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e Stratification
Let X C R" be a subset. A stratification of X is a family

X=X'cx'c...cx’=X)
of subsets of X such that
o dim X' <ifor 0 <i <d,

o X! = Xi \ X! called the i-th skeleton, is either empty or a
differentiable submanifold of R" of dimension ¢ (not necessarily con-
nected), and each connected component of X* is called a stratum,

e For each stratum S, 1S € S U X' is a union of strata.



e Projections to tangent spaces
For each point a € X ' let

P,:R" — T,X' and Pr=id—-P,:R" — T@Lj{i

be the orthogonal projections onto the tangent and the normal spaces of
X" at a.



e Verdier's condition

Let X = (X7) be a stratification of X. For every ¢ and every a € X'
there are

e an (open) neighborhood U, C X of a,
e a constant C,
such that, for
® cvery ] > 1,
e cvery b € Xin U,,
e cvery ¢ € XINU,

we have

| PRl < Calle — bl



e In terms of vector fields

Let X = (X") be a stratification of X. A vector field v on an open
subset U C X is X-rugose it

e v is tangent to the strata of X (X-compatible for short),
e v is differentiable on each stratum of A,

e for every a € X M U there is a constant C, such that, for every
jg>,allbe X'NU and c € X7 N U that are sufficiently close to
a satisty

lo(b) = v(c)|| < Cullb =]



e Concerning Verdier’s condition

THEOREM. o (Verdier) Fvery subanalytic set admits a stratifi-
cation that satisfies Verdier’s condition.

e (Loi) The above holds in all o-minimal structures.

THEOREM (Brodersen—Trotman). X is Verdier if and only if each

rugose vector field on U N X_i can be extended to a rugose vector field
on a neighborhood of U N X" in X.

In general Verdier’s condition is strictly stronger than Whitney’s condi-
tion (b). But we do have:

THEOREM (Teissier). For complex analytic stratifications, Verdier’s
condition is equivalent to Whitney’s condition (b).



e Concerning Mostowski’s condition

Mostowski’s condition is a (much) stronger condition than Verdier’s con-
dition.

THEOREM (Parusinski). X s Lipschitz if and only if there is a con-
stant C such that, for every X' C W C X', if v is an X -compatible
Lipschitz vector field on W with constant L and is bounded on the last
stratum of X by a constant K, then v can be extended to a Lipschitz
vector field on X with constant C(K + L).

THEOREM (Parusinski). Lipschitz stratifications exist for compact
subanalytic subsets in R.

Main ingredients of the proof: local flattening theorem, Weierstrass
preparation for subanalytic functions, and more.



THEOREM (Nguyen—Valette). Lipschitz stratifications exist for all de-
finable compact sets in all polynomial-bounded o-minimal structures

on the real field R.

Their prootf follows closely and improves upon Parusinski’s proot strat-
egy; in particular, it refines a version of the Weierstrass preparation for
subanalytic functions (van den Dries— Speissegger).

On the other hand, our result states:

THEOREM. Lipschitz stratifications exist for all definable closed sets
in all power-bounded o-minimal structures (for instance, in the Hahn

field R((t2)).

Our proot bypasses all of the machineries mentioned above and goes
through analysis of definable sets in non-archimedean o-minimal structures
instead.



e o-minimality

DEFINITION. Let £ be a language that contains a binary relation <.
An L-structure M is said to be o-minimal it

e < is a total ordering on M,

e cvery definable subset of the afline line is a finite union of intervals
(including points).

An L-theory T is o-minimal if every one of its models is o-minimal.



e Two fundamental o-minimal structures

THEOREM (Tarski). The theory RCF' of the real closed field (essen-
tially the theory of semialgebraic sets)

R=(R,<,+, x,0,1)

1S o-manimal.

THEOREM (Wilkie). The theory RCF., of the real closed field with

the exponential function
Rexp = (R, <, +, X, 0,1, exp)

18 o-minimal.



e Polynomial / power bounded structures

Let R be an o-minimal structure that expands a real closed field.

DEFINITION. A power function in R is a definable endomorphism
of the multiplicative group of R. (Note that such a power function f is
uniquely determined by its exponent f'(1).)

We say that R is power-bounded if every definable function in one
variable is eventually dominated by a power function.

THEOREM (Miller). Fither M is power bounded or there is a defin-
able exponential function in M (meaning a homomorphism from the
additive group to the multiplicative group).

Note: In R, power-bounded becomes polynomial-bounded.



e Examples of polynomial-bounded o-minimal structures on R

e RC'F. (Semialgebraic sets).

e RCF,,: The theory of real closed fields with restricted analytic
functions f|_; .. (Subanalytic sets).

o RCFiy powers: RC Fyy, plus all the powers (2" for each r € R).
e Further expansions of RC'F,,, by certain quasi-analytic functions

— certain Denjoy-Carleman classes,
— Gevrey summable functions,

— certain solutions of systems of differential equations.



e Mostowski’s condition (quantitative version)

Fix a (complete) o-minimal theory T' (not necessarily power bounded).
Let R be a model of T', for example,

R, R(t%), RE)(®), ete

The Mostowski condition is imposed on certain finite sequences of points
called chains. The notion of a chain depends on several constants, which
have to satisfy further conditions on additional constants.

In R, let X be a definable set and X = (X') a definable stratification
of X.



DEFINITION. Let ¢, d, C",C" € R be given. A (¢, ', C", C")-chain is
a sequence of points a’, a', ..., a™ in X with

a! € X and ep>e1 > > e
such that the following holds.
eftor/=1,...,m, we have:

la" — a'|| < ¢ - dist(a, X*)

e For each ¢ with e,, < i < ¢, (exactly) one of the two following
conditions holds:

dist(a’, X*1) > C" - dist(a”, X*) ifi € {eg,...,em}
dist(a’, X'71) < ¢ - dist(a”, X)) if 1 ¢ {eq,...,em}.



An augmented (c,d,C", C")-chain is a (¢, ', C", C")-chain together
with an additional point ™ € X satisfying

C"||a” — a™|| < dist(a’, X1



DEFINITION. We say that the stratification X = (X') satisfies the
Mostowski condition for the quintuple (¢,d,C’, C", C") if the
following holds.

For every (c,c, C", C")-chain (a'),

C”/HCLO 1H
dist(a?, Xen=1)

H Pal... mH<

For every augmented (c, ¢/, C', C")-chain ((a'), a™),

C///Hao _ CLOOH
dist(a®, Xem=1)

H(Pao — Paoo>Pa1 . PamH <

Mostowski’s original definition (7):

DEFINITION. The stratification X is a Lipschitz stratification if for every
1 < ¢ € R there exists €' € R such that X satisfies the Mostowski
condition for (c,2c¢?, 2¢, 2¢, C).



¢ Playing with the constants

PROPOSITION. The following conditions on X are equivalent:
(1) X is a Lipschitz stratification (in the sense of Mostowski).

(2) For every c € R, there exists a C € R such that X satisfies the
Mostowski conditions for (c,c,C,C,C).

(3) For every ¢ € R, there exists a C’ € R such that X satisfies the
Mostowski conditions for (c,c, —, —, ).

Note: (1) = (2) and (3) = (1) are easy. But, at first glance, (2) = (3) is
hardly plausible, because (3) considers much more chains. To show that,
we will (already) need “nonarchimedean extrapolation” of the Mostowski

condition.



e Nonarchimedean / nonstandard models

Let V' C R be a proper convex subring.
FAcT. The subring V' is a valuation mng of R.

DEFINITION. The subring V' is called T-convex if for all definable (no
parameters allowed) continuous function f: R — R,

f(V)CcV.

Let T,onves be the theory of such pairs (R, V'), where V is an additional
symbol in the language.

EXAMPLE. Suppose that 1" is power bounded. Let R be the Hahn field
R((tY)). Let V be the convex hull of R in R, i.e., V = R[tY]. Then V is

T-convex.

Our proof is actually carried out in a suitable model (R, V') of T onves,
using a mixture of techniques in o-minimality and valuation theories.



e Valuative chains
Let val be the valuation map associated with the valuation ring V.

DEFINITION. A val-chain is a sequence of points a’, . .., a™ with a’ €
X%and ey >e; > --- > e, such that, for all 1 </ <m,
val(a” — a') = valdist(a’, X 71)
— valdist(a’, X“)
> valdist(a’, X“1).

0

An augmented val-chain is a val-chain a”, ..., a™ together with one

more point a’’ € X such that
val(a" — a™) > valdist(a’, X*71).

DEFINITION. If we replace > with > in the two conditions above then
the resulting sequence is called a weak val-chain.

Note that a “segment” of a (weak) val-chain is a (weak) val-chain.



e The valuative Mostowski condition

DEFINITIQN. The valuative Mostowski condition states: for all
val-chain (a'),

e if (a') is not augmented then

val(P Py -+ - Py) > val(a” — a') — valdist(a”, X 1),

o if (a') is augmented then

val((Py — Puw)Pyi -+ Pyn) > val(a” — a") — valdist(a”, X 1).

Note: we should use the operator norm above, but val(M) = val(||M||)
for a matrix M.



e Valuative Lipschitz stratification

DEFINITION. The stratification X" is a valuative Lipschitz strati-

fication if every val-chain satisfies (the corresponding clause of) the val-
uative Mostowski condition.

PROPOSITION. The following are equivalent:
(1) X is a Lipschitz stratification in the sense of Mostwosks.
(2) X is a valuative Lipschitz stratification.

(3) Every weak val-chain satisfies the valuative Mostowski condi-
tion.

Note: The valuative “(2) = (3)” here implies the quantitative “(2) =
(3)” stated before.



e Strategy / main ingredients of the construction

Let X be a definable closed set in R. We shall construct a stratification
Y of X such that

e ) is definable in R,

e V is a valuative Lipschitz stratification in (R, V).

We start with any stratification X = (X*) of X in R.

The desired stratification is obtained by refining the skeletons X* one
after the other, starting with X4™ <. Inductively, suppose that

)2'34—1 o XdimX

have already been constructed. We refine
X5 =X \ U X’

1>S8

by removing closed subsets of dimension less than s in three steps.



e The three steps

Step R1:

We partition X * into “special cells” and remove all such cells of dimension
less than s.

Such a cell is essentially a function f : A — R"° of “slow growth”,
more precisely,

val(f(a) — f(a")) > val(a — d'), forall a,d € A.

Actually, we cannot cut X* into such cells directly; but we can achieve
such a decomposition modulo certain “uniform rotation” chosen from a

fixed finite set O of orthogonal matrices, using a result of Kurdyka
/ Parusinski / Pawlucki.



Step R2 (the main step):
Consider a sequence S = (S)y<¢<,,, where

SYC X% forsomeey > e > > >e, =S5

and every S® is a “special cell” (after a single rotation in O).

There is a subset Zg € 5™ of dimension less than s such that, once
Zs C S™ is removed, certain functions associated with & satisty certain
estimates. There are only finitely many such Zs.

These estimates are all of the form

val(0;f(x)) > val(f(x)) — val({y(x)) + correction terms,

where (/(x) is the distance between the tuple pr., (x) and the subset
RN\ pre,, (X).



Step R3: This step only performs certain cosmetic adjustment. We
keep the notation from Step R2 and remove one more set from S™ (again,
for each choice of § and each rotation in O) so that estimates for the
functions associated with & in Step R2 hold on the entire S™.

This finishes the construction of X*.

THEOREM. The resulting stratification is a valuative Lipschitz strat-
ification of X.



