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The 3-dimensional permutohedron Ps:

(3.1.2.4) @123

(2.1.34) (4.3.1.2)

(1,23.4)

(1.4.3,2)

This polytope has the symmetry of the root system As.
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A graph is a 1-dimensional space, with vertices and edges.

Graphs are the simplest geometric structures.
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Whitney (1932): The chromatic polynomial of a graph G is the function

xc(g) = (the number of proper colorings of G with ¢ colors).

Example

xc(q) =1¢* —4¢°+6¢° —3q,  xc(2)=2.

What can be said about the chromatic polynomial in general?
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Whitney (1932): The chromatic polynomial of a graph G is the function

xc(g) = (the number of proper colorings of G with ¢ colors).

Example

xc(q) =1¢* —4¢°+6¢° —3q,  xc(2)=2.

Read’s conjecture (1968)

The absolute values of the coefficients of the chromatic polynomial x ¢ (q)

form a log-concave sequence for any graph G, that is,

a,-z 2 Q;—1Q;+4+1 for all =.
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Example

How do we compute the chromatic polynomial? We write

e — 0 [ ] [ ] [ ]

L =1 I - I\

e — o e — o e —o
and use

xa\e(a) = aq(g—1)°

xacre(q) = q(g—1)(g—2).
Therefore

x6(q) = xa\e(q) — xo/e(q) = 1¢* — 4¢° + 69° — 3q.

This algorithmic description of x¢(g) makes the prediction of the conjecture interesting.
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For any finite set of vectors A in a vector space over a field, define

fi(A) = (number of independent subsets of &/ with size z).

Example
If A is the set of all nonzero vectors in IF3, then

fo=1, A=T7, fo=21, f3=28.

June Huh 6/27



For any finite set of vectors A in a vector space over a field, define

fi(A) = (number of independent subsets of &/ with size z).

Example
If A is the set of all nonzero vectors in IF3, then

fo=1, A=T7, fo=21, f3=28.

How do we compute f;(A)? We use

fi(A) = fi(A\ V) + fiea (A ).

June Huh 6/27



Welsh’s conjecture (1969)
The sequence f; form a log-concave sequence for any finite set of vectors A
in any vector space over any field, that is,

f2 > fii1 fira foralls.
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Whitney (1935).

A matroid on a finite set E is a collection of subsets of E, called independent

sets, which satisfy axioms modeled on the relation of linear independence of vectors:
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Whitney (1935).
A matroid on a finite set E is a collection of subsets of E, called independent
sets, which satisfy axioms modeled on the relation of linear independence of vectors:

1. Every subset of an independent set is an independent set.

2. If an independent set A has more elements than independent
set B, then there is an element in A which, when added to B, gives a larger

independent set.
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1. Let V be a vector space over a field k, and A a finite set of vectors.
Call a subset of A independent if it is linearly independent.

This defines a matroid M realizable over k.
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1. Let V be a vector space over a field k, and A a finite set of vectors.
Call a subset of A independent if it is linearly independent.

This defines a matroid M realizable over k.

2. Let G be afinite graph, and E the set of edges.
Call a subset of E independent if it does not contain a circuit.

This defines a graphic matroid M.
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Fano matroid is realizable iff char(k) = 2.

Non-Fano matroid is realizable iff char(k) # 2.

Non-Pappus matroid is not realizable over any field.

Testing the realizability of a matroid is not easy: When k& = Q, this is

equivalent to Hilbert’s tenth problem over Q.
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One can define the chromatic polynomial of a matroid by the recursion

xm () = xm\e(q) — Xn/e(q)-

Rota’s conjecture (1970)

The coefficients of the chromatic polynomial x1:(q) form a log-concave

sequence for any matroid M, that is,

ﬂ? Z Mi—1Mi41 for all z.

This implies the conjecture on G and the conjecture on A.
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One can define the chromatic polynomial of a matroid by the recursion

xm () = xm\e(q) — Xn/e(q)-

Rota’s conjecture (1970)

The coefficients of the chromatic polynomial x1:(q) form a log-concave

sequence for any matroid M, that is,

ﬂ? Z Mi—1Mi41 for all z.

How to show that a sequence is log-concave?
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@ h : anonconstant homogeneous polynomial in C[z, .. ., 2-].
@ J, : the jacobian ideal (8h/8z, ..., 0h/0z,).

@ Define the numbers u'(k) by saying that the function
dime m* Jy /m* Tt g
agrees with the polynomial for large enough » and v

°h) , ‘(h i "(h
'u—()u + -+ L.).ur v+ mv’+(|ower degree terms).
7! (r — 2)h! 7l
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Theorem (-, 2012)

For any nonconstant homogeneous polynomial k € Czo, . . ., 2],

1. u'(h) is the number of i-dimensional cells in a CW-model of the complement
D(h) :={z € P" | h(z) # 0}.

2. pi(h) form a log-concave sequence, and

3. if h is product of linear forms, then the attaching maps are homologically trivial:

p'(h) = bi(D(R)).
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Theorem (-, 2012)

For any nonconstant homogeneous polynomial k € Czo, . . ., 2],

1. u'(h) is the number of i-dimensional cells in a CW-model of the complement
D(k):={z € P" | h(z) # 0}.

2. u'(h) form a log-concave sequence, and

3. if h is product of linear forms, then the attaching maps are homologically trivial:

p'(h) = bi(D(R)).

When h defines a hyperplane arrangement <7, this gives
p' (k) = pi() := (the i-th coefficient of the characteristic polynomial of .7),

justifying the log-concavity for matroids realizable over a field of characteristic zero.
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Matroids on [n] = {0, 1,..., n} are closely related to the geometry of

the toric variety X4, of the n-dimensional permutohedron:

(4.1.2.3)

(3.1.24)

(2.1.3.4)

(1.23.4)
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@ The rays of its normal fan A4, correspond to nonempty proper subsets of [n].

@ More generally, k-dimensional cones of A4, correspond to
flags of nonempty proper subsets of [n]:
S1C€85C---C S
@ The “extra symmetry” of P, maps a flag
S1C S C- - C Sk
to the flag of complements

[n]\ S12[n]\ S22 2[n]\ Sk
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@ A matroid M of rank r 4+ 1 on [n] can be viewed as an r-dimensional subfan
Ay C Ay,
which consists of cones corresponding to flags of flats of M:

Fi,CFC---CF..
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@ A matroid M of rank r 4+ 1 on [n] can be viewed as an r-dimensional subfan
Ay C Ay,
which consists of cones corresponding to flags of flats of M:

Fi,CFC---CF..

@ The fan Ay, is the Bergman fan of M,

or the tropical linear space associated to M.
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In a recent joint work with Karim Adiprasito and Eric Katz, we obtained inequalities

that imply Rota’s log-concavity conjecture in its full generality.
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In a recent joint work with Karim Adiprasito and Eric Katz, we obtained inequalities

that imply Rota’s log-concavity conjecture in its full generality.

What we show is that the tropical variety Ay has a “cohomology ring”

which has the structure of the cohomology ring of a smooth projective variety.

(I would guess that most of these “cohomology rings” of matroids are not isomorphic

to the cohomology ring of any smooth projective variety, but | do not know this.)
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A motivating observation is that the toric variety of Ay is, in the realizable case,

"Chow equivalent’ to a smooth projective variety:
There is a map from a smooth projective variety
V — XAM

which induces an isomorphism between Chow cohomology rings

A*(Xa,) — A*(V).

It is tempting to think this as a 'Chow homotopy’.
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In fact, the converse also holds.

Theorem

The toric variety Xa,, is Chow equivalent to a smooth projective variety over k

if and only if M is realizable over the field k.
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In fact, the converse also holds.

Theorem

The toric variety Xa,, is Chow equivalent to a smooth projective variety over k

if and only if M is realizable over the field k.

We show that, even in the non-realizable case, A*(M) := A*(Xa,,) has the structure

of the cohomology ring of a smooth projective variety.
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The proof is a good advertisement for tropical geometry to pure combinatorialists:

For any two matroids on [n] with the same rank, there is a diagram

“flip” “flip” “flp” “flip”
— = — —=\ —

AM Al A2 AM' )

and each flip preserves the validity of the K&hler package in the cohomology ring.

The intermediate objects are tropical varieties with good cohomology rings,

but not in general associated to a matroid.
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The cohomology ring A*(M) can be described explicitly by generators and relations,

which can be taken as a definition.
Definition
The cohomology ring of M is the quotient of the polynomial ring

A™(M) = Zzr] /(L + L),

where the variables are indexed by nonempty proper flats of M, and

I := ideal ( > @ =Y ar | i and i, are distinct elements of [n]),
i1€F i€F
I, := ideal ((I)Fl zr, | F1 and F are incomparable flats of M).
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Proposition
The Chow ring A*(M) is a Poincaré duality algebra of dimension r:

(1) Degree map: There is an isomorphism

deg: A"(M) — Z, HZF’ — 1,

i=1

for any complete flag of nonempty proper flats F1 C F> C --- C Fr of M.

(2) Poincaré duality: For any nonnegative integer k < r, the multiplication defines

the perfect pairing
AF(M) x ATTH (M) — AT(M) ~ Z,
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Proposition
The Chow ring A*(M) is a Poincaré duality algebra of dimension r:

(1) Degree map: There is an isomorphism

deg: A"(M) — Z, HZF’ — 1,

i=1

for any complete flag of nonempty proper flats F1 C F> C --- C Fr of M.

(2) Poincaré duality: For any nonnegative integer k < r, the multiplication defines

the perfect pairing
AF(M) x ATTH (M) — AT(M) ~ Z,

Note that the underlying simplicial complex of Az, the order complex of M,

is not Gorenstein in general.
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Digression: Why can’t we prove (at the moment) the g-conjecture for

simplicial spheres?

Because we do not understand Kahler classes in their cohomology ring.
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Digression: Why can’t we prove (at the moment) the g-conjecture for

simplicial spheres?

Because we do not understand Kahler classes in their cohomology ring.

The case of non-realizable matroids contrasts this in an interesting way.
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Let % be the convex cone of linear forms with real coefficients

Hn] = { Z cszs | S is a nonempty proper subset of [n]}

S

consisting of linear forms satisfying
csy + sy > Csnsy + Cs U8, (cp = ¢t = 0),

for any two incomparable nonempty proper subsets 51, S2 of [n].
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Let % be the convex cone of linear forms with real coefficients

Hn] = { Z cszs | S is a nonempty proper subset of [n]}

S

consisting of linear forms satisfying
csy + sy > Csnsy + Cs U8, (cp = ¢t = 0),

for any two incomparable nonempty proper subsets 51, S2 of [n].

Definition
The ample cone of M, denoted .#4,, is defined to be the image
Hin) — Hu C A (M),

where the non-flats of M are mapped to zero.
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Theorem (AHK)
Let £ be an element of %y, and let k be a nonnegative integer < r/2.
(1) Hard Lefschetz: The multiplication by £ defines an isormophism

A*(M)g — AF (MR,  h+— 7% h

(2) Hodge-Riemann: The multiplication by ¢ defines a definite form of sign (—1)*
PAF(M)R x PA¥(M)r — A"(M)r R, (A1, ho) —s £ * . hy - by,

where PA*(M)r C A*(M)r is the kernel of the multiplication by £" =2+
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Why does this imply the log-concavity conjecture?

Let ¢ be an element of [n], and consider the linear forms

a(i) = Z zg,

€S

B(2) := Z zs.

i¢§
Note that these linear forms are ‘almost’ ample:

cs; + sy > Csynsy + CsUS; (cp = cin1 =0).

Their images in the cohomology ring A*(M) does not depend on i, and

will be denoted by a and B respectively.
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Proposition

Under the isomorphism deg : A"(M) — Z., we have

a" % B* — (k-th coefficient of the reduced characteristic polynomial of M).

While neither a nor g are in the ample cone %, we may take the limit
£1—)Ot, lz—)ﬂ, zl,ezeji/M-
This may be one reason why direct combinatorial reasoning for log-concavity

was not easy.
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Proposition

Under the isomorphism deg : A"(M) — Z., we have

a" % B* — (k-th coefficient of the reduced characteristic polynomial of M).

While neither a nor g are in the ample cone %, we may take the limit
Z1—)Ot, lz—)ﬂ, el,ezeji/M-

This may be one reason why direct combinatorial reasoning for log-concavity

was not easy.

Corollary

The coefficients of the chromatic polynomial x1:(q) form a log-concave

sequence for any matroid M .
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