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The 3-dimensional permutohedron P3:

This polytope has the symmetry of the root system A3.
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A graph is a 1-dimensional space, with vertices and edges.

Graphs are the simplest geometric structures.
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Whitney (1932): The chromatic polynomial of a graph G is the function

�G(q) = (the number of proper colorings of G with q colors):

Example

� �

� �

�G(q) = 1q4 � 4q3 + 6q2 � 3q ; �G(2) = 2:

What can be said about the chromatic polynomial in general?

Read’s conjecture (1968)

The absolute values of the coefficients of the chromatic polynomial �G(q)

form a log-concave sequence for any graph G, that is,

a
2
i � ai�1ai+1 for all i .
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Example

How do we compute the chromatic polynomial? We write

� �

� �
=

� �

� �
-

�

� �

and use

�Gne(q) = q(q � 1)3

�G=e(q) = q(q � 1)(q � 2):

Therefore
�G(q) = �Gne(q)� �G=e(q) = 1q4 � 4q3 + 6q2 � 3q :

This algorithmic description of �G(q) makes the prediction of the conjecture interesting.
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For any finite set of vectors A in a vector space over a field, define

fi (A) = (number of independent subsets of A with size i):

Example

If A is the set of all nonzero vectors in F32, then

f0 = 1; f1 = 7; f2 = 21; f3 = 28:

How do we compute fi (A)? We use

fi (A) = fi (A n v) + fi�1(A = v):
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Welsh’s conjecture (1969)

The sequence fi form a log-concave sequence for any finite set of vectors A

in any vector space over any field, that is,

f
2
i � fi�1 fi+1 for all i .
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Whitney (1935).

A matroid on a finite set E is a collection of subsets of E , called independent

sets, which satisfy axioms modeled on the relation of linear independence of vectors:
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Whitney (1935).

A matroid on a finite set E is a collection of subsets of E , called independent

sets, which satisfy axioms modeled on the relation of linear independence of vectors:

1. Every subset of an independent set is an independent set.

2. If an independent set A has more elements than independent

set B , then there is an element in A which, when added to B , gives a larger

independent set.
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1. Let V be a vector space over a field k , and A a finite set of vectors.

Call a subset of A independent if it is linearly independent.

This defines a matroid M realizable over k .

2. Let G be a finite graph, and E the set of edges.

Call a subset of E independent if it does not contain a circuit.

This defines a graphic matroid M .
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Fano matroid is realizable iff char(k) = 2.

Non-Fano matroid is realizable iff char(k) , 2.

Non-Pappus matroid is not realizable over any field.

Testing the realizability of a matroid is not easy: When k = Q, this is

equivalent to Hilbert’s tenth problem over Q.
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One can define the chromatic polynomial of a matroid by the recursion

�M (q) = �Mne(q)� �M=e(q):

Rota’s conjecture (1970)

The coefficients of the chromatic polynomial �M (q) form a log-concave

sequence for any matroid M , that is,

�2i � �i�1�i+1 for all i .

This implies the conjecture on G and the conjecture on A.

How to show that a sequence is log-concave?

June Huh 11 / 27



One can define the chromatic polynomial of a matroid by the recursion

�M (q) = �Mne(q)� �M=e(q):

Rota’s conjecture (1970)

The coefficients of the chromatic polynomial �M (q) form a log-concave

sequence for any matroid M , that is,

�2i � �i�1�i+1 for all i .

This implies the conjecture on G and the conjecture on A.

How to show that a sequence is log-concave?

June Huh 11 / 27



h : a nonconstant homogeneous polynomial in C[z0; : : : ; zr ].

Jh : the jacobian ideal
�
@h=@z0; : : : ; @h=@zn

�
.

Define the numbers �i (h) by saying that the function

dimCm
u
J
v
h =m

u+1
J
v
h

agrees with the polynomial for large enough u and v

�0(h)

r !
u
r + � � �+

�i (h)

(r � i)!i !
u
r�i

v
i + � � �+

�r (h)

r !
v
r + (lower degree terms):
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Theorem (-, 2012)

For any nonconstant homogeneous polynomial h 2 C[z0; : : : ; zr ],

1. �i (h) is the number of i -dimensional cells in a CW-model of the complement

D(h) := fx 2 Pr j h(x ) , 0g:

2. �i (h) form a log-concave sequence, and

3. if h is product of linear forms, then the attaching maps are homologically trivial:

�i (h) = bi
�
D(h)

�
:

When h defines a hyperplane arrangement A , this gives

�i (h) = �i (A ) := (the i -th coefficient of the characteristic polynomial of A );

justifying the log-concavity for matroids realizable over a field of characteristic zero.
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Matroids on [n ] = f0; 1; : : : ;ng are closely related to the geometry of

the toric variety XAn of the n-dimensional permutohedron:
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The rays of its normal fan �An correspond to nonempty proper subsets of [n ].

More generally, k -dimensional cones of �An correspond to

flags of nonempty proper subsets of [n ]:

S1 ( S2 ( � � � ( Sk :

The “extra symmetry” of Pn maps a flag

S1 ( S2 ( � � � ( Sk :

to the flag of complements

[n ] n S1 ) [n ] n S2 ) � � � ) [n ] n Sk :
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A matroid M of rank r + 1 on [n ] can be viewed as an r -dimensional subfan

�M � �An

which consists of cones corresponding to flags of flats of M :

F1 ( F2 ( � � � ( Fr :

The fan �M is the Bergman fan of M ,

or the tropical linear space associated to M .
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In a recent joint work with Karim Adiprasito and Eric Katz, we obtained inequalities

that imply Rota’s log-concavity conjecture in its full generality.

What we show is that the tropical variety �M has a “cohomology ring”

which has the structure of the cohomology ring of a smooth projective variety.

(I would guess that most of these “cohomology rings” of matroids are not isomorphic

to the cohomology ring of any smooth projective variety, but I do not know this.)
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A motivating observation is that the toric variety of �M is, in the realizable case,

’Chow equivalent’ to a smooth projective variety:

There is a map from a smooth projective variety

V �! X�M

which induces an isomorphism between Chow cohomology rings

A
�(X�M

) �! A
�(V ):

It is tempting to think this as a ’Chow homotopy’.
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In fact, the converse also holds.

Theorem

The toric variety X�M
is Chow equivalent to a smooth projective variety over k

if and only if M is realizable over the field k .

We show that, even in the non-realizable case, A�(M ) := A�(X�M
) has the structure

of the cohomology ring of a smooth projective variety.
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The proof is a good advertisement for tropical geometry to pure combinatorialists:

For any two matroids on [n ] with the same rank, there is a diagram

�M

\
ip"
**
�1

\
ip"
**
�2

\
ip"
))
� � �

\
ip"
++
�M 0 ;

and each flip preserves the validity of the Kähler package in the cohomology ring.

The intermediate objects are tropical varieties with good cohomology rings,

but not in general associated to a matroid.
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The cohomology ring A�(M ) can be described explicitly by generators and relations,

which can be taken as a definition.

Definition

The cohomology ring of M is the quotient of the polynomial ring

A
�(M ) := Z[xF ]=(I1 + I2);

where the variables are indexed by nonempty proper flats of M , and

I1 := ideal

 X
i12F

xF �
X
i22F

xF j i1 and i2 are distinct elements of [n ]

!
;

I2 := ideal

 
xF1xF2 j F1 and F2 are incomparable flats of M

!
:
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Proposition

The Chow ring A�(M ) is a Poincaré duality algebra of dimension r :

(1) Degree map: There is an isomorphism

deg : Ar (M ) �! Z;

rY
i=1

xFi 7�! 1;

for any complete flag of nonempty proper flats F1 ( F2 ( � � � ( Fr of M .

(2) Poincaré duality: For any nonnegative integer k � r , the multiplication defines

the perfect pairing
A
k (M )�A

r�k (M ) �! A
r (M ) ' Z;

Note that the underlying simplicial complex of �M , the order complex of M ,

is not Gorenstein in general.
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Digression: Why can’t we prove (at the moment) the g-conjecture for

simplicial spheres?

Because we do not understand Kähler classes in their cohomology ring.

The case of non-realizable matroids contrasts this in an interesting way.
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Let K[n] be the convex cone of linear forms with real coefficients

K[n] :=

(X
S

cSxS j S is a nonempty proper subset of [n ]

)

consisting of linear forms satisfying

cS1 + cS2 > cS1\S2 + cS1[S2 (c; = c[n] = 0);

for any two incomparable nonempty proper subsets S1;S2 of [n ].

Definition

The ample cone of M , denoted KM , is defined to be the image

K[n] �! KM � A
1(M )R;

where the non-flats of M are mapped to zero.
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Theorem (AHK)

Let ` be an element of KM and let k be a nonnegative integer � r=2.

(1) Hard Lefschetz: The multiplication by ` defines an isormophism

A
k (M )R �! A

r�k (M )R; h 7�! `r�2k � h :

(2) Hodge-Riemann: The multiplication by ` defines a definite form of sign (�1)k

PA
k (M )R � PA

k (M )R �! A
r (M )R ' R; (h1; h2) 7�! `r�2k � h1 � h2;

where PAk (M )R � Ak (M )R is the kernel of the multiplication by `r�2k+1.
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Why does this imply the log-concavity conjecture?

Let i be an element of [n ], and consider the linear forms

�(i) :=
X
i2S

xS ;

�(i) :=
X
i<S

xS :

Note that these linear forms are ‘almost’ ample:

cS1 + cS2 � cS1\S2 + cS1[S2 (c; = c[n] = 0):

Their images in the cohomology ring A�(M ) does not depend on i , and

will be denoted by � and � respectively.
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Proposition

Under the isomorphism deg : Ar (M ) �! Z; we have

�r�k�k 7�! (k -th coefficient of the reduced characteristic polynomial of M ):

While neither � nor � are in the ample cone KM , we may take the limit

`1 �! �; `2 �! �; `1; `2 2 KM :

This may be one reason why direct combinatorial reasoning for log-concavity

was not easy.

Corollary

The coefficients of the chromatic polynomial �M (q) form a log-concave

sequence for any matroid M .
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