Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs

June Huh

CMI, IAS, and Princeton University

June 22, 2015

June Huh 1 / 27

The 3-dimensional permutohedron P_3 :

This polytope has the symmetry of the root system A_3 .

June Huh 2 / 27

A graph is a 1-dimensional space, with vertices and edges.

Graphs are the simplest geometric structures.

June Huh 3 / 27

Whitney (1932): The *chromatic polynomial* of a graph G is the function $\chi_G(q) = \text{(the number of proper colorings of } G \text{ with } q \text{ colors)}.$

Example

What can be said about the chromatic polynomial in general?

June Huh 4 / 27

Whitney (1932): The *chromatic polynomial* of a graph G is the function $\chi_G(q) = \text{(the number of proper colorings of } G \text{ with } q \text{ colors)}.$

Example

Read's conjecture (1968)

The absolute values of the coefficients of the chromatic polynomial $\chi_G(q)$ form a log-concave sequence for any graph G, that is,

$$a_i^2 \geq a_{i-1} a_{i+1}$$
 for all i .

June Huh 4 / 27

Example

How do we compute the chromatic polynomial? We write

and use

$$\chi_{G \setminus e}(q) = q(q-1)^3$$

 $\chi_{G/e}(q) = q(q-1)(q-2).$

Therefore

$$\chi_{G}(q) = \chi_{G \setminus e}(q) - \chi_{G/e}(q) = 1q^{4} - 4q^{3} + 6q^{2} - 3q.$$

This algorithmic description of $\chi_G(q)$ makes the prediction of the conjecture interesting.

June Huh 5 / 27

For any finite set of vectors A in a vector space over a field, define

 $f_i(A) =$ (number of independent subsets of \mathscr{A} with size i).

Example

If A is the set of all nonzero vectors in \mathbb{F}_2^3 , then

$$f_0 = 1$$
, $f_1 = 7$, $f_2 = 21$, $f_3 = 28$.

June Huh

For any finite set of vectors A in a vector space over a field, define

 $f_i(A) =$ (number of independent subsets of $\mathscr A$ with size i).

Example

If A is the set of all nonzero vectors in \mathbb{F}_2^3 , then

$$f_0 = 1$$
, $f_1 = 7$, $f_2 = 21$, $f_3 = 28$.

How do we compute $f_i(A)$? We use

$$f_i(A) = f_i(A \setminus v) + f_{i-1}(A / v).$$

June Huh 6 / 27

Welsh's conjecture (1969)

The sequence f_i form a log-concave sequence for any finite set of vectors A in any vector space over any field, that is,

$$f_i^2 \ge f_{i-1} f_{i+1}$$
 for all i .

June Huh 7 / 27

Whitney (1935).

A *matroid* on a finite set *E* is a collection of subsets of *E*, called *independent*sets, which satisfy axioms modeled on the relation of linear independence of vectors:

June Huh 8 / 27

Whitney (1935).

A *matroid* on a finite set *E* is a collection of subsets of *E*, called *independent*sets, which satisfy axioms modeled on the relation of linear independence of vectors:

- 1. Every subset of an independent set is an independent set.
- If an independent set A has more elements than independent set B, then there is an element in A which, when added to B, gives a larger independent set.

June Huh 8 / 27

1. Let V be a vector space over a field k, and A a finite set of vectors.

Call a subset of *A* independent if it is linearly independent.

This defines a matroid M realizable over k.

June Huh 9 / 27

1. Let V be a vector space over a field k, and A a finite set of vectors.

Call a subset of A independent if it is linearly independent.

This defines a matroid M realizable over k.

2. Let G be a finite graph, and E the set of edges.

Call a subset of E independent if it does not contain a circuit.

This defines a graphic matroid M.

June Huh 9 / 27

Fano matroid is realizable iff char(k) = 2.

Non-Fano matroid is realizable iff $char(k) \neq 2$.

Non-Pappus matroid is not realizable over any field.

Testing the realizability of a matroid is not easy: When $k = \mathbb{Q}$, this is equivalent to Hilbert's tenth problem over \mathbb{Q} .

One can define the *chromatic polynomial* of a matroid by the recursion

$$\chi_M(q) = \chi_{M\setminus e}(q) - \chi_{M/e}(q).$$

Rota's conjecture (1970)

The coefficients of the chromatic polynomial $\chi_M(q)$ form a log-concave sequence for any matroid M, that is,

$$\mu_i^2 \ge \mu_{i-1}\mu_{i+1}$$
 for all i .

This implies the conjecture on G and the conjecture on A.

One can define the *chromatic polynomial* of a matroid by the recursion

$$\chi_M(q) = \chi_{M\setminus e}(q) - \chi_{M/e}(q).$$

Rota's conjecture (1970)

The coefficients of the chromatic polynomial $\chi_M(q)$ form a log-concave sequence for any matroid M, that is,

$$\mu_i^2 \ge \mu_{i-1}\mu_{i+1}$$
 for all i .

How to show that a sequence is log-concave?

- h: a nonconstant homogeneous polynomial in $\mathbb{C}[z_0,\ldots,z_r]$.
- J_h : the jacobian ideal $(\partial h/\partial z_0, \ldots, \partial h/\partial z_n)$.
- ullet Define the numbers $\mu^i(h)$ by saying that the function

$$\dim_{\mathbb{C}}\mathfrak{m}^uJ_h^v/\mathfrak{m}^{u+1}J_h^v$$

agrees with the polynomial for large enough u and v

$$\frac{\mu^0(h)}{r!}u^r+\cdots+\frac{\mu^i(h)}{(r-i)!i!}u^{r-i}v^i+\cdots+\frac{\mu^r(h)}{r!}v^r+\text{(lower degree terms)}.$$

Theorem (-, 2012)

For any nonconstant homogeneous polynomial $h \in \mathbb{C}[z_0, \ldots, z_r]$,

1. $\mu^{i}(h)$ is the number of *i*-dimensional cells in a CW-model of the complement

$$D(h):=\{x\in \operatorname{\mathbb{P}}^r\mid h(x)\neq 0\}.$$

- 2. $\mu^{i}(h)$ form a log-concave sequence, and
- 3. if h is product of linear forms, then the attaching maps are homologically trivial:

$$\mu^i(h) = b_i(D(h)).$$

June Huh

Theorem (-, 2012)

For any nonconstant homogeneous polynomial $h \in \mathbb{C}[z_0, \ldots, z_r]$,

1. $\mu^{i}(h)$ is the number of i-dimensional cells in a CW-model of the complement

$$D(h):=\{x\in \operatorname{\mathbb{P}}^r\mid h(x)\neq 0\}.$$

- 2. $\mu^{i}(h)$ form a log-concave sequence, and
- 3. if h is product of linear forms, then the attaching maps are homologically trivial:

$$\mu^i(h) = b_i(D(h)).$$

When h defines a hyperplane arrangement \mathcal{A} , this gives

 $\mu^{i}(h) = \mu_{i}(\mathscr{A}) := \text{(the } i\text{-th coefficient of the characteristic polynomial of } \mathscr{A}),$

justifying the log-concavity for matroids realizable over a field of characteristic zero.

June Huh 13 / 27

Matroids on $[n] = \{0, 1, ..., n\}$ are closely related to the geometry of the toric variety X_{A_n} of the n-dimensional permutohedron:

June Huh 14 / 27

- The rays of its normal fan Δ_{A_n} correspond to nonempty proper subsets of [n].
- More generally, k-dimensional cones of Δ_{A_n} correspond to flags of nonempty proper subsets of [n]:

$$S_1 \subseteq S_2 \subseteq \cdots \subseteq S_k$$
.

• The "extra symmetry" of P_n maps a flag

$$S_1 \subseteq S_2 \subseteq \cdots \subseteq S_k$$
.

to the flag of complements

$$[n] \setminus S_1 \supsetneq [n] \setminus S_2 \supsetneq \cdots \supsetneq [n] \setminus S_k$$
.

ullet A matroid M of rank r+1 on [n] can be viewed as an r-dimensional subfan

$$\Delta_M \subseteq \Delta_{A_n}$$

which consists of cones corresponding to flags of flats of M:

$$F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_r$$
.

ullet A matroid M of rank r+1 on [n] can be viewed as an r-dimensional subfan

$$\Delta_M \subseteq \Delta_{A_n}$$

which consists of cones corresponding to flags of flats of M:

$$F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_r$$
.

• The fan Δ_M is the Bergman fan of M,

or the tropical linear space associated to M.

In a recent joint work with *Karim Adiprasito* and *Eric Katz*, we obtained inequalities that imply Rota's log-concavity conjecture in its full generality.

June Huh 17 / 27

In a recent joint work with *Karim Adiprasito* and *Eric Katz*, we obtained inequalities that imply Rota's log-concavity conjecture in its full generality.

What we show is that the tropical variety Δ_M has a "cohomology ring" which has the structure of the cohomology ring of a smooth projective variety.

(I would guess that most of these "cohomology rings" of matroids are not isomorphic to the cohomology ring of any smooth projective variety, but I do not know this.)

June Huh 17 / 27

A motivating observation is that the toric variety of Δ_M is, in the realizable case, 'Chow equivalent' to a smooth projective variety:

There is a map from a smooth projective variety

$$V \longrightarrow X_{\Delta_M}$$

which induces an isomorphism between Chow cohomology rings

$$A^*(X_{\Delta_M}) \longrightarrow A^*(V).$$

It is tempting to think this as a 'Chow homotopy'.

In fact, the converse also holds.

Theorem

The toric variety X_{Δ_M} is Chow equivalent to a smooth projective variety over k if and only if M is realizable over the field k.

June Huh 19 / 27

In fact, the converse also holds.

Theorem

The toric variety X_{Δ_M} is Chow equivalent to a smooth projective variety over k if and only if M is realizable over the field k.

We show that, even in the non-realizable case, $A^*(M) := A^*(X_{\Delta_M})$ has the structure of the cohomology ring of a smooth projective variety.

June Huh

The proof is a good advertisement for tropical geometry to pure combinatorialists:

For any two matroids on [n] with the same rank, there is a diagram

$$\Delta_{\it M} \xrightarrow{\it ``flip"} \Delta_{\it 1} \xrightarrow{\it ``flip"} \Delta_{\it 2} \xrightarrow{\it ``flip"} \ldots \xrightarrow{\it ``flip"} \Delta_{\it M'} \; ,$$

and each flip preserves the validity of the Kähler package in the cohomology ring.

The intermediate objects are tropical varieties with good cohomology rings, but not in general associated to a matroid.

The cohomology ring $A^*(M)$ can be described explicitly by generators and relations, which can be taken as a definition.

Definition

The cohomology ring of M is the quotient of the polynomial ring

$$A^*(M) := \mathbb{Z}[x_F]/(I_1 + I_2),$$

where the variables are indexed by nonempty proper flats of M, and

$$I_1 := \mathsf{ideal}\Bigg(\sum_{i_1 \in F} x_F - \sum_{i_2 \in F} x_F \mid i_1 \mathsf{ and } i_2 \mathsf{ are distinct elements of } [n]\Bigg),$$

$$I_2 \quad := \quad \mathsf{ideal} \Bigg(\, x_{F_1} \, x_{F_2} \mid F_1 \, \, \mathsf{and} \, \, F_2 \, \, \mathsf{are} \, \, \mathsf{incomparable} \, \, \mathsf{flats} \, \, \mathsf{of} \, \, M \, \Bigg).$$

June Huh 21 / 27

Proposition

The Chow ring $A^*(M)$ is a Poincaré duality algebra of dimension r:

(1) Degree map: There is an isomorphism

$$deg:A^r(M)\longrightarrow \mathbb{Z}, \qquad \prod_{i=1}^r x_{F_i}\longmapsto 1,$$

for any complete flag of nonempty proper flats $F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_r$ of M.

(2) Poincaré duality: For any nonnegative integer $k \leq r$, the multiplication defines the perfect pairing

$$A^k(M) \times A^{r-k}(M) \longrightarrow A^r(M) \simeq \mathbb{Z},$$

June Huh 22 / 27

Proposition

The Chow ring $A^*(M)$ is a Poincaré duality algebra of dimension r:

(1) Degree map: There is an isomorphism

$$deg:A^r(M)\longrightarrow \mathbb{Z}, \qquad \prod_{i=1}^r x_{F_i}\longmapsto 1,$$

for any complete flag of nonempty proper flats $F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_r$ of M.

(2) Poincaré duality: For any nonnegative integer $k \le r$, the multiplication defines the perfect pairing

$$A^k(M) imes A^{r-k}(M) \longrightarrow A^r(M) \simeq \mathbb{Z},$$

Note that the underlying simplicial complex of Δ_M , the *order complex* of M, is not Gorenstein in general.

June Huh 22 / 27

Digression: Why can't we prove (at the moment) the g-conjecture for simplicial spheres?

Because we do not understand Kähler classes in their cohomology ring.

June Huh 23 / 27

Digression: Why can't we prove (at the moment) the g-conjecture for simplicial spheres?

Because we do not understand Kähler classes in their cohomology ring.

The case of non-realizable matroids contrasts this in an interesting way.

June Huh 23 / 27

Let $\mathcal{K}_{[n]}$ be the convex cone of linear forms with real coefficients

$$\mathscr{K}_{[n]} := \left\{ \; \sum_{S} c_S \, x_S \mid S \; ext{is a nonempty proper subset of} \; [n]
ight\}$$

consisting of linear forms satisfying

$$c_{S_1} + c_{S_2} > c_{S_1 \cap S_2} + c_{S_1 \cup S_2}$$
 $(c_{\emptyset} = c_{[n]} = 0),$

for any two incomparable nonempty proper subsets S_1 , S_2 of [n].

June Huh

Let $\mathcal{K}_{[n]}$ be the convex cone of linear forms with real coefficients

$$\mathscr{K}_{[n]} := \left\{ \; \sum_{S} c_{S} \mathit{x}_{S} \mid S \; ext{is a nonempty proper subset of} \; [n]
ight\}$$

consisting of linear forms satisfying

$$c_{S_1} + c_{S_2} > c_{S_1 \cap S_2} + c_{S_1 \cup S_2}$$
 $(c_{\emptyset} = c_{[n]} = 0),$

for any two incomparable nonempty proper subsets S_1, S_2 of [n].

Definition

The *ample cone* of M, denoted \mathcal{K}_M , is defined to be the image

$$\mathscr{K}_{[n]} \longrightarrow \mathscr{K}_M \subseteq A^1(M)_{\mathbb{R}},$$

where the non-flats of M are mapped to zero.

June Huh 24 / 27

Theorem (AHK)

Let ℓ be an element of \mathcal{K}_M and let k be a nonnegative integer $\leq r/2$.

(1) Hard Lefschetz: The multiplication by ℓ defines an isormophism

$$A^k(M)_{\mathbb{R}} \longrightarrow A^{r-k}(M)_{\mathbb{R}}, \qquad h \longmapsto \ell^{r-2k} \cdot h.$$

(2) Hodge-Riemann: The multiplication by ℓ defines a definite form of sign $(-1)^k$

$$PA^k(M)_{\mathbb{R}} imes PA^k(M)_{\mathbb{R}} \longrightarrow A^r(M)_{\mathbb{R}} \simeq \mathbb{R}, \qquad (h_1,h_2) \longmapsto \ell^{r-2k} \cdot h_1 \cdot h_2,$$
 where $PA^k(M)_{\mathbb{R}} \subseteq A^k(M)_{\mathbb{R}}$ is the kernel of the multiplication by ℓ^{r-2k+1} .

June Huh 25 / 27

Why does this imply the log-concavity conjecture?

Let i be an element of [n], and consider the linear forms

$$lpha(i) := \sum_{i \in S} x_{\!S},$$

$$eta(i) := \sum_{i
otin S} extit{x}_{\!S}$$
 .

Note that these linear forms are 'almost' ample:

$$c_{S_1} + c_{S_2} \ge c_{S_1 \cap S_2} + c_{S_1 \cup S_2}$$
 $(c_{\emptyset} = c_{[n]} = 0).$

Their images in the cohomology ring $A^*(M)$ does not depend on i, and will be denoted by α and β respectively.

June Huh 26 / 27

Proposition

Under the isomorphism deg : $A^r(M) \longrightarrow \mathbb{Z}$, we have

 $\alpha^{r-k}\beta^k\longmapsto (k ext{-th coefficient of the reduced characteristic polynomial of }M).$

While neither α nor β are in the ample cone \mathscr{K}_M , we may take the limit

$$\ell_1 \longrightarrow lpha, \qquad \ell_2 \longrightarrow eta, \qquad \ell_1, \ell_2 \in \mathscr{K}_M.$$

This may be one reason why direct combinatorial reasoning for log-concavity was not easy.

June Huh 27 / 27

Proposition

Under the isomorphism deg : $A^r(M) \longrightarrow \mathbb{Z}$, we have

 $\alpha^{r-k}\beta^k\longmapsto (k$ -th coefficient of the reduced characteristic polynomial of M).

While neither α nor β are in the ample cone \mathcal{K}_M , we may take the limit

$$\ell_1 \longrightarrow lpha, \qquad \ell_2 \longrightarrow eta, \qquad \ell_1, \ell_2 \in \mathscr{K}_M.$$

This may be one reason why direct combinatorial reasoning for log-concavity was not easy.

Corollary

The coefficients of the chromatic polynomial $\chi_M(q)$ form a log-concave sequence for any matroid M.

June Huh 27 / 27