Lipschitz stratification in power-bounded o-minimal fields

Yimu Yin

(joint work with Immi Halupczok)

Singular Landscape: a conference in honor of Bernard Teissier

Stratification

Let $X \subseteq \mathbb{R}^n$ be a subset. A **stratification** of X is a family

$$\mathcal{X} = (X^0 \subseteq X^1 \subseteq \dots \subseteq X^d = X)$$

of subsets of X such that

- dim $X^i \leq i$ for $0 \leq i \leq d$,
- $\mathring{X}^i := X^i \setminus X^{i-1}$, called the *i*-th skeleton, is either empty or a differentiable submanifold of \mathbb{R}^n of dimension *i* (not necessarily connected), and each connected component of \mathring{X}^i is called a stratum,
- For each stratum S, $\operatorname{cl} S \subseteq S \cup X^{i-1}$ is a union of strata.

• Projections to tangent spaces

For each point $a \in \mathring{X}^i$, let

$$P_a: \mathbb{R}^n \longrightarrow \boldsymbol{T}_a \overset{\circ}{X}^i \quad \text{and} \quad P_a^{\perp} \coloneqq \mathrm{id} - P_a: \mathbb{R}^n \longrightarrow \boldsymbol{T}_a^{\perp} \overset{\circ}{X}^i$$

be the orthogonal projections onto the tangent and the normal spaces of \mathring{X}^i at a.

• Verdier's condition

Let $\mathcal{X} = (X^i)$ be a stratification of X. For every i and every $a \in \mathring{X}^i$ there are

- an (open) neighborhood $U_a \subseteq X$ of a,
- a constant C_a

such that, for

- every $j \ge i$,
- every $b \in \overset{\circ}{X^i} \cap U_a$,
- every $c \in \mathring{X}^j \cap U_a$

we have

$$\|P_c^{\perp}P_b\| \le C_a \|c-b\|.$$

• In terms of vector fields

Let $\mathcal{X} = (X^i)$ be a stratification of X. A vector field v on an open subset $U \subseteq X$ is \mathcal{X} -rugose if

- v is tangent to the strata of \mathcal{X} (\mathcal{X} -compatible for short),
- v is differentiable on each stratum of \mathcal{X} ,
- for every $a \in \mathring{X}^i \cap U$ there is a constant C_a such that, for every $j \ge i$, all $b \in \mathring{X}^i \cap U$ and $c \in \mathring{X}^j \cap U$ that are sufficiently close to a satisfy

$$||v(b) - v(c)|| \le C_a ||b - c||.$$

• Concerning Verdier's condition

THEOREM. • (Verdier) Every subanalytic set admits a stratification that satisfies Verdier's condition.

• (Loi) The above holds in all o-minimal structures.

THEOREM (Brodersen-Trotman). \mathcal{X} is Verdier if and only if each rugose vector field on $U \cap X^i$ can be extended to a rugose vector field on a neighborhood of $U \cap X^i$ in X.

In general Verdier's condition is strictly stronger than Whitney's condition (b). But we do have:

THEOREM (Teissier). For complex analytic stratifications, Verdier's condition is equivalent to Whitney's condition (b).

• Concerning Mostowski's condition

Mostowski's condition is a (much) stronger condition than Verdier's condition.

THEOREM (Parusinski). \mathcal{X} is Lipschitz if and only if there is a constant C such that, for every $X^{i-1} \subseteq W \subseteq X^i$, if v is an \mathcal{X} -compatible Lipschitz vector field on W with constant L and is bounded on the last stratum of \mathcal{X} by a constant K, then v can be extended to a Lipschitz vector field on X with constant C(K + L).

THEOREM (Parusinski). Lipschitz stratifications exist for compact subanalytic subsets in \mathbb{R} .

Main ingredients of the proof: local flattening theorem, Weierstrass preparation for subanalytic functions, and more.

THEOREM (Nguyen–Valette). Lipschitz stratifications exist for all definable compact sets in all polynomial-bounded o-minimal structures on the real field \mathbb{R} .

Their proof follows closely and improves upon Parusinski's proof strategy; in particular, it refines a version of the Weierstrass preparation for subanalytic functions (van den Dries– Speissegger). On the other hand, our result states:

THEOREM. Lipschitz stratifications exist for all definable closed sets in all power-bounded o-minimal structures (for instance, in the Hahn field $\mathbb{R}((t^{\mathbb{Q}}))$).

Our proof bypasses all of the machineries mentioned above and goes through analysis of definable sets in non-archimedean *o*-minimal structures instead.

• *o*-minimality

DEFINITION. Let \mathcal{L} be a language that contains a binary relation <. An \mathcal{L} -structure M is said to be *o*-minimal if

- < is a total ordering on M,
- every definable subset of the affine line is a *finite* union of intervals (including points).
- An \mathcal{L} -theory T is o-minimal if every one of its models is o-minimal.

• Two fundamental *o*-minimal structures

THEOREM (Tarski). The theory RCF of the real closed field (essentially the theory of semialgebraic sets)

$$\overline{\mathbb{R}} = (\mathbb{R}, <, +, \times, 0, 1)$$

is o-minimal.

THEOREM (Wilkie). The theory RCF_{exp} of the real closed field with the exponential function

$$\mathbb{R}_{exp} = (\mathbb{R}, <, +, \times, 0, 1, exp)$$

is o-minimal.

• Polynomial / power bounded structures

Let \mathcal{R} be an *o*-minimal structure that expands a real closed field.

DEFINITION. A **power function** in \mathcal{R} is a definable endomorphism of the multiplicative group of \mathcal{R} . (Note that such a power function f is uniquely determined by its **exponent** f'(1).)

We say that \mathcal{R} is **power-bounded** if every definable function in one variable is eventually dominated by a power function.

THEOREM (Miller). Either M is power bounded or there is a definable exponential function in M (meaning a homomorphism from the additive group to the multiplicative group).

Note: In \mathbb{R} , power-bounded becomes polynomial-bounded.

• Examples of polynomial-bounded o-minimal structures on ${\mathbb R}$

- RCF. (Semialgebraic sets).
- RCF_{an} : The theory of real closed fields with restricted analytic functions $f|_{[-1,1]^n}$. (Subanalytic sets).
- $RCF_{an,powers}$: RCF_{an} plus all the powers $(x^r \text{ for each } r \in \mathbb{R})$.
- Further expansions of RCF_{an} by certain quasi-analytic functions
 - -certain Denjoy-Carleman classes,
 - -Gevrey summable functions,
 - certain solutions of systems of differential equations.

• Mostowski's condition (quantitative version)

Fix a (complete) o-minimal theory T (not necessarily power bounded). Let \mathcal{R} be a model of T, for example,

$$\mathbb{R}, \quad \mathbb{R}((t^{\mathbb{Q}})), \quad \mathbb{R}((t_1^{\mathbb{Q}}))((t_2^{\mathbb{R}})), \quad \text{etc.}$$

The Mostowski condition is imposed on certain finite sequences of points called chains. The notion of a chain depends on several constants, which have to satisfy further conditions on additional constants.

In \mathcal{R} , let X be a definable set and $\mathcal{X} = (X^i)$ a definable stratification of X.

DEFINITION. Let $c, c', C', C'' \in \mathcal{R}$ be given. A (c, c', C', C'')-chain is a sequence of points a^0, a^1, \ldots, a^m in X with

$$a^{\ell} \in \mathring{X}^{e_{\ell}}$$
 and $e_0 > e_1 > \dots > e_m$

such that the following holds.

• For $\ell = 1, \ldots, m$, we have:

$$\|a^0 - a^\ell\| < c \cdot \operatorname{dist}(a, X^{e_\ell})$$

• For each *i* with $e_m \leq i \leq e_0$, (exactly) one of the two following conditions holds:

$$\begin{cases} \operatorname{dist}(a^0, X^{i-1}) \ge C' \cdot \operatorname{dist}(a^0, X^i) & \text{if } i \in \{e_0, \dots, e_m\} \\ \operatorname{dist}(a^0, X^{i-1}) < c' \cdot \operatorname{dist}(a^0, X^i) & \text{if } i \notin \{e_0, \dots, e_m\}. \end{cases}$$

An **augmented** (c, c', C', C'')-chain is a (c, c', C', C'')-chain together with an additional point $a^{00} \in \mathring{X}^{e_0}$ satisfying

$$C'' ||a^0 - a^{00}|| \le \operatorname{dist}(a^0, X^{e_0 - 1}).$$

DEFINITION. We say that the stratification $\mathcal{X} = (X^i)$ satisfies the Mostowski condition for the quintuple (c, c', C', C'', C''') if the following holds.

For every (c, c', C', C'')-chain (a^i) ,

$$||P_{a^0}^{\perp}P_{a^1}\dots P_{a^m}|| < \frac{C'''||a^0-a^1||}{\operatorname{dist}(a^0, X^{e_m-1})}.$$

For every augmented (c, c', C', C'')-chain $((a^i), a^{00})$,

$$||(P_{a^0} - P_{a^{00}})P_{a^1} \dots P_{a^m}|| < \frac{C'''||a^0 - a^{00}||}{\operatorname{dist}(a^0, X^{e_m - 1})}.$$

Mostowski's original definition (?):

DEFINITION. The stratification \mathcal{X} is a Lipschitz stratification if for every $1 < c \in \mathcal{R}$ there exists $C \in \mathcal{R}$ such that \mathcal{X} satisfies the Mostowski condition for $(c, 2c^2, 2c^2, 2c, C)$.

• Playing with the constants

PROPOSITION. The following conditions on \mathcal{X} are equivalent:

(1) \mathcal{X} is a Lipschitz stratification (in the sense of Mostowski).

(2) For every $c \in \mathcal{R}$, there exists a $C \in \mathcal{R}$ such that \mathcal{X} satisfies the Mostowski conditions for (c, c, C, C, C).

(3) For every $c \in \mathcal{R}$, there exists a $C \in \mathcal{R}$ such that \mathcal{X} satisfies the Mostowski conditions for $(c, c, \frac{1}{c}, \frac{1}{c}, C)$.

Note: $(1) \Rightarrow (2)$ and $(3) \Rightarrow (1)$ are easy. But, at first glance, $(2) \Rightarrow (3)$ is hardly plausible, because (3) considers much more chains. To show that, we will (already) need "nonarchimedean extrapolation" of the Mostowski condition.

• Nonarchimedean / nonstandard models

Let $V \subseteq \mathcal{R}$ be a proper convex subring.

FACT. The subring V is a valuation ring of \mathcal{R} .

DEFINITION. The subring V is called T-convex if for all definable (no parameters allowed) continuous function $f : \mathcal{R} \longrightarrow \mathcal{R}$,

$$f(V) \subseteq V.$$

Let T_{convex} be the theory of such pairs (\mathcal{R}, V) , where V is an additional symbol in the language.

EXAMPLE. Suppose that T is power bounded. Let \mathcal{R} be the Hahn field $\mathbb{R}((t^{\mathbb{Q}}))$. Let V be the convex hull of \mathbb{R} in \mathcal{R} , i.e., $V = \mathbb{R}[t^{\mathbb{Q}}]$. Then V is T-convex.

Our proof is actually carried out in a suitable model (\mathcal{R}, V) of T_{convex} , using a mixture of techniques in *o*-minimality and valuation theories.

• Valuative chains

Let val be the valuation map associated with the valuation ring V.

DEFINITION. A val-chain is a sequence of points a^0, \ldots, a^m with $a^{\ell} \in X^{e_{\ell}}$ and $e_0 > e_1 > \cdots > e_m$ such that, for all $1 \leq \ell \leq m$,

$$val(a^{0} - a^{\ell}) = valdist(a^{0}, X^{e_{\ell-1}-1})$$
$$= valdist(a^{0}, X^{e_{\ell}})$$
$$> valdist(a^{0}, X^{e_{\ell}-1}).$$

An **augmented val-chain** is a val-chain a^0, \ldots, a^m together with one more point $a^{00} \in \mathring{X}^{e_0}$ such that

$$val(a^0 - a^{00}) > valdist(a^0, X^{e_0 - 1}).$$

DEFINITION. If we replace > with \ge in the two conditions above then the resulting sequence is called a **weak val-chain**.

Note that a "segment" of a (weak) val-chain is a (weak) val-chain.

• The valuative Mostowski condition

DEFINITION. The valuative Mostowski condition states: for all val-chain (a^i) ,

• if (a^i) is not augmented then

$$\operatorname{val}(P_{a^0}^{\perp}P_{a^1}\cdots P_{a^m}) \ge \operatorname{val}(a^0 - a^1) - \operatorname{valdist}(a^0, X^{e_m - 1}),$$

• if (a^i) is augmented then

$$\operatorname{val}((P_{a^0} - P_{a^{00}})P_{a^1} \cdots P_{a^m}) \ge \operatorname{val}(a^0 - a^{00}) - \operatorname{valdist}(a^0, X^{e_m - 1}).$$

Note: we should use the operator norm above, but val(M) = val(||M||) for a matrix M.

• Valuative Lipschitz stratification

DEFINITION. The stratification \mathcal{X} is a valuative Lipschitz stratification if every val-chain satisfies (the corresponding clause of) the valuative Mostowski condition.

PROPOSITION. The following are equivalent:

(1) \mathcal{X} is a Lipschitz stratification in the sense of Mostwoski.

(2) \mathcal{X} is a valuative Lipschitz stratification.

(3) Every weak val-chain satisfies the valuative Mostowski condition.

Note: The valuative " $(2) \Rightarrow (3)$ " here implies the quantitative " $(2) \Rightarrow (3)$ " stated before.

• Strategy / main ingredients of the construction

Let X be a definable closed set in \mathcal{R} . We shall construct a stratification \mathcal{Y} of X such that

• \mathcal{Y} is definable in \mathcal{R} ,

• \mathcal{Y} is a valuative Lipschitz stratification in (\mathcal{R}, V) .

We start with any stratification $\mathcal{X} = (X^i)$ of X in \mathcal{R} . The desired stratification is obtained by refining the skeletons \mathring{X}^s one

after the other, starting with $\mathring{X}^{\dim X}$. Inductively, suppose that

$$\mathring{X}^{s+1}, \ldots, \mathring{X}^{\dim X}$$

have already been constructed. We refine

$$\overset{\,\,{}_\circ}{X}{}^s := X \setminus \bigcup_{i > s} \overset{\,\,{}_\circ}{X}{}^i$$

by removing closed subsets of dimension less than s in three steps.

• The three steps

Step R1:

We partition X^s into "special cells" and remove all such cells of dimension less than s.

Such a cell is essentially a function $f: A \longrightarrow \mathbb{R}^{n-s}$ of "slow growth", more precisely,

$$\operatorname{val}(f(a) - f(a')) \ge \operatorname{val}(a - a'), \text{ for all } a, a' \in A.$$

Actually, we cannot cut \mathring{X}^s into such cells directly; but we can achieve such a decomposition modulo certain "uniform rotation" chosen from a **fixed finite set** O of orthogonal matrices, using a result of Kurdyka / Parusinski / Pawlucki.

Step R2 (the main step): Consider a sequence $S = (S^{\ell})_{0 \le \ell \le m}$, where

 $S^{\ell} \subseteq \mathring{X}^{e_{\ell}}$ for some $e_0 \ge e_1 > e_2 > \cdots > e_m = s$

and every S^{ℓ} is a "special cell" (after a single rotation in O). There is a subset $Z_{\mathcal{S}} \subseteq S^m$ of dimension less than s such that, once $Z_{\mathcal{S}} \subseteq S^m$ is removed, certain functions associated with \mathcal{S} satisfy certain estimates. There are only finitely many such $Z_{\mathcal{S}}$. These estimates are all of the form

$$\operatorname{val}(\partial_i f(x)) \ge \operatorname{val}(f(x)) - \operatorname{val}(\zeta_\ell(x)) +$$
 correction terms,

where $\zeta_{\ell}(x)$ is the distance between the tuple $\operatorname{pr}_{\leq e_{\ell}}(x)$ and the subset $\mathcal{R}^{e_{\ell}} \setminus \operatorname{pr}_{\leq e_{\ell}}(X)$.

Step R3: This step only performs certain cosmetic adjustment. We keep the notation from Step R2 and remove one more set from S^m (again, for each choice of \mathcal{S} and each rotation in O) so that estimates for the functions associated with \mathcal{S} in Step R2 hold on the entire S^m .

This finishes the construction of X^s .

THEOREM. The resulting stratification is a valuative Lipschitz stratification of X.