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• Stratification

Let X ⊆ Rn be a subset. A stratification of X is a family

X = (X0 ⊆ X1 ⊆ · · · ⊆ Xd = X)

of subsets of X such that

• dimX i ≤ i for 0 ≤ i ≤ d,

• X̊ i := X i \ X i−1, called the i-th skeleton, is either empty or a
differentiable submanifold of Rn of dimension i (not necessarily con-
nected), and each connected component of X̊ i is called a stratum,

• For each stratum S, clS ⊆ S ∪X i−1 is a union of strata.



• Projections to tangent spaces

For each point a ∈ X̊ i, let

Pa : Rn −→ TaX̊
i and P⊥a := id−Pa : Rn −→ T⊥a X̊

i

be the orthogonal projections onto the tangent and the normal spaces of
X̊ i at a.



• Verdier’s condition

Let X = (X i) be a stratification of X . For every i and every a ∈ X̊ i

there are

• an (open) neighborhood Ua ⊆ X of a,

• a constant Ca

such that, for

• every j ≥ i,

• every b ∈ X̊ i ∩ Ua,

• every c ∈ X̊j ∩ Ua

we have
‖P⊥c Pb‖ ≤ Ca‖c− b‖.



• In terms of vector fields

Let X = (X i) be a stratification of X . A vector field v on an open
subset U ⊆ X is X -rugose if

• v is tangent to the strata of X (X -compatible for short),

• v is differentiable on each stratum of X ,

• for every a ∈ X̊ i ∩ U there is a constant Ca such that, for every
j ≥ i, all b ∈ X̊ i ∩ U and c ∈ X̊j ∩ U that are sufficiently close to
a satisfy

‖v(b)− v(c)‖ ≤ Ca‖b− c‖.



• Concerning Verdier’s condition

Theorem. • (Verdier) Every subanalytic set admits a stratifi-
cation that satisfies Verdier’s condition.

• (Loi) The above holds in all o-minimal structures.

Theorem (Brodersen–Trotman). X is Verdier if and only if each
rugose vector field on U ∩X i can be extended to a rugose vector field
on a neighborhood of U ∩X i in X.

In general Verdier’s condition is strictly stronger than Whitney’s condi-
tion (b). But we do have:

Theorem (Teissier). For complex analytic stratifications, Verdier’s
condition is equivalent to Whitney’s condition (b).



• Concerning Mostowski’s condition

Mostowski’s condition is a (much) stronger condition than Verdier’s con-
dition.

Theorem (Parusinski).X is Lipschitz if and only if there is a con-
stant C such that, for every X i−1 ⊆ W ⊆ X i, if v is an X -compatible
Lipschitz vector field on W with constant L and is bounded on the last
stratum of X by a constant K, then v can be extended to a Lipschitz
vector field on X with constant C(K + L).

Theorem (Parusinski). Lipschitz stratifications exist for compact
subanalytic subsets in R.

Main ingredients of the proof: local flattening theorem, Weierstrass
preparation for subanalytic functions, and more.



Theorem (Nguyen–Valette).Lipschitz stratifications exist for all de-
finable compact sets in all polynomial-bounded o-minimal structures
on the real field R.

Their proof follows closely and improves upon Parusinski’s proof strat-
egy; in particular, it refines a version of the Weierstrass preparation for
subanalytic functions (van den Dries– Speissegger).

On the other hand, our result states:

Theorem. Lipschitz stratifications exist for all definable closed sets
in all power-bounded o-minimal structures (for instance, in the Hahn
field R((tQ))).

Our proof bypasses all of the machineries mentioned above and goes
through analysis of definable sets in non-archimedean o-minimal structures
instead.



• o-minimality

Definition. Let L be a language that contains a binary relation <.
An L-structure M is said to be o-minimal if

•< is a total ordering on M ,

• every definable subset of the affine line is a finite union of intervals
(including points).

An L-theory T is o-minimal if every one of its models is o-minimal.



• Two fundamental o-minimal structures

Theorem (Tarski). The theory RCF of the real closed field (essen-
tially the theory of semialgebraic sets)

R̄ = (R, <,+,×, 0, 1)

is o-minimal.

Theorem (Wilkie). The theory RCFexp of the real closed field with
the exponential function

Rexp = (R, <,+,×, 0, 1, exp)

is o-minimal.



• Polynomial / power bounded structures

Let R be an o-minimal structure that expands a real closed field.

Definition. A power function in R is a definable endomorphism
of the multiplicative group of R. (Note that such a power function f is
uniquely determined by its exponent f ′(1).)

We say that R is power-bounded if every definable function in one
variable is eventually dominated by a power function.

Theorem (Miller). Either M is power bounded or there is a defin-
able exponential function in M (meaning a homomorphism from the
additive group to the multiplicative group).

Note: In R, power-bounded becomes polynomial-bounded.



• Examples of polynomial-bounded o-minimal structures on R

•RCF . (Semialgebraic sets).

•RCFan: The theory of real closed fields with restricted analytic
functions f |[−1,1]n. (Subanalytic sets).

•RCFan,powers: RCFan plus all the powers (xr for each r ∈ R).

• Further expansions of RCFan by certain quasi-analytic functions

– certain Denjoy-Carleman classes,

– Gevrey summable functions,

– certain solutions of systems of differential equations.



• Mostowski’s condition (quantitative version)

Fix a (complete) o-minimal theory T (not necessarily power bounded).
Let R be a model of T , for example,

R, R((tQ)), R((tQ1 ))((tR2 )), etc.

The Mostowski condition is imposed on certain finite sequences of points
called chains. The notion of a chain depends on several constants, which
have to satisfy further conditions on additional constants.

In R, let X be a definable set and X = (X i) a definable stratification
of X .



Definition. Let c, c′, C ′, C ′′ ∈ R be given. A (c, c′, C ′, C ′′)-chain is
a sequence of points a0, a1, . . . , am in X with

a` ∈ X̊e` and e0 > e1 > · · · > em

such that the following holds.

• For ` = 1, . . . ,m, we have:

‖a0 − a`‖ < c · dist(a,Xe`)

• For each i with em ≤ i ≤ e0, (exactly) one of the two following
conditions holds:{

dist(a0, X i−1) ≥ C ′ · dist(a0, X i) if i ∈ {e0, . . . , em}
dist(a0, X i−1) < c′ · dist(a0, X i) if i /∈ {e0, . . . , em}.



An augmented (c, c′, C ′, C ′′)-chain is a (c, c′, C ′, C ′′)-chain together
with an additional point a00 ∈ X̊e0 satisfying

C ′′‖a0 − a00‖ ≤ dist(a0, Xe0−1).



Definition. We say that the stratification X = (X i) satisfies the
Mostowski condition for the quintuple (c, c′, C ′, C ′′, C ′′′) if the
following holds.

For every (c, c′, C ′, C ′′)-chain (ai),

‖P⊥a0Pa1 . . . Pam‖ <
C ′′′‖a0 − a1‖

dist(a0, Xem−1)
.

For every augmented (c, c′, C ′, C ′′)-chain ((ai), a00),

‖(Pa0 − Pa00)Pa1 . . . Pam‖ <
C ′′′‖a0 − a00‖
dist(a0, Xem−1)

.

Mostowski’s original definition (?):

Definition.The stratification X is a Lipschitz stratification if for every
1 < c ∈ R there exists C ∈ R such that X satisfies the Mostowski
condition for (c, 2c2, 2c2, 2c, C).



• Playing with the constants

Proposition. The following conditions on X are equivalent:

(1)X is a Lipschitz stratification (in the sense of Mostowski).

(2) For every c ∈ R, there exists a C ∈ R such that X satisfies the
Mostowski conditions for (c, c, C, C, C).

(3) For every c ∈ R, there exists a C ∈ R such that X satisfies the
Mostowski conditions for (c, c, 1

c,
1
c, C).

Note: (1)⇒ (2) and (3)⇒ (1) are easy. But, at first glance, (2)⇒ (3) is
hardly plausible, because (3) considers much more chains. To show that,
we will (already) need “nonarchimedean extrapolation” of the Mostowski
condition.



• Nonarchimedean / nonstandard models

Let V ⊆ R be a proper convex subring.

Fact. The subring V is a valuation ring of R.

Definition. The subring V is called T -convex if for all definable (no
parameters allowed) continuous function f : R −→ R,

f (V ) ⊆ V.

Let Tconvex be the theory of such pairs (R, V ), where V is an additional
symbol in the language.

Example. Suppose that T is power bounded. Let R be the Hahn field
R((tQ)). Let V be the convex hull of R in R, i.e., V = R[[tQ]]. Then V is
T -convex.

Our proof is actually carried out in a suitable model (R, V ) of Tconvex,
using a mixture of techniques in o-minimality and valuation theories.



• Valuative chains

Let val be the valuation map associated with the valuation ring V .

Definition.A val-chain is a sequence of points a0, . . . , am with a` ∈
X̊e` and e0 > e1 > · · · > em such that, for all 1 ≤ ` ≤ m,

val(a0 − a`) = valdist(a0, Xe`−1−1)

= valdist(a0, Xe`)

> valdist(a0, Xe`−1).

An augmented val-chain is a val-chain a0, . . . , am together with one
more point a00 ∈ X̊e0 such that

val(a0 − a00) > valdist(a0, Xe0−1).

Definition. If we replace > with ≥ in the two conditions above then
the resulting sequence is called a weak val-chain.

Note that a “segment” of a (weak) val-chain is a (weak) val-chain.



• The valuative Mostowski condition

Definition. The valuative Mostowski condition states: for all
val-chain (ai),

• if (ai) is not augmented then

val(P⊥a0Pa1 · · ·Pam) ≥ val(a0 − a1)− valdist(a0, Xem−1),

• if (ai) is augmented then

val((Pa0 − Pa00)Pa1 · · ·Pam) ≥ val(a0 − a00)− valdist(a0, Xem−1).

Note: we should use the operator norm above, but val(M) = val(‖M‖)
for a matrix M .



• Valuative Lipschitz stratification

Definition. The stratification X is a valuative Lipschitz strati-
fication if every val-chain satisfies (the corresponding clause of) the val-
uative Mostowski condition.

Proposition. The following are equivalent:

(1)X is a Lipschitz stratification in the sense of Mostwoski.

(2)X is a valuative Lipschitz stratification.

(3) Every weak val-chain satisfies the valuative Mostowski condi-
tion.

Note: The valuative “(2) ⇒ (3)” here implies the quantitative “(2) ⇒
(3)” stated before.



• Strategy / main ingredients of the construction

Let X be a definable closed set in R. We shall construct a stratification
Y of X such that

• Y is definable in R,

• Y is a valuative Lipschitz stratification in (R, V ).

We start with any stratification X = (X i) of X in R.
The desired stratification is obtained by refining the skeletons X̊s one

after the other, starting with X̊dimX. Inductively, suppose that

X̊s+1, . . . , X̊dimX

have already been constructed. We refine

X̊s := X \
⋃
i>s

X̊ i

by removing closed subsets of dimension less than s in three steps.



• The three steps

Step R1:
We partition X̊s into “special cells” and remove all such cells of dimension

less than s.
Such a cell is essentially a function f : A −→ Rn−s of “slow growth”,

more precisely,

val(f (a)− f (a′)) ≥ val(a− a′), for all a, a′ ∈ A.

Actually, we cannot cut X̊s into such cells directly; but we can achieve
such a decomposition modulo certain “uniform rotation” chosen from a
fixed finite set O of orthogonal matrices, using a result of Kurdyka
/ Parusinski / Pawlucki.



Step R2 (the main step):
Consider a sequence S = (S`)0≤`≤m, where

S` ⊆ X̊e` for some e0 ≥ e1 > e2 > · · · > em = s

and every S` is a “special cell” (after a single rotation in O).
There is a subset ZS ⊆ Sm of dimension less than s such that, once

ZS ⊆ Sm is removed, certain functions associated with S satisfy certain
estimates. There are only finitely many such ZS.

These estimates are all of the form

val(∂if (x)) ≥ val(f (x))− val(ζ`(x)) + correction terms,

where ζ`(x) is the distance between the tuple pr≤e`(x) and the subset
Re` \ pr≤e`(X).



Step R3: This step only performs certain cosmetic adjustment. We
keep the notation from Step R2 and remove one more set from Sm (again,
for each choice of S and each rotation in O) so that estimates for the
functions associated with S in Step R2 hold on the entire Sm.

This finishes the construction of X̊s.

Theorem.The resulting stratification is a valuative Lipschitz strat-
ification of X.


