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Enumeration of curves via non-archimedean geometry

1 What is enumerative geometry about?

2 New results on tropical geometry and non-archimedean geometry

3 Count holomorphic cylinders in log Calabi-Yau surfaces
New geometric invariants
The wall-crossing formula conjectured by Kontsevich-Soibelman

4 Potential applications to singularity theory

Tony Yue YU (Paris 7) Non-archimedean enumerative geometry Aussois 2015 2 / 23



Counting curves

Q: How many lines pass through
2 points on CP2 ?

Q: How many conics pass through
5 generic points on CP2 ?

Q: More generally, how many rational curves of degree d pass through
3d − 1 generic points on CP2 ?
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Q: More generally, how many rational curves of degree d pass through
3d − 1 generic points on CP2 ?

Let Nd denote the number of rational curves of degree d in CP2 passing
through 3d − 1 generic points.

We have N1 = 1, N2 = 1, N3 = 12, N4 = 620 (Zeuthen 1874), N5 =?,
N6 =?, . . .

The answer for d ≥ 5 was unknown until the 90s.

Theorem (Kontsevich-Manin 94, Ruan-Tian 94)
The numbers Nd satisfy the following recursive formula

Nd =
∑

d1,d2>0
d1+d2=d

(
3d − 4
3d1 − 2

)
(d1d2)2Nd1Nd2 −

∑
d1,d2>0

d1+d2=d

(
3d − 4
3d2 − 1

)
d1d3

2Nd1Nd2 .

Now we can compute N5 = 87304, N6 = 26312976, N7 = 14616808192,
N8 = 13525751027392, N9 = 19385778269260800, . . .
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Theorem (Kontsevich-Manin 94, Ruan-Tian 94)
The numbers Nd satisfy the following recursive formula

Nd =
∑

d1,d2>0
d1+d2=d

(
3d − 4
3d1 − 2

)
(d1d2)2Nd1Nd2 −

∑
d1,d2>0

d1+d2=d

(
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Remark
The numbers Nd are examples of Gromov-Witten invariants.
The recursive formula above is a particular case of WDVV relations for
Gromov-Witten invariants.

Counting rational curves in CP2 is an example of enumerative geometry.
The main themes of enumerative geometry are

Define new enumerative invariants.
Study their properties.
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Besides rational curves in CP2, we can also count curves with higher genus
in a general smooth projective variety X :

X

Moreover, theoretical physics (in particular, mirror symmetry) suggests that
besides counting “closed curves”, it is also important to count “open curves”
(i.e. Riemann surfaces with boundaries):
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In order to count curves with boundaries, we have to specify boundary
conditions.

In the study of mirror symmetry, there is an important torus fibration, called
SYZ torus fibration (Strominger-Yau-Zaslow 1996):
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In order to count curves with boundaries, we have to specify boundary
conditions.

In the study of mirror symmetry, there is an important torus fibration, called
SYZ torus fibration (Strominger-Yau-Zaslow 1996):

It is of great interest to count holomorphic discs in the total space, with
boundaries on a torus fiber,
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and more generally, Riemann surfaces with boundaries on the torus fibers.

However, there are two serious issues:
The existence of the SYZ torus fibration is largely conjectural
(Gross-Wilson 2000).
The counting of holomorphic discs does not give simple numerical
invariants. (It does give rise to more sophisticated structures, e.g.
obstructions in Floer homology (Fukaya-Oh-Ohta-Ono).)
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In 2000, Kontsevich and Soibelman suggested to tackle the problem using
non-archimedean geometry.

More precisely:

First, we replace our ambient complex variety by a non-archimedean
analytic space X over C((t)), which we think of as a family of complex
varieties over a small punctured disc.

Second, we replace the SYZ torus fibration by the following construction of
Berkovich:

Theorem (Berkovich 99)
Given a nice formal model of X, one can construct a strong deformation
retraction from X to a polyhedral complex S embedded in X, called the
skeleton.

(see also the works by Thuillier, Mustata-Nicaise, Nicaise-Xu)
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Example of K3 surface

Theorem (Berkovich 99)
Given a nice formal model of X, one can construct a strong deformation
retraction from X to a polyhedral complex S embedded in X, called the
skeleton.

X : K3 surface of type III degeneration

The skeleton S is a polyhedral complex
homeomorphic to S2.
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In 2000, Kontsevich and Soibelman suggested to tackle the problem using
non-archimedean geometry.

More precisely:

First, we replace our ambient complex variety by a non-archimedean
analytic space X over C((t)), which we think of as a family of complex
varieties over a small punctured disc.

Second, we replace the SYZ torus fibration by Berkovich’s retraction map
τ : X → S from X to a skeleton S.

Now, we reconsider our enumerative problem in this new non-archimedean
setting, that is, we would like to count curves with boundaries on fibers of
Berkovich’s retraction.

Q: How to count curves in a non-archimedean analytic space?

A: I still do not know how to do it in general. But I developed some
preliminary steps and studied a particular case for log Calabi-Yau surfaces.
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Q: How to count curves in a non-archimedean analytic spaces?

First, we would like to understand how curves behave with respect to
Berkovich’s retraction.

Theorem (Y 2013)
Under the retraction τ , any holomorphic curve C in X becomes a piecewise
linear graph in S, which satisfies the generalized balancing conditions.

X
C

τ

C trop S

We call C trop the tropical curve
associated to C .

The balancing conditions are
constraints on the shape of C trop

around every vertex.
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Tropicalization of families of curves
In the theorem above, we considered the tropicalization of a single
holomorphic curve.
Q: What about families of curves?

A: We have a set-theoretic tropicalization map for families of curves:

{ holomorphic curves in X }

{ tropical curves in S } .

τM

Q: More structures than set-theoretic?
A: To be more precise, fix a real number A, and consider

Mg ,n(X ,A) := { n-pointed genus g stable maps into X with area ≤ A }

Mg ,n(S,A) := { n-pointed genus g tropical curves in S with area ≤ A } .

τM
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Mg ,n(X ,A) := { n-pointed genus g stable maps into X with area ≤ A }

Mg ,n(S,A) := { n-pointed genus g tropical curves in S with area ≤ A } .

τM

Theorem (Non-archimedean Gromov compactness theorem, Y 2014)
Mg ,n(X ,A) is a proper k-analytic stack if X is proper.

Theorem (Y 2015)
The map τM is continuous. Its image is polyhedral.

The proofs use formal models, Artin’s representability theorem, the geometry
of stable curves, de Jong’s three point lemma, analytic étale cohomology,
vanishing cycles and quantifier eliminations for rigid subanalytic sets.
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of stable curves, de Jong’s three point lemma, analytic étale cohomology,
vanishing cycles and quantifier eliminations for rigid subanalytic sets.
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Count holomorphic cylinders in log Calabi-Yau surfaces

Let’s apply the general theorems above to study the enumerative geometry
of log Calabi-Yau surfaces.

Y a smooth complex projective surface,
D ⊂ Y a nodal curve representing −KY ,
X :=

(
(Y \ D)×C C((t))

)an
,

i.e. “constant family over the punctured disc”.

Theorem (Y 2015)
In this case, the skeleton S is homeomorphic to R2. The retraction map
τ : X → S is a k-analytic torus fibration outside the origin O ∈ S.
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Goal: Define and study the enumeration of cylinders with boundaries on
two fiber tori:

X

O

τ

L
S ' R2
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Goal: Define and study the enumeration of cylinders with boundaries on
two fiber tori:

In enumerative geometry, to define an invariant,
there are 3 fundamental steps in general:

Construction of the moduli space
Compactification of the moduli space
Construction of the virtual fundamental class

X

O

τ

L
S

The last step turns out very difficult in non-archimedean geometry. But in
the case of log Calabi-Yau surfaces, we can borrow the algebraic
construction of virtual fundamental class (Behrend-Fantechi), as long as we
can prove the GAGA theorem for non-archimedean analytic stacks.
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Theorem (Porta-Y 2014)
Let X be a (higher) algebraic stack proper over a k-affinoid space. Then
the analytification functor induces an equivalence of categories

Cohb(X ) ∼−→ Cohb(X an),

where Cohb(·) denotes the bounded derived ∞-category of coherent
sheaves.

Remark
Although we only need classical stacks for enumerative geometry, our
∞-categorical setting allows us to simplify proofs, and obtain the result for
higher stacks with little extra effort.

Finally, combining all the theorems above, plus some constructions, I
manage to define the number of cylinders N(L, β) in X given any broken
path L in S \ O and curve class β ∈ NE(Y ).
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Finally, combining all the theorems above, plus some constructions, I
manage to define the number of cylinders N(L, β) in X given any broken
path L in S \ O and curve class β ∈ NE(Y ).

X

O

τ

L
S ' R2

The number of cylinders enjoys very nice properties. I hope to explain to
you in the future.

Now let’s look at a concrete example for a del Pezzo surface.

Tony Yue YU (Paris 7) Non-archimedean enumerative geometry Aussois 2015 20 / 23



Finally, combining all the theorems above, plus some constructions, I
manage to define the number of cylinders N(L, β) in X given any broken
path L in S \ O and curve class β ∈ NE(Y ).

X

O

τ

L
S ' R2

The number of cylinders enjoys very nice properties. I hope to explain to
you in the future.

Now let’s look at a concrete example for a del Pezzo surface.

Tony Yue YU (Paris 7) Non-archimedean enumerative geometry Aussois 2015 20 / 23



Example (del Pezzo surface of degree 7)
Y : CP1 × CP1 blowup a smooth point in the toric boundary:

We obtain that the number of cylinders corresponding to the broken path L
equals

(m
k
)
.

It gives exactly the wall-crossing formula around a focus-focus singularity,
conjectured by Kontsevich-Soibelman:

(x , y) 7−→
(
x(1 + y), y

)
, xmyn 7−→ xm(1 + y)myn =

m∑
k=0

(
m
k

)
xmyk+n.
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Potential applications to singularity theory
Work in progress:

The number of cylinders −→ a universal family of log CY surfaces.

Remarks:
1 The construction is totally explicit. So we obtain an explicit description

of the moduli space and of the universal family.
Singular spaces occur naturally in this universal family, so we obtain an
explicit description of the singularities as well as their deformations.

2 In the recent work Mirror symmetry for log Calabi-Yau surfaces, Gross,
Hacking and Keel constructed the universal family mentioned above
and proved Looijenga’s conjecture on the smoothing of 2-dimensional
cusp singularities.
They do not use non-archimedean geometry. Their main tools are
scattering diagrams and broken lines; both are combinatorial notions.
Our counting of cylinders gives geometric interpretations to their
combinatorial constructions.
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3 In the near future, we aim to develop the enumeration of cylinders in
log CY varieties of higher dimensions. We hope that this will provide a
new tool for the study of moduli spaces and singularities in higher
dimensions.

Thank you very much for your attention!
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