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Bernard and visual neuroscience

Bernard helped greatly the developement of geometrical models in
visual neuroscience.

In 1991 he organized the first seminars on these topics at the
ENS and founded in 1999 with Giuseppe Longo the seminar
Geometry and Cognition.

From 1993 on, he organized at the Treilles Foundation many
workshops with specialists such as Jean-Michel Morel, David
Mumford, Gérard Toulouse, Stéphane Mallat, Yves Frégnac,
Jean Lorenceau, Olivier Faugeras.

He organised also in 1998 with J.-M. Morel and D. Mumford
a special quarter Mathematical Questions on Signal and
Image processing at the IHP.

He worked with Alain Berthoz at the College de France
(Daniel Bennequin worked also a lot there on geometrical
models in visual neuroscience).
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Introduction to Neurogeometry

In this talk I would try to explain some aspects of Neurogeometry,
concerning the link between natural low level vision of mammals
and geometrical concepts such as fibrations, singularities, contact
structure, polarized Heisenberg group, sub-Riemannian geometry,
noncommutative harmonic analysis, etc.

I will introduce some very basic and elementary experimental facts
and theoretical concepts.

QUESTION:
How the visual brain can be a neural geometric engine?
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The visual brain

Here is an image of the human brain. It shows the neural pathways
from the retina to the lateral geniculate nucleus (thalamic relay)
and then to the occipital primary visual cortex (area V 1).
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fMRI of human V1

fMRI of the retinotopic projection of a visual hemifield on the
corresponding V1 (human) hemisphere. Concentric circles and rays
are coded by colors.
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Area V1

I will focus on the first primary area V1 (cat’s area 17).

I will say nothing of

1 the retino-geniculo-cortical pathway projecting retinotopically
the retina onto V1 (it is a conformal map);

2 the post-V1 processing of visual images by other cortical areas.

This restriction is of course a drastic limitation and simplification:
reality is much more complex. But it can be justified by Mumford’s
“high-resolution buffer hypothesis”according to which V1 is much
more than a simple “bottom-up early-module”, and is essential to
any visual processing requiring a fine resolution.
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The problem

The geometry of visual perception provides a lot of evidences for
some sort of neural implementation of differential and integration
routines (detection of tangents, detection of curvature, integration
of curves, etc.).

But what type of implementation?

Visual cortical neurons are very local detectors and even “point
processors” (Jan Koenderink). They are only able to code a single
numerical value by means of their firing rate.

They CANNOT implement differential routines.
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The problem

But they are connected in a very specific way, called a functional
architecture, and compose very complex neural nets.

Therefore, we must understand how such nets of neurons can
detect very local differential features and integrate them into the
global geometric structures of perception?

The classical intuitions of “differentiation” and “integration”
cannot be used. We need much elaborate concepts of differential
geometry.
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Hubel & Wiesel crucial experiments 1

The crucial discovery of a functional architecture of V1 was made
in 1959 by David Hubel and Torsten Wiesel (1981 Nobel Prizes).

Recording the activity of cells of V1 (cat’s area 17) they discovered,
almost by accident, that some of these cells (they called “simple” )
were activated by a bar of a well defined orientation.

Here are some seconds of this crucial experiment

HW1
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Orientation selectivity

Then they discovered that the selectivity to orientation is like a
Gaussian with a peak of cell activity for the preferred orientation
and no cell activity for the orthogonal orientation.

HW2
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Improving the experiments

Hubel and Wiesel analyzed the dependence of the orientation
tuning curve w.r.t. the position of the bar, its orientation, its
thickness, its length, its contrast, etc.

They delimitated the position and the size of the receptive field of
a simple cell, that is the small region of the visual field to which it
is correlated.
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Receptive fields and receptive profiles

In a very rough linear approximation, neurons act as filters on the
optical signal transduced by the photoreceptors of the retina. Their
receptive profile is their transfer function.

They are well modeled by Gabor patches or derivatives of Gaussian.
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Example of receptive field

Here is an example. Left: Recording of level sets (Gregory
DeAngelis, Berkeley). Right: model (third derivative

ϕ(x , y) = ∂3G
∂x3 ).
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Wavelet analysis

The filtering of the signal is like a wavelet analysis using oriented
wavelets.
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The functional architecture

Simple cells of V1 are parametrized by triples (a, p) where
a = (x , y) is a position in the retina or the visual field (that one
can identify to R2) and p is an orientation at a.

So, simple cells of V1 constitute a field of orientations.

This structure is the basis for the “functional architecture” of V1.

Immediately the question arises: what is the structure of this field?
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Hubel & Wiesel crucial experiments 2

The second breakthrough made by Hubel and Wiesel was that
orientations vary as continuously as possible: along a “horizontal”
penetration, position remains constant while orientation rotates
regularly until it meets some singularity.
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Hubel & Wiesel crucial experiments 2

It was a great discovery.

Hence the first idealization of the functional architecture:

neurons detecting all the orientations p at the same position a of
R2 constitute an anatomically well defined small neural module
called an “orientation hypercolumn”.

J. Petitot Neurogeometry



Geometrical interpretation

This means that the fiber bundle π : V = R2 × P → R2 (where the
fiber P is the projective line of orientations) is neurally
implemented.

This is mathematically trivial but not neurophysiologically trivial as
a result of evolution.
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Braitenberg reconstruction

One of the first plausible reconstruction of a concrete orientation
field from the sparse data provided by a network of electrodes was
infered in 1979 by Valentino Braitenberg.

Taking into account the fact that along a linear tangential
penetration the chirality of rotating orientations could change,
Braitenberg reached the conclusion:

“We believe that the most natural explanation of the
facts observed would be in terms of orientations arranged
with circular symmetry around centers, either radially or
along concentric circles.”
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Orientation centers

The introduction of centers of orientation explains the inversion of
chirality along a linear penetration.
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Pinwheels

Braitenberg’s inference has been strikingly confirmed in the 1990s
by the revolution of brain imagery (fMRI).

Here is the functional architecture of the area V 1 of a tree-shrew
(tupaya) obtained by “in vivo optical imaging” (William Bosking).
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Pinwheels figure

J. Petitot Neurogeometry



Pinwheels figure

The plane is V 1,

A colored point represents the mean of a small group of real
neurons (mesoscale).

Colors code for the preferred orientation at each point.

The field of isochromatic lines (i.e. iso-orientation lines) is
organized by a lattice of singular points called pinwheels
where all orientations meet.

There exist a “mesh” of the lattice of pinwheels (a sort of
characteristic length).

Pinwheels have a chirality.

Adjacent pinwheels have opposed chirality.
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End points and triple points

If θ is the angle of a pinwheel ray, the associated orientation varies,
up to a constant, as ±θ/2.

In the following picture due to Shmuel (cats area 17), orientations
are coded by colors but are also represented by white segments.

We observe very well the two types of generic singularities of 1D
foliations in the plane: end points (+θ/2) and triple points (−θ/2).
They correspond to the two possible chiralities of pinwheels.
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Shmuel figure
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Wolf-Geisel models

There exist beautiful models of pinwheels. They are analogous to
dislocations of phase fields in optics (see Mike Berry’s works).
Fred Wolf and Theo Geisel proposed a model using a complex field

Z : R2 → C, a = ρe iθ 7→ r (a) e iϕ(a)

where the spatial phase ϕ (a) codes the orientation (ϕ (a) varies as
±θ/2 near singular points) and the module r (a) codes the
orientation selectivity.

Under the (non trivial) hypothesis that there is no selectivity at the
pinwheel singularities, these singular points are zeroes of the field.

If Z = X + iY , they are the intersections of the curves X = 0 and
Y = 0.
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Dislocations of phase fields

There are two classes of curves:

the integral curves of the phase field;

the isophase curves called “wavefronts” in optics.

The field orthogonal to the isophase curves is the gradient field of
ϕ (a).

But ϕ (a) is undeterminate at the singularities. In such cases
physicists use the current field

J = r2∇ϕ = X∇Y − Y∇X
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Berry field
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Superposition of plane waves

To get phase fields with a characteristic length, it is convenient to
use superpositions of plane waves sharing the same wave number
k : Ae iκ.a

A = Ee iφ complex amplitude
κ = (κx , κy ) wave vector
k = |κ| wave number
Λ = 2π

k wave length

They are solutions of the Helmholtz equation :

∆Z + k2Z = 0 .

Daniel Bennequin worked also on these models.
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Helmholtz pinwheels

Solutions have pinwheel-like isophase lines and provide very good
models of empirical pinwheels..
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Iso-orientation lines and phase field integral lines

When you look at underlying orientation integral lines, you get
again end points and triple points.
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Pinwheels as blow ups and V1 as a fiber bundle

But many experiments show that orientation selectivity does not
vanish at the singular points ai .

To take into account this key fact we can consider that pinwheels
are local blow ups of points ai and look at the orientation field as
the closure of a section σ of π : V = R2×P → R2 defined over the
open subset R2 − {ai}. Over the ai the closure of σ is the fiber Pai

At the limit, when all the points of the base plane R2 are blown up
in parallel we get the fibration π : V = R2 × P → R2.

So V can be considered as an idealized continuous approximation
of the concrete V 1. This model is now commonly used by
neurophysiologists.
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Pinwheels as blowg ups

So, the idea is that pinwheels are local blow-ups of points a whose
exceptional fiber Pa is compactified à la Kaluza-Klein, and
projected in an “infinitesimal” neighborhood around a in the base
plane.
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Fiber bundles and “engrafted” variables

By the way, the intuition (not the mathematical concept) of a fiber
bundle was explicit in Hubel with his concept of
“engrafted”variables:

“What the cortex does is map not just two but many variables on
its two-dimensional surface. It does so by selecting as the basic
parameters the two variables that specify the visual field
coordinates (...), and on this map it engrafts other variables, such
as orientation...”
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Contact elements and 1-jets

Now, the elements of V = R2 × P are contact elements that is
numerical values of 1-jets of smooth plane curves. They can be
processed by neural “point processors”.

So, we can give a first answer to our initial question:

QUESTION:
How the visual brain can be a neural geometric engine?

ANSWER:
Low dimensional jet spaces are neurally implemented and jet
spaces are naturally endowed with integrability conditions.

Jets are “prolongations” in the sense of Cartan.

The visual brain is a “Lie-Cartan” geometric engine.

J. Petitot Neurogeometry



Functional architectures

But we must go much further. Jets have to be integrated and this
requires a supplementary structure.

The very key point is that this supplementary geometric structure
on V is implemented in a specific class of neural connections.

Indeed, cortical neurons are connected by “horizontal”
cortico-cortical connections inside the layer itself.

This supplementary connectivity is extremely specific and provides
the second part of the functional architecture (the first part is
provided the retino-geniculo-cortical “vertical” connections
modeled by the fibration V = R2 × P).
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Necessity of a parallel transport

The “vertical” retinotopic structure is not sufficient. To implement
a global coherence, the visual system must be able to compare two
retinotopically neighboring fibers Pa and Pb over two different base
points a and b.

It is this problem of parallel transport which is solved by the
long-range excitatory “horizontal” cortico-cortical connections.
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“Horizontal” cortico-cortical connections

Bosking’s image shows the diffusion of a marker (biocytin) along
horizontal connections (black marks). The injection site is
upper-left in a green domain.
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“Horizontal” cortico-cotical connections

There are two main results:

1 the marked axons and synaptic buttons cluster in domains of
the same color (same orientation), which means that
horizontal connections implement neurally a parallel transport.

2 the global clustering along the upper-left bottom-right
diagonal means that horizontal connections connect neurons
with almost parallel and almost aligned orientations.
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Co-axial alignement

“The system of long-range horizontal connections can be
summarized as preferentially linking neurons with co-oriented,
co-axially aligned receptive fields.”(W. Bosking)

This result is corroborated by experiments in psychophysics about
what is called the association field and curve integration (David
Field, Anthony Hayes and Robert Hess, Jean Loranceau).

It is the neural origin of the the concept of a line.

J. Petitot Neurogeometry



The association field

The experiments concern the pop-out (the perceptive saliency) of
almost aligned Gabor patches.

Here is an example. In a background of random patches, you insert
a set of almost aligned patches and a global curve emerge.
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The association field
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Curve integration

A set of contact elements ci = (ai , pi ) is perceived as a global
curve (what is called a binding) if the orientations pi are tangent
to a regular curve γ interpolating as straightly as possible between
the positions ai .

These “joint constraints of position and orientation” (Field et al.)
correspond to the horizontal connections.

horizontal connections, parallel transport, coaxiality, binding,
propagation of coherent activity, synchronization, global pop out,

saliency
⇐⇒

integration of contact elements
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The contact structure of 1-jets

These experimental results show that a skew curve

Γ = v(s) = (a(s), p(s)) = (x (s) , y(s), p(s))

in V is perceived as a globally coherent curve (via binding and
pop-out) in the base plane R2

iff p(s) is the tangent p = dy/dx to the curve a(s),

iff it is the Legendrian lift of its projection γ,

iff it is an integral curve of the contact structure K = ker(ω)
of V, where ω is the 1-form

ω = dy − pdx
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The distribution of contact planes

The contact structure is the kernel distribution of ω, i.e. the
distribution of contact tangent planes K = ker(ω).

K is maximally non integrable since the 3-form

ω ∧ dω = (−pdx + dy) ∧ dx ∧ dp = −dx ∧ dy ∧ dp .

is a volume form, which is the opposite of the Frobenius
integrability condition ω ∧ dω = 0.

So, even if there exists a lot of integral curves of K (Legendrian
lifts), there exists no integral surface.
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The functional architecture as a contact structure

For curves, to work in V 1 is to work with Legendrian curves.

The functional architecture is represented by the 1-form
ω = dy − pdx and the associated contact structure.
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Contact structure and point processors

The horizontal cortico-cortical connections mean geometrically
that

the contact structure K of the space of 1-jets V is neurally
implemented.

This explains how “point processors” as neurons can do differential
geometry if they are connected by a suitable functional
architecture.
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The contact structure of 1-jets

We can go further.

The contact structure K is left-invariant for a group law making V
isomorphic to the polarized Heisenberg group.

(x , y , p).(x ′, y ′, p′) = (x + x ′, y + y ′ + px ′, p + p′) .

Its Lie algebra is generated by the basis of left-invariant fields
X1 = ∂

∂x + p ∂
∂y = (1, p, 0) and X2 = ∂

∂p = (0, 0, 1) with

[X1,X2] = (0,−1, 0) = − ∂
∂y = −X3 (the other brackets = 0).
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The contact structure of 1-jets

The fact that the basis {X1,X2} of the distribution K of contact
planes is bracket generating (i.e. Lie-generates the whole tangent
bundle T ∗V) is called the Hörmander condition.

Moreover V is nilpotent of step 2, which means that all brackets of
the form [t, [u, v ]] vanish. It is an example of Carnot group.
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The contact structure of SE (2)

The Euclidean group SE (2) = R2 >/ SO(2) of direct isometries of
the plane acts naturally on V and it is therefore better to work in
the associated principal bundle, as proposed by Giovanna Citti and
Alessandro Sarti.

In that case, the contact form is

ωS = − sin (θ) dx + cos (θ) dy

that is cos (θ) (dy − pdx) = cos (θ)ω.

The contact planes are spanned by the tangent vectors
X1 = cos (θ) ∂

∂x + sin (θ) ∂
∂y and X2 = ∂

∂θ with Lie bracket

[X1,X2] = sin (θ) ∂
∂x − cos (θ) ∂

∂y = −X3.
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The two models

Contrary to the polarised Heisenberg case, the Xj constitute an
Euclidean orthonormal basis and are therefore more natural.

The distribution K of contact planes is still bracket generating
(Hörmander condition).

But SE (2) is no longer nilpotent. In fact, the Carnot group V is in
some sense “tangent” to SE (2). It is called the “tangent cone” of
SE (2) or its “nilpotentisation”.
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Completion and Gestalttheory

That the functional architecture implements a contact structure
explains some strange perceptive phenomena of very long range
completion of images.

Consider for example this Kanizsa square.
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Kanizsa square
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Kanizsa square

The red pacmen induce very long-range curved illusory contours
(what is called modal completion).

Moreover, these contours act as boundaries for a diffusion of color
inside the square (what is called the “neon” or “watercolor effect”).
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Koffka cross

Consider also the Koffka cross:
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Bistability

The end points activate locally (area V2 is necessary) the
orthogonal orientations.

These very sparse local activation induce a very long-range global
modal subjective contour.

Moreover, subjects perceive alternately circles and squares, which
means that there exists a competition between two completion
strategies:

circle: illusory contours with a maximal diffusion of curvature,

square: piecewise linear illusory contours (curvature = 0) with
corners (singularities of curvature).
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Ehrenstein illusion

This bistability is even more striking in the Ehrenstein illusion:
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Variational models

To explain these spectacular completion phenomena, variational
models have been introduced since the late 70s.

They were models minimizing an energy along curves γ in the base
plane R2.

The best known is the elastica model proposed in 1992 by David
Mumford. The energy to minimize is:

E =
∫
γ(ακ2 + β)ds
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Geodesic models

But in what concerns neural models (and not only 2D image
processing) it is natural to work in V 1, that is with the contact
structure and the Legendrian curves.

Hence the natural idea of introducing natural sub-Riemannian
metrics on V and SE (2) and look at geodesic models for curve
completion and illusory modal contours.

The natural sub-Riemannian metrics on the distribution of contact
planes K are the left invariant ones left translating the Euclidean
metric of the contact plane at the origin.
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Sub-riemannian geometry

The subRiemannian geometry of groups such as V and SE (2) is
rather complex. For the Heisenberg group the problem was solved
in the 1980s by Richard Beals, Bernard Gaveau and Peter Greiner.
They claimed:

“The results indicate how complicated a control problem
can become, even in the simplest situation.”
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Sub-riemannian references

A lot of geometers and analysts worked in this field. My main
references have been Misha Gromov, Andrei Agrachev, John
Mitchell, Richard Montgomery, Robert Strichartz, Anatoly Vershik,
Jean-Pierre Pansu, Jean-Michel Bismut, André Belläıche,
Jean-Jacques Risler.
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The sub-Riemannian wavefront

The structure of geodesics of V implies that the sub-Riemannian
sphere S (globally minimizing geodesics of SR length 1) and the
wave front W (only locally minimizing geodesics of SR length 1)
are rather strange. One can compute them explicitly .

It is a control problem.

Due to the “Pontryagin maximum principle”, geodesics are the
projections on V of the Hamiltonian on the cotangent space

H (x , y , p, ξ∗, η∗, π∗) =
1

2

[
(ξ∗ + pη∗)2 + π∗2

]
.
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The sub-Riemannian wavefront

The sphere S and the wave front W (with radius
√

2) are given by
the equations

x1 = |sin(ϕ)|
ϕ cos (θ)

p1 = |sin(ϕ)|
ϕ sin (θ)

y1 = 1
2x1p1 + ϕ−sin(ϕ) cos(ϕ)

4ϕ2

= 1
2

sin2(ϕ)
ϕ2 cos (θ) sin (θ) + ϕ−cos(ϕ) sin(ϕ)

4ϕ2

= ϕ+2 sin2(ϕ) cos(θ) sin(θ)−cos(ϕ) sin(ϕ)
4ϕ2

In the figure, the external surface is the sub-Riemannian sphere S .
It has a saddle form with singularities at the intersections with the
y -axis. The internal part is W − S . It presents smaller and smaller
circles of cusp singularities which converge to 0. Such a complex
behaviour is impossible in Riemannian geometry.
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SR wave-front
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Sub-Riemannian geometry of SE (2)

For SE (2), the sub-Riemannian geometry is much more complex
and has been studied by the group of Andrei Agrachev, in
particular Jean-Paul Gauthier, Ugo Boscain and Yuri Sachkov.

Giovanna Citti, Alessandro Sarti and Remco Duits studied also the
problem.
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Sub-Riemannian diffusion and heat kernel

So virtual visual contours are integrated via sub-Riemannian
geodesics implemented in horizontal connections.

For the completion of corrupted images (inpainting) it is therefore
natural to use diffusion along the horizontal connections, that is
sub-Riemannian Laplacian, SR heat kernel, etc.

The numerical results are quite striking.

The following picture due to Jean-Paul Gauthier shows how a
highly corrupted initial image can be very well restored using
sub-Riemannian diffusion.
Top-left: initial image, top-right: highly corrupted image, bottom:
restored image.
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Sub-Riemannian inpainting
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Happy Birthday, Bernard

and a warm thanks for your support to
cognitive neurosciences
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