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Arcspace of (C2, 0).

Arc (through the origin) of C2: germ of parametrization through
the origin:

γ : (C, 0) −→ (X ,O)⊂(C2,O)
t 7−→ (

∑
i a

1
i t

i , ...,
∑

i a
n
i t

i )
0 7−→ O

Formal arcs are considered: the power series may not converge.
It is an infinite affine space.
It is irreducible.



Nash sets associated to divisors over O ∈ C2.

A divisor is a exceptional component of a composition of blow ups
in points above O ∈ C2.

Composition 
of Blow-ups
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E
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Take the minimal model for Ei .

Ni = {γ : γ̃(0) ∈ Ei}

The Nash set is its closure N i .

NE0 is equal to the whole arc
space.

Nash sets are irreducible.

They are cylindrical: they are
determined in order k .

They have finite codimension.

They are all different: N i 6= N j .
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Nash sets.

Take a composition of blow ups in point above the origin.
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Take the minimal model for Ei .

Ni = {γ : γ̃(0) ∈ Ei}

The Nash set is its closure N i .

What is the closure NEi
?

If there is a family as for
example

αs(t) = (t5 + st3; t4 + st4)

with αs ∈ NF and α0 ∈ NE ,
then α0 ∈ NF .

GENERALISED NASH
PROBLEM: Determine when
NE⊂NF .
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Nash problem.

For a singular variety (X , Sing X ), the components of the space of
arcs centered at Sing X are of the form NE for certain exceptional
components E of a resolution of singularities. These components
appear in any resolution.

Surface singularities (Nash Conjecture, Theorem 2011, J.
Fernandez de Bobadilla, M. P. P.): The components of the
arcspace are in bijection with exceptional components of the
minimal resolution.

Higher dimensional case (partial result 2014, T. de Fernex,
R. Docampo). Components in terminal models give
components of the space of arcs. But there are more... still
open.

If some NE isn’t a component of the space of arcs, then NE ⊆ NF

for some F .
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inclusions/adjacencies NE⊂NF .

Trivial inclusions: F < E (E dominates F ) implies NE⊂NF
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How to check if NE⊂NF?

Theorem (Fernández de Bobadilla, 2009)

Given two divisors above O ∈ C2, the following are equivalent:

1 NE⊂NF

2 there exists a convergent family of convergent arcs α realising
the inclusion with α0 ∈ ṄE and αs ∈ NF .

3 for any convergent arc γ ∈ ṄE there exists a family of
convergent arcs α realising the inclusion with α0 = γ (and
αs ∈ NF ).



NE⊂NF doesn’t imply F < E .
(t5 + s3t3, (1 + s4)t4), two different tangents for s = 0 and
s 6= 0.
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(t5 + s3t3, (1 + s4)t4), two different tangents for s = 0 and
s 6= 0.
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We want to describe NE⊂NF (partial order among divisors over O ∈ C2)

A divisor is determined by the combinatorics + moduli...
Minimal model of a divisor by blowing up a finite number of (free or satellite)
points.
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We want to describe NE⊂NF (partial order among divisors over O ∈ C2)

Take into account the contact order between E and F , and much
more (moduli for free points also count apriori!)...
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Talk about combinatorics of the pair (E ,F ). We write
(E ,F ) ≡ (E ′,F ′)...
Domination relation F < E = Inclusion of Enriques diagrams.
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Valuative criterion in arc spaces (A. Reguera, C. Plenat, S. Ishii...)

Divisorial valuation ordE = vanishing order along the divisor
E .

Can be computed intersecting with appropiate arcs γ in NE :

ordE (f ) = IO(f , γ) = ordt(f ◦γ(t)).

Choosing a family of arcs with an approriate α0 ∈ NE and
αs ∈ NF we get

ordF (h) ≤ ordt(h◦αs(t)) ≤ ordt(h◦α0(t)) = ordE (h)

forall h ∈ C[[x , y ]].



Valuative criterium in arc spaces (A. Reguera, C. Plènat, S. Ishii...)

A. Reguera for rational surfaces in Manuscripta math. 1995.
C. Plénat in general in Annal Inst. Fourier 2005:

NE⊂NF implies ordE ≤ ordF

S. Ishii in Maximal Divisorial Sets:

if F is toric, also the converse is true: ordE ≤ ordF implies
NE⊂NF .

She found a counterexample for the converse in general
(ordF ≤ ordE but NE * NF ).

E
E

E

E

E

E0
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1
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(1:1)
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1

1
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F < E ⇒ NE⊂NF ⇒ ordF ≤ ordE



Other tools to rule out adjacencies?

NE ( NF implies codim(NF ) < codim(NE ).

In [de Fernex, Ein, Ishii, Lazarsfeld, Mustata’200?]:

codim(NE ) = 1 + disc(E ,C2).

The discrepancy of E is the coefficient of E in KX/C2 where

π : X → C2 is any model where E appears.

It is not a sufficient criterium (even with toric examples)

Neither plus the valuative criterium (counterexample of Ishii
with the same discrepancy).

The problem turns very difficult...



Example of topological types.
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ordF ≤ ordE

disc(E ) + 1 = codim(NE ) = 21 > codim(NF ) =
disc(F ) + 1 = 17

NE * NF



Main result about inclusions

Recall that NE⊂NF depends on the relative position of E and F , but ...
we don’t know a priori that it is a combinatorial problem, it also depends
on the moduli of the free points!.

Theorem
Assume there exists a wedge α realising the adjacency NE⊂NF . If
(E ′,F ′) ≡ (E ,F ) then there exists a wedge realising the adjacency
NE ′⊂NF ′ .

Corollary
Assume we have that NE⊂NF . Let i0 be the contact order between E
and F . Then, we have that⋃

E ′≡≥i0
E

NE ′⊂
⋂

F ′≡≥i0
F

NF ′

where A ≡≥i0 B means that A has the same combinatorics as B and their
contact order is ≥ i0.

We improve the log-discrepancy inequality in many cases.
Other conjectures...
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(E ,F ) ≡ (E ′,F ′) ⇒ [NE ( NF ⇔ NE ′ ( NF ′]

To change the complex structure we can use:

Let g : X → Y is a non-ramified covering of differentaible
manifolds. A complex structure on Y can be lifted to X so
that g is a local biholomorphism.
(Grauert-Remmert) Let A be a normal analytic space, let
B ⊂ A be a closed analytic subset such that A \ B is dense in
A. Let

f : U → A \ B
be a finite and étale analytic morphism. Then there exists a
finite analytic extension

f̄ : V → A

from a normal analytic space V . Moreover V is unique up to
isomorphism.

We can assume the wedge α : C2 → C2 is algebraic, that is there
exists polynomials F1,F2 ∈ C[s, t, x , y ] such that

F1(s, t, α1(s, t)) = F2(s, t, α2(s, t)) = 0.
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Coming back to the valuative criterium...

Recall: NE⊂NF implies there exists a family of parametrizations α(t, s)
with α0(t) ∈ ṄE and αs ∈ ṄF for all s ∈ Λ \ {0}.

Deforming a little α, we can assume that

α−1(O) = {0} × Λ.

The equation F (x , y , s) of

Im[(t, s) 7→ (α(t, s), s) ∈ C2 × Λ]

gives a deformation of plane curves given by fs(x , y) := F (x , y , s)
where f0(x , y) = 0 lifts transversally to E and all fs(x , y) = 0 lift
transversally to F for all s 6= 0.

These deformations have a special property: for s 6= 0 they can be
resolved simultaneously by a sequence of blow ups, they fix the
free points (for F ).



Valuative criterium.
Let fs be a deformation fixing the free points. If f0 = 0 has strict
transform transverse to some E and fs = 0 have strict transforms
transverse to a fixed F for all s 6= 0, then

ordF (h) ≤ ordE (h) ∀h ∈ C[[x , y ]].

We have IO(h, fs) ≤ IO(h, f0) but is not enough...

So, the valuative criterion is a criterion for the existence of deformations
of functions not of parametrizations!



Valuative criterium.
Let fs be a deformation fixing the free points. If f0 = 0 has strict
transform transverse to some E and fs = 0 have strict transforms
transverse to a fixed F for all s 6= 0, then

ordF (h) ≤ ordE (h) ∀h ∈ C[[x , y ]].

We have IO(h, fs) ≤ IO(h, f0) but is not enough...

Proof
Take embedded resolution (X̃ ,D =

⋃
i Di )→ (C2,O) of fs = 0 and f0 = 0.

Look at it in family X̃ × Λ→ C2 × Λ.

Let Y be the strict transform of F = 0 (F (x , y , s) := fs(x , y)). Observe

Ys = ˜{fs = 0} for s 6= 0

Y0 = ˜{f0 = 0}+
∑
k

dkDk , with dk ≥ 0.

We get Y0 · Di = Ys · Di for any i . Putting M = (Di · Dj), (E = D0, F = Dn),

(1, 0, ..., 0)t + M(d1, .., dn)t = (0, ..., 0, 1)t .

−M−1(1, 0, ..., 0,−1)t = (d1, ..., dn)t ≥ 0.

and the entries of −M−1 are exactly ordDi (hDj ) = IO(hDi , hDj ).

We see ordDi (hF )) ≤ ordDi (hE ) for all i . For any other divisor it is inmediate.

So, the valuative criterion is a criterion for the existence of deformations
of functions not of parametrizations!



Valuative criterium.
Let fs be a deformation fixing the free points. If f0 = 0 has strict
transform transverse to some E and fs = 0 have strict transforms
transverse to a fixed F for all s 6= 0, then

ordF (h) ≤ ordE (h) ∀h ∈ C[[x , y ]].

We have IO(h, fs) ≤ IO(h, f0) but is not enough...

Reciprocally, if
ordF (h) ≤ ordE (h) ∀h ∈ C[[x , y ]],

then, taking hE = 0 and hF = 0 with strict transform transverse to E and
F in a model of E + F , then

hE + s · hF
have strict transform transverse to F for s 6= 0 small enough. (Also
proved by M. Alberich y J. Roe).

So, the valuative criterion is a criterion for the existence of deformations
of functions not of parametrizations!



Valuative criterium.
Let fs be a deformation fixing the free points. If f0 = 0 has strict
transform transverse to some E and fs = 0 have strict transforms
transverse to a fixed F for all s 6= 0, then

ordF (h) ≤ ordE (h) ∀h ∈ C[[x , y ]].

We have IO(h, fs) ≤ IO(h, f0) but is not enough...

Reciprocally, if
ordF (h) ≤ ordE (h) ∀h ∈ C[[x , y ]],

then, taking hE = 0 and hF = 0 with strict transform transverse to E and
F in a model of E + F , then

hE + s · hF
have strict transform transverse to F for s 6= 0 small enough. (Also
proved by M. Alberich y J. Roe).

Proof
Check it works.

So, the valuative criterion is a criterion for the existence of deformations
of functions not of parametrizations!



Valuative criterium.
Let fs be a deformation fixing the free points. If f0 = 0 has strict
transform transverse to some E and fs = 0 have strict transforms
transverse to a fixed F for all s 6= 0, then

ordF (h) ≤ ordE (h) ∀h ∈ C[[x , y ]].

We have IO(h, fs) ≤ IO(h, f0) but is not enough...

Reciprocally, if
ordF (h) ≤ ordE (h) ∀h ∈ C[[x , y ]],

then, taking hE = 0 and hF = 0 with strict transform transverse to E and
F in a model of E + F , then

hE + s · hF
have strict transform transverse to F for s 6= 0 small enough. (Also
proved by M. Alberich y J. Roe).

Summarizing:

Proposition
Let E and F be two prime divisors. There exists a deformation fs of a curve
f0 = 0 that lifts transversal to E that fixes the free points for F (fs = 0 has
strict transform transverse to F for s 6= 0) if and only if ordF ≤ ordE .

So, the valuative criterion is a criterion for the existence of deformations
of functions not of parametrizations!



Adjacency problems.

CLASSICAL ONE: Given two topological types f = 0 and
g = 0 in (C2, 0), study when there exists a deformation ft = 0
where f0 = 0 has the topological type of f = 0 and ft = 0 the
one of g = 0.

OUR OBSERVATION: deformation fixing the free points of
the generic curves are characterized by the valuative criterium.



Valuative criterium.

Proposition

Let E and F be prime divisors over O ∈ C2.
There exists a deformation fs of a curve f0 = 0 that lifts transversal
to E that fixes the free points for F (fs = 0 has strict transform
transverse to F for s 6= 0) if and only if ordF ≤ ordE .

Good things about the result and our problem:

It talks about concrete divisors, not only topological types.

Takes into account the contact order of E and F .

They are very easy to check finite conditions (inequalities for
hD with D in the minimal model of F ) => Algorithm!

Also works for F a non-prime divisor: if F =
∑

i aiFi then we
the condition is ordF :=

∑
i aiordFi

≤ ordE .

Bad news:

Not all the adjacencies are of this type.



We recover many of the adjacencies from Arnol’d’s list.

A1 A8A7A6A5A4A2 A3

D8D7D6D5D4

E6 E7 E8

...

...

Only 7 out of the 93 classical adjacencies between simple
singularities of µ ≤ 8 are not realizable.



We recover many of the adjacencies from Arnol’d’s list.

A1 A8A7A6A5A4A2 A3

D8D7D6D5D4

E6 E7 E8

...

...

For example, ordA5 � ordE6 but still there exists a deformation

y3 + x4 + s2y2 + 2sx2y .



We recover many of the adjacencies from Arnol’d’s list.

E6 E20E19E18E14E13E12

X 9

E7 E8

J10

Z11 Z19Z18Z17Z13Z12

W12
W18W17W13

J3,1J3,0

Z1,1Z1,0

W1,1
W1,0

Some were not in Arnol’d’s list:

Z11 = S2,4,5 → E8, Z12 = S2,4,6 → J10 = T2,3,6, W17 → Z13 = S2,4,7

Some are not realizable:

W18 9 Z17, Z11 9 J10, X9 9 E7.



Relation to the study of δ constant stratum.

Recall Teissier’s Theorem: a deformation ft admits a
parametrization in family if and only if it is δ-constant.
(δ(C , 0) = dimC(OC̄ ,0̄/OC ,0)).

Describe all the NE⊂NF is equivalent to describe which of
the deformations fixing the free points are in the δ-constant
stratum.

Our problem is slightly different to the classical study of the
δ-constant stratum: may be easier?



Happy birthday and thank you!



Order and duality for topological types that are resolved in n blow-ups.



Order and duality for topological types that are resolved in n blow-ups.

Take combinatorial information (1/0) about n − 3 edges
(straight/curve) and n − 3 vertices (broken between
straight/smooth).
Combinatorics induces a partial order: the more straight lines and
broken vertices, the bigger.

E

+    1  >0,  0  >1
 

Vertices     0 0 1 0 0 0 0 
Edges      0 0 1 1 1 1 0

E*Vertices     1 0 0 0 0 1 1 
Edges      1 1 1 1 0 1 1

You get a duality that inverting the partial order just interchanging
broken/curve and smooth/straight and reading backwards.



Order and duality for topological types that are resolved in n blow-ups.



Order and duality for topological types that are resolved in n blow-ups.



Order and duality for topological types that are resolved in n blow-ups.

It is just a combinatorial happening for the moment, will it appear
in a deeper context?

P. Popescu-Pampu, M. Pe Pereira, Fibonacci numbers and
self-dual lattice structures for plane branches.Bridging Algebra,
Geometry, and Topology , Springer Proceedings in
Mathematics Statistics, 96


