Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs

June Huh
CMI, IAS, and Princeton University

June 22, 2015

The 3-dimensional permutohedron P_{3} :

This polytope has the symmetry of the root system A_{3}.

A graph is a 1-dimensional space, with vertices and edges.

Graphs are the simplest geometric structures.

Whitney (1932): The chromatic polynomial of a graph G is the function

$$
\chi_{G}(q)=\text { (the number of proper colorings of } G \text { with } q \text { colors). }
$$

Example

What can be said about the chromatic polynomial in general?

Whitney (1932): The chromatic polynomial of a graph G is the function

$$
\chi_{G}(q)=\text { (the number of proper colorings of } G \text { with } q \text { colors). }
$$

Example

$$
\chi_{G}(q)=1 q^{4}-4 q^{3}+6 q^{2}-3 q, \quad \chi_{G}(2)=2 .
$$

Read's conjecture (1968)

The absolute values of the coefficients of the chromatic polynomial $\chi_{G}(q)$ form a log-concave sequence for any graph G, that is,

$$
a_{i}^{2} \geq a_{i-1} a_{i+1} \text { for all } i
$$

Example

How do we compute the chromatic polynomial? We write

and use

$$
\begin{aligned}
& \chi_{G \backslash e}(q)=q(q-1)^{3} \\
& \chi_{G / e}(q)=q(q-1)(q-2) .
\end{aligned}
$$

Therefore

$$
\chi_{G}(q)=\chi_{G \backslash e}(q)-\chi_{G / e}(q)=1 q^{4}-4 q^{3}+6 q^{2}-3 q .
$$

This algorithmic description of $\chi_{G}(q)$ makes the prediction of the conjecture interesting.

For any finite set of vectors A in a vector space over a field, define

$$
f_{i}(A)=\text { (number of independent subsets of } \mathscr{A} \text { with size } i \text {). }
$$

Example

If A is the set of all nonzero vectors in \mathbb{F}_{2}^{3}, then

$$
f_{0}=1, \quad f_{1}=7, \quad f_{2}=21, \quad f_{3}=28 .
$$

For any finite set of vectors A in a vector space over a field, define

$$
f_{i}(A)=(\text { number of independent subsets of } \mathscr{A} \text { with size } i) .
$$

Example

If A is the set of all nonzero vectors in \mathbb{F}_{2}^{3}, then

$$
f_{0}=1, \quad f_{1}=7, \quad f_{2}=21, \quad f_{3}=28 .
$$

How do we compute $f_{i}(A)$? We use

$$
f_{i}(A)=f_{i}(A \backslash v)+f_{i-1}(A / v) .
$$

Welsh's conjecture (1969)

The sequence f_{i} form a log-concave sequence for any finite set of vectors A in any vector space over any field, that is,

$$
f_{i}^{2} \geq f_{i-1} f_{i+1} \text { for all } i .
$$

Whitney (1935).

A matroid on a finite set E is a collection of subsets of E, called independent sets, which satisfy axioms modeled on the relation of linear independence of vectors:

Whitney (1935).

A matroid on a finite set E is a collection of subsets of E, called independent sets, which satisfy axioms modeled on the relation of linear independence of vectors:

1. Every subset of an independent set is an independent set.
2. If an independent set A has more elements than independent set B, then there is an element in A which, when added to B, gives a larger independent set.
3. Let V be a vector space over a field k, and A a finite set of vectors.

Call a subset of A independent if it is linearly independent.
This defines a matroid M realizable over k.

1. Let V be a vector space over a field k, and A a finite set of vectors.

Call a subset of A independent if it is linearly independent.
This defines a matroid M realizable over k.
2. Let G be a finite graph, and E the set of edges.

Call a subset of E independent if it does not contain a circuit.
This defines a graphic matroid M.

Fano matroid is realizable iff $\operatorname{char}(k)=2$.

Non-Fano matroid is realizable iff $\operatorname{char}(k) \neq 2$.

Non-Pappus matroid is not realizable over any field.
Testing the realizability of a matroid is not easy: When $k=\mathbb{Q}$, this is equivalent to Hilbert's tenth problem over \mathbb{Q}.

One can define the chromatic polynomial of a matroid by the recursion

$$
\chi_{M}(q)=\chi_{M \backslash e}(q)-\chi_{M / e}(q)
$$

Rota's conjecture (1970)

The coefficients of the chromatic polynomial $\chi_{M}(q)$ form a log-concave sequence for any matroid M, that is,

$$
\mu_{i}^{2} \geq \mu_{i-1} \mu_{i+1} \text { for all } i .
$$

This implies the conjecture on G and the conjecture on A.

One can define the chromatic polynomial of a matroid by the recursion

$$
\chi_{M}(q)=\chi_{M \backslash e}(q)-\chi_{M / e}(q)
$$

Rota's conjecture (1970)

The coefficients of the chromatic polynomial $\chi_{M}(q)$ form a log-concave sequence for any matroid M, that is,

$$
\mu_{i}^{2} \geq \mu_{i-1} \mu_{i+1} \text { for all } i .
$$

How to show that a sequence is log-concave?

- h : a nonconstant homogeneous polynomial in $\mathbb{C}\left[z_{0}, \ldots, z_{r}\right]$.
- J_{h} : the jacobian ideal $\left(\partial h / \partial z_{0}, \ldots, \partial h / \partial z_{n}\right)$.
- Define the numbers $\mu^{i}(h)$ by saying that the function

$$
\operatorname{dim}_{\mathbb{C}} \mathfrak{m}^{u} J_{h}^{v} / \mathfrak{m}^{u+1} J_{h}^{v}
$$

agrees with the polynomial for large enough u and v

$$
\frac{\mu^{0}(h)}{r!} u^{r}+\cdots+\frac{\mu^{i}(h)}{(r-i)!i!} u^{r-i} v^{i}+\cdots+\frac{\mu^{r}(h)}{r!} v^{r}+\text { (lower degree terms). }
$$

Theorem (-, 2012)

For any nonconstant homogeneous polynomial $h \in \mathbb{C}\left[z_{0}, \ldots, z_{r}\right]$,

1. $\mu^{i}(h)$ is the number of i-dimensional cells in a CW-model of the complement

$$
D(h):=\left\{x \in \mathbb{P}^{r} \mid h(x) \neq 0\right\} .
$$

2. $\mu^{i}(h)$ form a log-concave sequence, and
3. if h is product of linear forms, then the attaching maps are homologically trivial:

$$
\mu^{i}(h)=b_{i}(D(h)) .
$$

Theorem (-, 2012)

For any nonconstant homogeneous polynomial $h \in \mathbb{C}\left[z_{0}, \ldots, z_{r}\right]$,

1. $\mu^{i}(h)$ is the number of i-dimensional cells in a CW-model of the complement

$$
D(h):=\left\{x \in \mathbb{P}^{r} \mid h(x) \neq 0\right\} .
$$

2. $\mu^{i}(h)$ form a log-concave sequence, and
3. if h is product of linear forms, then the attaching maps are homologically trivial:

$$
\mu^{i}(h)=b_{i}(D(h)) .
$$

When h defines a hyperplane arrangement \mathscr{A}, this gives

$$
\mu^{i}(h)=\mu_{i}(\mathscr{A}):=(\text { the } i \text {-th coefficient of the characteristic polynomial of } \mathscr{A}),
$$

justifying the log-concavity for matroids realizable over a field of characteristic zero.

Matroids on $[n]=\{0,1, \ldots, n\}$ are closely related to the geometry of the toric variety $X_{A_{n}}$ of the n-dimensional permutohedron:

- The rays of its normal fan $\Delta_{A_{n}}$ correspond to nonempty proper subsets of $[n]$.
- More generally, k-dimensional cones of $\Delta_{A_{n}}$ correspond to flags of nonempty proper subsets of $[n]$:

$$
S_{1} \subsetneq S_{2} \subsetneq \cdots \subsetneq S_{k} .
$$

- The "extra symmetry" of P_{n} maps a flag

$$
S_{1} \subsetneq S_{2} \subsetneq \cdots \subsetneq S_{k} .
$$

to the flag of complements

$$
[n] \backslash S_{1} \supsetneq[n] \backslash S_{2} \supsetneq \cdots \supsetneq[n] \backslash S_{k} .
$$

- A matroid M of rank $r+1$ on [$n]$ can be viewed as an r-dimensional subfan

$$
\Delta_{M} \subseteq \Delta_{A_{n}}
$$

which consists of cones corresponding to flags of flats of M :

$$
F_{1} \subsetneq F_{2} \subsetneq \cdots \subsetneq F_{r} .
$$

- A matroid M of rank $r+1$ on [$n]$ can be viewed as an r-dimensional subfan

$$
\Delta_{M} \subseteq \Delta_{A_{n}}
$$

which consists of cones corresponding to flags of flats of M :

$$
F_{1} \subsetneq F_{2} \subsetneq \cdots \subsetneq F_{r} .
$$

- The fan Δ_{M} is the Bergman fan of M,
or the tropical linear space associated to M.

In a recent joint work with Karim Adiprasito and Eric Katz, we obtained inequalities that imply Rota's log-concavity conjecture in its full generality.

In a recent joint work with Karim Adiprasito and Eric Katz, we obtained inequalities that imply Rota's log-concavity conjecture in its full generality.

What we show is that the tropical variety Δ_{M} has a "cohomology ring" which has the structure of the cohomology ring of a smooth projective variety.
(I would guess that most of these "cohomology rings" of matroids are not isomorphic to the cohomology ring of any smooth projective variety, but I do not know this.)

A motivating observation is that the toric variety of Δ_{M} is, in the realizable case, 'Chow equivalent' to a smooth projective variety:

There is a map from a smooth projective variety

$$
V \longrightarrow X_{\Delta_{M}}
$$

which induces an isomorphism between Chow cohomology rings

$$
A^{*}\left(X_{\Delta_{M}}\right) \longrightarrow A^{*}(V)
$$

It is tempting to think this as a 'Chow homotopy'.

In fact, the converse also holds.

Theorem

The toric variety $X_{\Delta_{M}}$ is Chow equivalent to a smooth projective variety over k if and only if M is realizable over the field k.

In fact, the converse also holds.

Theorem

The toric variety $X_{\Delta_{M}}$ is Chow equivalent to a smooth projective variety over k if and only if M is realizable over the field k.

We show that, even in the non-realizable case, $A^{*}(M):=A^{*}\left(X_{\Delta_{M}}\right)$ has the structure of the cohomology ring of a smooth projective variety.

The proof is a good advertisement for tropical geometry to pure combinatorialists:

For any two matroids on $[n]$ with the same rank, there is a diagram

$$
\Delta_{M} \stackrel{\text { "fip" }}{ } \Delta_{1} \stackrel{\text { "flip" }}{ } \Delta_{2} \xrightarrow{" f f i p "} \ldots \xrightarrow{\text { "fip" }} \Delta_{M^{\prime}},
$$

and each flip preserves the validity of the Kähler package in the cohomology ring.

The intermediate objects are tropical varieties with good cohomology rings, but not in general associated to a matroid.

The cohomology ring $A^{*}(M)$ can be described explicitly by generators and relations, which can be taken as a definition.

Definition

The cohomology ring of M is the quotient of the polynomial ring

$$
A^{*}(M):=\mathbb{Z}\left[x_{F}\right] /\left(I_{1}+I_{2}\right),
$$

where the variables are indexed by nonempty proper flats of M, and

$$
\begin{aligned}
& I_{1}:=\text { ideal }\left(\sum_{i_{1} \in F} x_{F}-\sum_{i_{2} \in F} x_{F} \mid i_{1} \text { and } i_{2} \text { are distinct elements of }[n]\right), \\
& I_{2}:=\text { ideal }\left(x_{F_{1}} x_{F_{2}} \mid F_{1} \text { and } F_{2} \text { are incomparable flats of } M\right) .
\end{aligned}
$$

Proposition

The Chow ring $A^{*}(M)$ is a Poincaré duality algebra of dimension r :
(1) Degree map: There is an isomorphism

$$
\operatorname{deg}: A^{r}(M) \longrightarrow \mathbb{Z}, \quad \prod_{i=1}^{r} x_{F_{i}} \longmapsto 1
$$

for any complete flag of nonempty proper flats $F_{1} \subsetneq F_{2} \subsetneq \cdots \subsetneq F_{r}$ of M.
(2) Poincaré duality: For any nonnegative integer $k \leq r$, the multiplication defines the perfect pairing

$$
A^{k}(M) \times A^{r-k}(M) \longrightarrow A^{r}(M) \simeq \mathbb{Z},
$$

Proposition

The Chow ring $A^{*}(M)$ is a Poincaré duality algebra of dimension r :
(1) Degree map: There is an isomorphism

$$
\operatorname{deg}: A^{r}(M) \longrightarrow \mathbb{Z}, \quad \prod_{i=1}^{r} x_{F_{i}} \longmapsto 1
$$

for any complete flag of nonempty proper flats $F_{1} \subsetneq F_{2} \subsetneq \cdots \subsetneq F_{r}$ of M.
(2) Poincaré duality: For any nonnegative integer $k \leq r$, the multiplication defines the perfect pairing

$$
A^{k}(M) \times A^{r-k}(M) \longrightarrow A^{r}(M) \simeq \mathbb{Z},
$$

Note that the underlying simplicial complex of Δ_{M}, the order complex of M, is not Gorenstein in general.

Digression: Why can't we prove (at the moment) the g-conjecture for simplicial spheres?

Because we do not understand Kähler classes in their cohomology ring.

Digression: Why can't we prove (at the moment) the g-conjecture for simplicial spheres?

Because we do not understand Kähler classes in their cohomology ring.

The case of non-realizable matroids contrasts this in an interesting way.

Let $\mathscr{K}_{[n]}$ be the convex cone of linear forms with real coefficients

$$
\mathscr{K}_{[n]}:=\left\{\sum_{S} c_{S} x_{S} \mid S \text { is a nonempty proper subset of }[n]\right\}
$$

consisting of linear forms satisfying

$$
c_{S_{1}}+c_{S_{2}}>c_{S_{1} \cap S_{2}}+c_{S_{1} \cup S_{2}} \quad\left(c_{\emptyset}=c_{[n]}=0\right)
$$

for any two incomparable nonempty proper subsets S_{1}, S_{2} of $[n]$.

Let $\mathscr{K}_{[n]}$ be the convex cone of linear forms with real coefficients

$$
\mathscr{K}_{[n]}:=\left\{\sum_{S} c_{S} x_{S} \mid S \text { is a nonempty proper subset of }[n]\right\}
$$

consisting of linear forms satisfying

$$
c s_{S_{1}}+c s_{2}>c s_{1} \cap s_{2}+c s_{1} \cup s_{2} \quad\left(c \emptyset=c_{[n]}=0\right)
$$

for any two incomparable nonempty proper subsets S_{1}, S_{2} of [n].

Definition

The ample cone of M, denoted \mathscr{K}_{M}, is defined to be the image

$$
\mathscr{K}_{[n]} \longrightarrow \mathscr{K}_{M} \subseteq A^{1}(M)_{\mathbb{R}},
$$

where the non-flats of M are mapped to zero.

Theorem (AHK)

Let ℓ be an element of \mathscr{K}_{M} and let k be a nonnegative integer $\leq r / 2$.
(1) Hard Lefschetz: The multiplication by ℓ defines an isormophism

$$
A^{k}(M)_{\mathbb{R}} \longrightarrow A^{r-k}(M)_{\mathbb{R}}, \quad h \longmapsto \ell^{r-2 k} \cdot h .
$$

(2) Hodge-Riemann: The multiplication by ℓ defines a definite form of sign $(-1)^{k}$

$$
P A^{k}(M)_{\mathbb{R}} \times P A^{k}(M)_{\mathbb{R}} \longrightarrow A^{r}(M)_{\mathbb{R}} \simeq \mathbb{R}, \quad\left(h_{1}, h_{2}\right) \longmapsto \ell^{r-2 k} \cdot h_{1} \cdot h_{2},
$$

where $P A^{k}(M)_{\mathbb{R}} \subseteq A^{k}(M)_{\mathbb{R}}$ is the kernel of the multiplication by $\ell^{r-2 k+1}$.

Why does this imply the log-concavity conjecture?

Let i be an element of $[n]$, and consider the linear forms

$$
\begin{aligned}
\alpha(i) & :=\sum_{i \in S} x_{S} \\
\beta(i) & :=\sum_{i \notin S} x_{S}
\end{aligned}
$$

Note that these linear forms are 'almost' ample:

$$
c_{S_{1}}+c_{S_{2}} \geq c_{S_{1} \cap S_{2}}+c_{S_{1} \cup S_{2}} \quad\left(c_{\emptyset}=c_{[n]}=0\right)
$$

Their images in the cohomology ring $A^{*}(M)$ does not depend on i, and will be denoted by α and β respectively.

Proposition

Under the isomorphism deg : $A^{r}(M) \longrightarrow \mathbb{Z}$, we have $\alpha^{r-k} \beta^{k} \longmapsto(k$-th coefficient of the reduced characteristic polynomial of $M)$.

While neither α nor β are in the ample cone \mathscr{K}_{M}, we may take the limit

$$
\ell_{1} \longrightarrow \alpha, \quad \ell_{2} \longrightarrow \beta, \quad \ell_{1}, \ell_{2} \in \mathscr{K}_{M} .
$$

This may be one reason why direct combinatorial reasoning for log-concavity was not easy.

Proposition

Under the isomorphism deg : $A^{r}(M) \longrightarrow \mathbb{Z}$, we have

$$
\alpha^{r-k} \beta^{k} \longmapsto(k \text {-th coefficient of the reduced characteristic polynomial of } M) .
$$

While neither α nor β are in the ample cone \mathscr{K}_{M}, we may take the limit

$$
\ell_{1} \longrightarrow \alpha, \quad \ell_{2} \longrightarrow \beta, \quad \ell_{1}, \ell_{2} \in \mathscr{K}_{M} .
$$

This may be one reason why direct combinatorial reasoning for log-concavity was not easy.

Corollary

The coefficients of the chromatic polynomial $\chi_{M}(q)$ form a log-concave sequence for any matroid M.

