS)

Assume that an embedding of k((t)) in K is given. For every
generically smooth k[[t]]-variety X , the image of Vol(X (R)) in
K0(Vark)[L−1] coincides with Denef and Loeser’s motivic nearby
fiber of X (forgetting the monodromy).
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By its very definition, the motivic volume is also well-suited for
tropical computations. This played a crucial role in our proof of
the conjecture in the genus one case.

We will only give a sample formula, which generalizes [Katz -
Stapledon] (with a more direct proof).
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Theorem (NPS)

Let X be a schön subvariety of Gn
m,K of dimension d and let Σ be

a tropical polyhedral decomposition of trop(X ). Then we have

[X ] =
∑
σ∈Σ

Θ
(
[Y (σ)]d−dim(σ) ⊗ [σ]dim(σ)

)
∈ K0(VF).

It follows that

Vol(X ) =
∑
σ∈Σb

(−1)dim(σ)[inσ(X )]

where the sum is taken over the bounded cells σ of Σ.
Moreover, there exists a similar formula for the tropical
compactification of X .
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