Families of Isolated Singularities and

 Three Inspirations from Bernard Teissierby Terence Gaffney

CYCLES EVANESCENTS, SECTIONS PLANES ET CONDITIONS DE WHITNEY

Bernard TEISSIER

Préambule : Le but que l'on se propose ici est la construction d'invariants numériques d'un germe d'hypersurface analytique complexe à singularité isolée, invariants dont la constance dans une petite déformation de l'hypersurface entraine l'"équisingularité" de cette déformation en un sens très fort (conditions de Whitney). En fait, nous attachons à un germe d'hypersurface $\left(x_{0}, x_{0}\right) \subset\left(\mathbb{a}^{n+1}, 0\right)$ à singularité isolée une suite décroissante d'entiers $\mu_{x_{0}}^{+}\left(x_{0}\right)=\left(\mu_{x_{0}}^{(n+1)}\left(x_{0}\right), \ldots, \mu_{x_{0}}^{(i)}\left(x_{0}\right), \ldots, \mu_{x_{0}}^{(0)}\left(x_{0}\right)\right)$ où $\mu_{x_{0}}^{(i)}\left(x_{0}\right)$ est le nombre de cycles évanescents de l'intersection de ($\mathrm{X}_{0}, \mathrm{x}_{0}$) avec un $\mathrm{i}-\mathrm{pl}$ an général de $\left(\mathbb{a}^{n+1}, 0\right)$. Si $F: X \xrightarrow{\circ} D=\{t \in \mathbb{C} /|t|<1\}$ est une déformation de $\left(x_{0}, x_{0}\right)$ munie d'une section σ telle que $X-\sigma(\mathbb{D})$ soit lisse sur \mathbb{D}, et si " $\mu^{(n+1)}$ constant" (resp. " μ^{*} constant") signifie que $\mu_{\sigma(t)}^{(n+1)}\left(X_{t}\right)=\mu_{x_{0}}^{(n+1)}\left(x_{0}\right)$ (resp. avec μ^{*}), où $X_{t}=F^{-1}(t)$, pour tout $t \in \mathbb{D}$, notre programme est le suivant :
$\left[\mu^{(n+1)}\right.$ constant $] \stackrel{\left[\mathrm{C}_{1}\right]}{\Longrightarrow}\left[\mu^{*}\right.$ constant $] \stackrel{[\mathrm{ICI}]}{\Longrightarrow}[(X-\sigma(\mathbb{D}), \sigma(\mathbb{D}))$ satisfait

In his Cargèse paper, Teissier introduced

In his Cargèse paper, Teissier introduced

- Integral closure descriptions of equisingularity conditions-Whitney A and B.

In his Cargèse paper, Teissier introduced

- Integral closure descriptions of equisingularity conditions-Whitney A and B.
- Control of integral closure conditions using algebraic invariants-multiplicities of ideals, $\mu^{*}(X)$.

In his Cargèse paper, Teissier introduced

- Integral closure descriptions of equisingularity conditions-Whitney A and B.
- Control of integral closure conditions using algebraic invariants-multiplicities of ideals, $\mu^{*}(X)$.
- Geometric descriptions of the algebraic invariants- $\mu^{i}(X)$ is the Milnor number of a general section of X by an i-plane.

In his Cargèse paper, Teissier introduced

- Integral closure descriptions of equisingularity conditions-Whitney A and B.
- Control of integral closure conditions using algebraic invariants-multiplicities of ideals, $\mu^{*}(X)$.
- Geometric descriptions of the algebraic invariants- $\mu^{i}(X)$ is the Milnor number of a general section of X by an i-plane.
- The invariants depend only on the members of the family, not the family.

In his Cargèse paper, Teissier introduced

- Integral closure descriptions of equisingularity conditions-Whitney A and B.
- Control of integral closure conditions using algebraic invariants-multiplicities of ideals, $\mu^{*}(X)$.
- Geometric descriptions of the algebraic invariants- $\mu^{i}(X)$ is the Milnor number of a general section of X by an i-plane.
- The invariants depend only on the members of the family, not the family.
- Development: Use integral closure of modules for general analytic spaces, use multiplicity of modules and of pairs of modules for the invariants. Invariants should be independent of family. For ICIS, the invariant controlling the Whitney conditions is e $\left(m J M(X), \mathcal{O}_{X}^{p}\right)$. $(J M(X)$ denotes the module of partial derivatives of a set of defining equations of X.)(Inv. '92, '96, Sao Carlos, 2002.)

Quick Introduction-Recall : Integral Closure and Equisingularity

Equisingularity

- $I \subset \mathcal{O}_{X, x}$, an ideal, \bar{I} denotes the integral closure of $I, h \in \mathcal{O}_{X, x}$ is in \bar{l} if as you approach $x \in V(I) h \rightarrow 0$ as fast as I does.

Equisingularity

- $I \subset \mathcal{O}_{X, x}$, an ideal, \bar{l} denotes the integral closure of $I, h \in \mathcal{O}_{X, x}$ is in \bar{l} if as you approach $x \in V(I) h \rightarrow 0$ as fast as I does.
- Set-up: $Y=\mathbb{C} \times\{0\} \subset X^{n+1}, 0 \subset \mathbb{C} \times \mathbb{C}^{n+1}, X=F^{-1}(0)$, $m_{Y}=I(Y), Y=S(X)$.

Quick Introduction-Recall : Integral Closure and

Equisingularity

- $I \subset \mathcal{O}_{X, x}$, an ideal, \bar{I} denotes the integral closure of $I, h \in \mathcal{O}_{X, x}$ is in \bar{I} if as you approach $x \in V(I) h \rightarrow 0$ as fast as I does.
- Set-up: $Y=\mathbb{C} \times\{0\} \subset X^{n+1}, 0 \subset \mathbb{C} \times \mathbb{C}^{n+1}, X=F^{-1}(0)$, $m_{Y}=I(Y), Y=S(X)$.
- If $z \in X$ is a smooth point, then $D F(z)$ defines the tangent plane to X at $z .(D F(z)$ is a conormal vector.)

Quick Introduction-Recall : Integral Closure and

Equisingularity

- $I \subset \mathcal{O}_{X, x}$, an ideal, \bar{I} denotes the integral closure of $I, h \in \mathcal{O}_{X, x}$ is in \bar{I} if as you approach $x \in V(I) h \rightarrow 0$ as fast as I does.
- Set-up: $Y=\mathbb{C} \times\{0\} \subset X^{n+1}, 0 \subset \mathbb{C} \times \mathbb{C}^{n+1}, X=F^{-1}(0)$, $m_{Y}=I(Y), Y=S(X)$.
- If $z \in X$ is a smooth point, then $D F(z)$ defines the tangent plane to X at z. $(D F(z)$ is a conormal vector.)
- $\partial F / \partial y \in m_{Y} J(F)$ implies that all limiting tangent planes to X at 0 contain Y. $\left(\partial F / \partial y(z)\right.$ goes to 0 faster than $\partial F / \partial z_{i}(z)$ go to 0 .)

Quick Introduction-Recall : Integral Closure and

Equisingularity

- $I \subset \mathcal{O}_{X, x}$, an ideal, \bar{I} denotes the integral closure of $I, h \in \mathcal{O}_{X, x}$ is in \bar{I} if as you approach $x \in V(I) h \rightarrow 0$ as fast as I does.
- Set-up: $Y=\mathbb{C} \times\{0\} \subset X^{n+1}, 0 \subset \mathbb{C} \times \mathbb{C}^{n+1}, X=F^{-1}(0)$, $m_{Y}=I(Y), Y=S(X)$.
- If $z \in X$ is a smooth point, then $D F(z)$ defines the tangent plane to X at z. $(D F(z)$ is a conormal vector.)
- $\partial F / \partial y \in \overline{m_{Y} J}(F)$ implies that all limiting tangent planes to X at 0 contain Y. ($\partial F / \partial y(z)$ goes to 0 faster than $\partial F / \partial z_{i}(z)$ go to 0 .)
- In fact, the distance between each tangent plane and Y goes to zero as fast as the distance to Y; hence the Whitney conditions hold (Teissier).

Quick Introduction-Recall : Integral Closure and

Equisingularity

- $I \subset \mathcal{O}_{X, x}$, an ideal, \bar{I} denotes the integral closure of $I, h \in \mathcal{O}_{X, x}$ is in \bar{l} if as you approach $x \in V(I) h \rightarrow 0$ as fast as I does.
- Set-up: $Y=\mathbb{C} \times\{0\} \subset X^{n+1}, 0 \subset \mathbb{C} \times \mathbb{C}^{n+1}, X=F^{-1}(0)$, $m_{Y}=I(Y), Y=S(X)$.
- If $z \in X$ is a smooth point, then $D F(z)$ defines the tangent plane to X at z. $(D F(z)$ is a conormal vector.)
- $\partial F / \partial y \in \overline{m_{Y} J(F)}$ implies that all limiting tangent planes to X at 0 contain Y. ($\partial F / \partial y(z)$ goes to 0 faster than $\partial F / \partial z_{i}(z)$ go to 0 .)
- In fact, the distance between each tangent plane and Y goes to zero as fast as the distance to Y; hence the Whitney conditions hold (Teissier).
- If $X=F^{-1}(0)$ is not a hypersurface, and $[M]=[D F(z)]$, then the columns of $[M]$ are generators of $J M(X)$, and the rows of M are a basis of the conormal vectors at a smooth point of X, so $\overline{J M(X)}$ controls limits of tangent hyperplanes at singular points of X.

Passing from generic conditions to the total space:
Principle of Specialization of Integral Dependence

Passing from generic conditions to the total space: Principle of Specialization of Integral Dependence
I. 3 Théorème (Principe de spécialisation de la dépendance intégrale) : Soit $F:(X, x) \rightarrow(S, S)$ un germe de morphisme plat entre espaces de Cohen-Macaulay réduits. Soit I un $\theta_{X}-I$ déal (pour un représentant de F) tel que :

1) Le sous-espace Y de X défini par I soit fini au-dessus de S par F, i.e. $F: Y \rightarrow S$ est fini.
2) La multiplicité e(I. $\theta_{X_{s}}$,) est indépendante de s' $\in S$ (ici, e(I. $\mathcal{S}_{S_{s}}$) est la somme des multiplicités des idéaux primaires induits par I dans $\theta_{X_{S}}$, (Chacun des idéaux primaires est primaire dans $\theta_{X_{S}}$, pour un idéal maximal correspondant à un point de $\left.X_{S}, \cap Y.\right)$

Alors, pour tout représentant assez petit de F : $X \rightarrow S$, les conditions suivantes sont équivalentes, pour une fonction $h \in I^{\prime}\left(X, \theta_{X}\right)$:

1) il existe un ouvert analytique dense U de S tel que pour tout $s^{\prime} \in U$, ${ }^{h} \cdot{\theta_{X_{S}}} \in \overline{\mathrm{I} \cdot \theta_{X_{S^{\prime}}}}$.
2) $h \in \bar{I}$ Idéal cohérent "clôture intégrale de I " de $h \in I^{\prime}(X, \bar{I})$ [et donc $\mathrm{h} . \theta_{X_{S}} \in \overline{\mathrm{I} \cdot \theta_{X_{S}}}$ pour tout $\left.\mathrm{s} \in \mathrm{S}\right]$.
(II Resolution Simultanee et Cycles Evanescents app. 1, 1980)

Principle of Specialization of Integral Dependence

Principle of Specialization of Integral Dependence

- Key points

Principle of Specialization of Integral Dependence

- Key points
- X, X_{S}, S equidimensional.

Principle of Specialization of Integral Dependence

- Key points
- X, X_{S}, S equidimensional.
- $e\left(I \cdot X_{s}\right)$ independent of s.

Principle of Specialization of Integral Dependence

- Key points
- X, X_{S}, S equidimensional.
- e(I $\left.\cdot X_{s}\right)$ independent of s.
- $h \in \bar{l} \cdot X_{s}$, for s in a Zariski open and every where dense subset of S,

Principle of Specialization of Integral Dependence

- Key points
- X, X_{S}, S equidimensional.
- $e\left(I \cdot X_{s}\right)$ independent of s.
- $h \in \bar{I} \cdot X_{s}$, for s in a Zariski open and every where dense subset of S,
- then $h \in \bar{I} \cdot X$, so fiber wise control gives control on the total space.

Ingredients of the Proof: PSID Schematic

Ingredients of the Proof: PSID Schematic

$0 \in \mathbb{C}$

Ingredients of the Proof: PSID Schematic

- $N B_{l}(X), \pi$ is the normalization of the blow-up of X by $I . D$ the exceptional divisor.

Ingredients of the Proof: PSID Schematic

$$
\mathbb{C} \times \mathbb{C}^{n} \supset X^{d+1} \supset(0, c) \in \mathbb{C} \times \mathbb{C}^{n}, V(I)
$$

$0 \in \mathbb{C}$

- $N B_{l}(X), \pi$ is the normalization of the blow-up of X by $I . D$ the exceptional divisor.
- $h \in \bar{l} \cdot X_{s}$, for s in a Z-open and dense subset of S, implies h vanishes to the desired order on $D_{\text {Hor }}$. $\left(h \in \bar{I}\right.$ iff $h \circ \pi \in \pi^{*}(I)$.)

Ingredients of the Proof: PSID Schematic

$$
\mathbb{C} \times \mathbb{C}^{n} \supset X^{d+1} \supset(0,0) \in \mathbb{C} \times \mathbb{C}^{h}, V(1)
$$

O CC

- $N B_{I}(X), \pi$ is the normalization of the blow-up of X by I. D the exceptional divisor.
- $h \in \bar{I} \cdot X_{s}$, for s in a Z-open and dense subset of S, implies h vanishes to the desired order on $D_{\text {Hor }}$. $\left(h \in \bar{I}\right.$ iff $h \circ \pi \in \pi^{*}(I)$.)
- The Rees theorem, and upper-semicontinuity of $e\left(I_{s}\right)$ imply $/$ has a reduction with d elements, so $D_{\text {vert }}$ is empty.

Development: Kleiman-Thorup Theorem

Development: Kleiman-Thorup Theorem

- X the germ of a reduced analytic space of pure dimension d.

Development: Kleiman-Thorup Theorem

- X the germ of a reduced analytic space of pure dimension d.
- F a free \mathcal{O}_{X}-module,

Development: Kleiman-Thorup Theorem

- X the germ of a reduced analytic space of pure dimension d.
- F a free \mathcal{O}_{X}-module,
- $M \subset N \subset F$ two nested submodules with $M \neq N, M$ and N are generically equal and free of rank e. Set $r:=d+e-1$.

Development: Kleiman-Thorup Theorem

- X the germ of a reduced analytic space of pure dimension d.
- F a free \mathcal{O}_{X}-module,
- $M \subset N \subset F$ two nested submodules with $M \neq N, M$ and N are generically equal and free of rank e. Set $r:=d+e-1$.
- Set $C:=\operatorname{Projan}(\mathcal{R}(M))$ where $\mathcal{R}(M) \subset \operatorname{Sym} \mathcal{F}$ is the subalgebra induced by M in the symmetric algebra on F. Let $c: C \rightarrow X$ denote the structure map. Let W be the closed set in X where N is not integral over M, and set $E:=c^{-1} W$.

Development: Kleiman-Thorup Theorem

- X the germ of a reduced analytic space of pure dimension d.
- F a free \mathcal{O}_{X}-module,
- $M \subset N \subset F$ two nested submodules with $M \neq N, M$ and N are generically equal and free of rank e. Set $r:=d+e-1$.
- Set $C:=\operatorname{Projan}(\mathcal{R}(M))$ where $\mathcal{R}(M) \subset \operatorname{Sym} \mathcal{F}$ is the subalgebra induced by M in the symmetric algebra on F. Let $c: C \rightarrow X$ denote the structure map. Let W be the closed set in X where N is not integral over M, and set $E:=c^{-1} W$.

Development: Kleiman-Thorup Theorem

- X the germ of a reduced analytic space of pure dimension d.
- F a free \mathcal{O}_{X}-module,
- $M \subset N \subset F$ two nested submodules with $M \neq N, M$ and N are generically equal and free of rank e. Set $r:=d+e-1$.
- Set $C:=\operatorname{Projan}(\mathcal{R}(M))$ where $\mathcal{R}(M) \subset \operatorname{Sym} \mathcal{F}$ is the subalgebra induced by M in the symmetric algebra on F. Let $c: C \rightarrow X$ denote the structure map. Let W be the closed set in X where N is not integral over M, and set $E:=c^{-1} W$.

Theorem

(JA '94) If N is not integral over M, then E has dimension $r-1$, the maximum possible.

Application

Application

- Suppose $Y^{k}, 0 \subset X^{d+k}, 0, Y^{k}$ smooth, \underline{y} coordinates on Y, $I(Y)=m_{Y}$

Application

- Suppose $Y^{k}, 0 \subset X^{d+k}, 0, Y^{k}$ smooth, \underline{y} coordinates on Y, $I(Y)=m_{Y}$
- Set $M=m_{Y} J M(X), N=M+\mathbb{C}\{\partial f / \partial \underline{y}\}$, then $\operatorname{Projan}(\mathcal{R}(M))=B_{m_{Y}}(C(X)), M=N$ off Y.

Application

- Suppose $Y^{k}, 0 \subset X^{d+k}, 0, Y^{k}$ smooth, \underline{y} coordinates on Y, $I(Y)=m_{Y}$
- Set $M=m_{Y} J M(X), N=M+\mathbb{C}\{\partial f / \partial \underline{y}\}$, then $\operatorname{Projan}(\mathcal{R}(M))=B_{m_{Y}}(C(X)), M=N$ off Y.
- Let E denote the exceptional divisor of $B_{m_{Y}}(C(X))$.

Application

- Suppose $Y^{k}, 0 \subset X^{d+k}, 0, Y^{k}$ smooth, \underline{y} coordinates on Y, $I(Y)=m_{Y}$
- Set $M=m_{Y} J M(X), N=M+\mathbb{C}\{\partial f / \partial \underline{y}\}$, then $\operatorname{Projan}(\mathcal{R}(M))=B_{m_{Y}}(C(X)), M=N$ off Y.
- Let E denote the exceptional divisor of $B_{m_{Y}}(C(X))$.
- Theorem (Teissier, Larabida) If the fibers of E, the exceptional divisor of $B_{m_{Y}}(C(X))$ over Y, have the same dimension, then the Whitney conditions hold along Y.

Application

- Suppose $Y^{k}, 0 \subset X^{d+k}, 0, Y^{k}$ smooth, \underline{y} coordinates on Y, $I(Y)=m_{Y}$
- Set $M=m_{Y} J M(X), N=M+\mathbb{C}\{\partial f / \partial \underline{y}\}$, then $\operatorname{Projan}(\mathcal{R}(M))=B_{m_{Y}}(C(X)), M=N$ off Y.
- Let E denote the exceptional divisor of $B_{m_{Y}}(C(X))$.
- Theorem (Teissier, Larabida) If the fibers of E, the exceptional divisor of $B_{m_{Y}}(C(X))$ over Y, have the same dimension, then the Whitney conditions hold along Y.
- Proof: If the Whitney conditions fail along Y, they do so on a proper closed subset $S \subset Y$. Then S is the set where $\bar{M} \neq \bar{N}$. (Inv.'92) By the K-T theorem there must be a component of E over S, so the fibers of E have larger dimension over points in S than over the generic point of Y.

Application

- Suppose $Y^{k}, 0 \subset X^{d+k}, 0, Y^{k}$ smooth, \underline{y} coordinates on Y, $I(Y)=m_{Y}$
- Set $M=m_{Y} J M(X), N=M+\mathbb{C}\{\partial f / \partial \underline{y}\}$, then $\operatorname{Projan}(\mathcal{R}(M))=B_{m_{r}}(C(X)), M=N$ off Y.
- Let E denote the exceptional divisor of $B_{m_{Y}}(C(X))$.
- Theorem (Teissier, Larabida) If the fibers of E, the exceptional divisor of $B_{m_{Y}}(C(X))$ over Y, have the same dimension, then the Whitney conditions hold along Y.
- Proof: If the Whitney conditions fail along Y, they do so on a proper closed subset $S \subset Y$. Then S is the set where $\bar{M} \neq \bar{N}$. (Inv.'92) By the K-T theorem there must be a component of E over S, so the fibers of E have larger dimension over points in S than over the generic point of Y.
- For ICIS, use multiplicity of $m J M(X)$ to control the dimension of the fibers of E. What do we do if the multiplicity is not defined? Try $e(J M(X), N)$, for N related to the geometry of X.

Inspiration 3: LaRabida-1981

$\underline{\text { Soient }} f:(X, O) \rightarrow(\mathbb{D}, 0)$ un morphisme d'espaces réduits, I un idéal de O_{X} définissant un sous-espace $Y \subset X$ tel que $f \mid Y: Y \rightarrow \mathbb{D}$ soit fini, $p: X^{\prime} \rightarrow X$ l'éclatement de $Y, D_{v e r t . ~}$ la réunion des composantes du diviseur exceptionnel D (non
 $\operatorname{deg} D_{v e r t .}=\operatorname{deg}\left(\theta_{D_{v e r t}}(1)\right)$ Pour tout représentant suffisamment petit du germe de f en 0, on a l'égalité

$$
\operatorname{deg} D_{\text {vert }}=e\left(I \cdot \theta_{X(0)}\right)-e\left(I \cdot \theta_{X(s)}\right) \quad(\text { pour } s \neq 0)
$$

En particulier, on a "e(I. ${ }_{X(s)}$) est indépendant de $s \in \mathbb{D} "$ si et seulement si $\operatorname{dim} p^{-1}(0)=\operatorname{dim} X-2$.

Schematic: Degree of $D_{\text {vert }}$ over \mathbb{C}

- $H_{d}=\mathbf{C}^{n+1} \times h_{d}, h_{d}$ a generic plane of codimension d.

Schematic: Degree of $D_{\text {vert }}$ over \mathbb{C}

\mathbb{C}

- $H_{d}=\mathbf{C}^{n+1} \times h_{d}, h_{d}$ a generic plane of codimension d.
- Degree of $D_{\text {vert }}$ is the number of sheets of $B_{l}(X) \cap H_{d}$ over \mathbf{C}.
$\operatorname{Deg}\left(D_{\text {vert }}\right)=\operatorname{mult}_{\mathbb{C}}\left(\Gamma_{d}(I)\right)=\Delta e\left(I_{y}, \mathcal{O}_{x, y}\right)$
- Polar variety of I of codimension d is the projection of $B_{I}(X) \cap H_{d}$ to X.
$\operatorname{Deg}\left(D_{\text {vert }}\right)=\operatorname{mult}_{\mathbb{C}}\left(\Gamma_{d}(I)\right)=\Delta e\left(I_{y}, \mathcal{O}_{x, y}\right)$
- Polar variety of I of codimension d is the projection of $B_{l}(X) \cap H_{d}$ to X.
- (Polar variety of X is the polar variety of $J M(X)$. Polar varieties of X defined in LaRabida.)
$\operatorname{Deg}\left(D_{\text {vert }}\right)=$ mult $_{\mathbb{C}}\left(\Gamma_{d}(I)\right)=\Delta e\left(I_{y}, \mathcal{O}_{X, y}\right)$
$B_{1}(X)$

$B_{l}(X) \cap H_{d}$

$$
X^{d+1} \supset V(I) \cup \Gamma_{d}(I)
$$

$\Gamma_{d}(I)$

- Polar variety of I of codimension d is the projection of $B_{I}(X) \cap H_{d}$ to X.
- (Polar variety of X is the polar variety of $\operatorname{JM}(X)$. Polar varieties of X defined in LaRabida.)
- $\Gamma_{d}(I)$ defined using d generic generators \underline{h}.
$\operatorname{Deg}\left(D_{\text {vert }}\right)=$ mult $_{\mathbb{C}}\left(\Gamma_{d}(I)\right)=\Delta e\left(I_{y}, \mathcal{O}_{X, y}\right)$
$B_{I}(X)$

$B_{l}(X) \cap H_{d}$

$$
X^{d+1} \supset V(I) \cup \Gamma_{d}(I)
$$

$\Gamma_{d}(I)$

- Polar variety of I of codimension d is the projection of $B_{I}(X) \cap H_{d}$ to X.
- (Polar variety of X is the polar variety of $\operatorname{JM}(X)$. Polar varieties of X defined in LaRabida.)
- $\Gamma_{d}(I)$ defined using d generic generators \underline{h}.
- $V\left(\underline{h}_{s}\right)=V\left(I_{s}\right) \cup \Gamma_{d}(I)(s)$. At points x of $V\left(I_{s}\right), e\left(I_{s}, x\right)=e\left(\underline{h}_{s}, x\right)$.
$\operatorname{Deg}\left(D_{\text {vert }}\right)=$ mult $_{\mathbb{C}}\left(\Gamma_{d}(I)\right)=\Delta e\left(I_{y}, \mathcal{O}_{X, y}\right)$
- Polar variety of I of codimension d is the projection of $B_{I}(X) \cap H_{d}$ to X.
- (Polar variety of X is the polar variety of $\operatorname{JM}(X)$. Polar varieties of X defined in LaRabida.)
- $\Gamma_{d}(I)$ defined using d generic generators \underline{h}.
- $V\left(\underline{h}_{s}\right)=V\left(I_{s}\right) \cup \Gamma_{d}(I)(s)$. At points x of $V\left(I_{s}\right), e\left(I_{s}, x\right)=e\left(\underline{h}_{s}, x\right)$.
- $e\left(\underline{h}_{s}, s\right)$ independent of s, so $\Delta(e(I))=\operatorname{mult}_{\mathrm{C}}\left(\Gamma_{d}(I)\right)$.

Implications for equisingularity

- Set-up: $Y=\mathbb{C} \times\{0\} \subset X^{n+1}, 0 \subset \mathbb{C} \times \mathbb{C}^{n+1}, X=F^{-1}(0)$, $m_{Y}=I(Y), Y=S(X), J_{z}(F)=\left(\partial F / \partial z_{1}, \ldots \partial F / \partial z_{n+1}\right)$, $f_{y}=F\left(y,{ }_{-}\right)$.

Implications for equisingularity

- Set-up: $Y=\mathbb{C} \times\{0\} \subset X^{n+1}, 0 \subset \mathbb{C} \times \mathbb{C}^{n+1}, X=F^{-1}(0)$, $m_{Y}=I(Y), Y=S(X), J_{z}(F)=\left(\partial F / \partial z_{1}, \ldots \partial F / \partial z_{n+1}\right)$, $f_{y}=F(y, \ldots)$.
- Consider $B_{J_{z}(F)}(X)$; its fiber over $(y, z) \in X$ consists of tangent planes to X_{y} at z.

Implications for equisingularity

- Set-up: $Y=\mathbb{C} \times\{0\} \subset X^{n+1}, 0 \subset \mathbb{C} \times \mathbb{C}^{n+1}, X=F^{-1}(0)$, $m_{Y}=I(Y), Y=S(X), J_{z}(F)=\left(\partial F / \partial z_{1}, \ldots \partial F / \partial z_{n+1}\right)$, $f_{y}=F(y,)^{\prime}$.
- Consider $B_{J_{z}(F)}(X)$; its fiber over $(y, z) \in X$ consists of tangent planes to X_{y} at z.
- Suppose $\mu\left(f_{y}\right)$ changes at $y=0$.

Implications for equisingularity

- Set-up: $Y=\mathbb{C} \times\{0\} \subset X^{n+1}, 0 \subset \mathbb{C} \times \mathbb{C}^{n+1}, X=F^{-1}(0)$, $m_{Y}=I(Y), Y=S(X), J_{z}(F)=\left(\partial F / \partial z_{1}, \ldots \partial F / \partial z_{n+1}\right)$, $f_{y}=F(y, \ldots)$.
- Consider $B_{J_{z}(F)}(X)$; its fiber over $(y, z) \in X$ consists of tangent planes to X_{y} at z.
- Suppose $\mu\left(f_{y}\right)$ changes at $y=0$.
- Then $e\left(J\left(f_{y}\right)\right)$ changes, so there must be a vertical component of $D \subset B_{J_{z}(F)}(X)$ over zero.

Implications for equisingularity

- Set-up: $Y=\mathbb{C} \times\{0\} \subset X^{n+1}, 0 \subset \mathbb{C} \times \mathbb{C}^{n+1}, X=F^{-1}(0)$, $m_{Y}=I(Y), Y=S(X), J_{z}(F)=\left(\partial F / \partial z_{1}, \ldots \partial F / \partial z_{n+1}\right)$, $f_{y}=F(y,-)$.
- Consider $B_{J_{z}(F)}(X)$; its fiber over $(y, z) \in X$ consists of tangent planes to X_{y} at z.
- Suppose $\mu\left(f_{y}\right)$ changes at $y=0$.
- Then $e\left(J\left(f_{y}\right)\right)$ changes, so there must be a vertical component of $D \subset B_{J_{z}(F)}(X)$ over zero.
- In other words, a change in the topology of the smoothing of X_{y} (the Milnor fiber) causes a change in the infinitesimal geometry of X.

Implications for equisingularity

- Set-up: $Y=\mathbb{C} \times\{0\} \subset X^{n+1}, 0 \subset \mathbb{C} \times \mathbb{C}^{n+1}, X=F^{-1}(0)$, $m_{Y}=I(Y), Y=S(X), J_{z}(F)=\left(\partial F / \partial z_{1}, \ldots \partial F / \partial z_{n+1}\right)$, $f_{y}=F(y,-)$.
- Consider $B_{J_{z}(F)}(X)$; its fiber over $(y, z) \in X$ consists of tangent planes to X_{y} at z.
- Suppose $\mu\left(f_{y}\right)$ changes at $y=0$.
- Then $e\left(J\left(f_{y}\right)\right)$ changes, so there must be a vertical component of $D \subset B_{J_{z}(F)}(X)$ over zero.
- In other words, a change in the topology of the smoothing of X_{y} (the Milnor fiber) causes a change in the infinitesimal geometry of X.
- Moral: Families of sets are part of larger landscapes, and changes in the topology of the landscape affects the infinitesimal geometry of the family.

Development: The Multiplicity Polar Theorem (MPT)

Development: The Multiplicity Polar Theorem (MPT)

- $M \subset N \subset F$, a free \mathcal{O}_{X} module, X equidimensional, a family of sets over Y, with equidimensional fibers, Y smooth.

Development: The Multiplicity Polar Theorem (MPT)

- $M \subset N \subset F$, a free \mathcal{O}_{X} module, X equidimensional, a family of sets over Y, with equidimensional fibers, Y smooth.
- $\bar{M}=\bar{N}$ off a set C of dimension k which is finite over Y.

Development: The Multiplicity Polar Theorem (MPT)

- $M \subset N \subset F$, a free \mathcal{O}_{X} module, X equidimensional, a family of sets over Y, with equidimensional fibers, Y smooth.
- $\bar{M}=\bar{N}$ off a set C of dimension k which is finite over Y.
$\Delta(e(M, N))=e\left(M(0), N(0), \mathcal{O}_{X(0)}, 0\right)-e\left(M(y), N(y), \mathcal{O}_{X(y)},(y, x)\right)$ is the change in the multiplicity of the pair (M, N) as the parameter changes from y to 0 .

Development: The Multiplicity Polar Theorem (MPT)

- $M \subset N \subset F$, a free \mathcal{O}_{X} module, X equidimensional, a family of sets over Y, with equidimensional fibers, Y smooth.
- $\bar{M}=\bar{N}$ off a set C of dimension k which is finite over Y.
- $\Delta(e(M, N))=e\left(M(0), N(0), \mathcal{O}_{X(0)}, 0\right)-e\left(M(y), N(y), \mathcal{O}_{X(y)},(y, x)\right)$ is the change in the multiplicity of the pair (M, N) as the parameter changes from y to 0 .
- Formula (MPT, '02):

$$
\Delta(e(M, N))=m u l t_{y} \Gamma_{d}(M)-m u l t_{y} \Gamma_{d}(N)
$$

Development: The Multiplicity Polar Theorem

- $M \subset N \subset F$, a free \mathcal{O}_{X} module, X equidimensional, a family of sets over Y, with equidimensional fibers, Y smooth.
- $\bar{M}=\bar{N}$ off a set C of dimension k which is finite over Y.
- $\Delta(e(M, N))=e\left(M(0), N(0), \mathcal{O}_{X(0)}, 0\right)-e\left(M(y), N(y), \mathcal{O}_{X(y)},(y, x)\right)$ is the change in the multiplicity of the pair (M, N) as the parameter changes from y to 0 .
- Formula (MPT, '02):

$$
\Delta(e(M, N))=m u l t_{y} \Gamma_{d}(M)-m u l t_{y} \Gamma_{d}(N)
$$

- With the appropriate N we can use this for a numerical criterion for the Whitney conditions to hold for the open stratum at $X, 0$.

Development: The Multiplicity Polar Theorem

- $M \subset N \subset F$, a free \mathcal{O}_{X} module, X equidimensional, a family of sets over Y, with equidimensional fibers, Y smooth.
- $\bar{M}=\bar{N}$ off a set C of dimension k which is finite over Y.
- $\Delta(e(M, N))=e\left(M(0), N(0), \mathcal{O}_{X(0)}, 0\right)-e\left(M(y), N(y), \mathcal{O}_{X(y)},(y, x)\right)$ is the change in the multiplicity of the pair (M, N) as the parameter changes from y to 0 .
- Formula (MPT, '02):

$$
\Delta(e(M, N))=m u t_{y} \Gamma_{d}(M)-m u l t_{y} \Gamma_{d}(N)
$$

- With the appropriate N we can use this for a numerical criterion for the Whitney conditions to hold for the open stratum at $X, 0$.
- Choosing N should reflect a choice of "landscape".

Determinantal singularities

- Given M, a $(n+k, n)$ matrix, with entries in \mathcal{O}_{q}; view M as a map from $\mathbf{C}^{q} \rightarrow \operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$. Assume M is transverse to the rank stratification of $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ on $\mathbf{C}^{q}-0$.

Determinantal singularities

- Given M, a $(n+k, n)$ matrix, with entries in \mathcal{O}_{q}; view M as a map from $\mathbf{C}^{q} \rightarrow \operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$. Assume M is transverse to the rank stratification of $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ on $\mathbf{C}^{q}-0$.
- $X_{M}:=V\left(I_{M}\right), I_{M}$ generated by the maximal minors of $M . X_{M}$ is determinantal i.e. $\operatorname{codim}\left(X_{M}\right)$ is as small as possible.

Determinantal singularities

- Given M, a $(n+k, n)$ matrix, with entries in \mathcal{O}_{q}; view M as a map from $\mathbf{C}^{q} \rightarrow \operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$. Assume M is transverse to the rank stratification of $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ on $\mathbf{C}^{q}-0$.
- $X_{M}:=V\left(I_{M}\right), I_{M}$ generated by the maximal minors of $M . X_{M}$ is determinantal i.e. $\operatorname{codim}\left(X_{M}\right)$ is as small as possible.
- If $q<2(2+k)$ then X_{M} has a smoothing.

Determinantal singularities

- Given M, a $(n+k, n)$ matrix, with entries in \mathcal{O}_{q}; view M as a map from $\mathbf{C}^{q} \rightarrow \operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$. Assume M is transverse to the rank stratification of $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ on $\mathbf{C}^{q}-0$.
- $X_{M}:=V\left(I_{M}\right), I_{M}$ generated by the maximal minors of $M . X_{M}$ is determinantal i.e. $\operatorname{codim}\left(X_{M}\right)$ is as small as possible.
- If $q<2(2+k)$ then X_{M} has a smoothing.
- We fix the class of deformations and fix a unique smoothing by only considering deformations of X_{M} which come from deformations of the entries of M. Geometric meaning of invariants depends on the smoothing.

Determinantal singularities

- Given M, a $(n+k, n)$ matrix, with entries in \mathcal{O}_{q}; view M as a map from $\mathbf{C}^{q} \rightarrow \operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$. Assume M is transverse to the rank stratification of $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ on $\mathbf{C}^{q}-0$.
- $X_{M}:=V\left(I_{M}\right), I_{M}$ generated by the maximal minors of $M . X_{M}$ is determinantal i.e. $\operatorname{codim}\left(X_{M}\right)$ is as small as possible.
- If $q<2(2+k)$ then X_{M} has a smoothing.
- We fix the class of deformations and fix a unique smoothing by only considering deformations of X_{M} which come from deformations of the entries of M. Geometric meaning of invariants depends on the smoothing.
- Deformations of the entries of M induce deformations of the generators of I; first order deformations define the module $N\left(X_{M}\right)$. Generators of $N\left(X_{M}\right)$ are tuples of minors of M of size $n-1$.

Properties of $N(X)$

- N is universal. If the entries of M are coordinates on $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ denote $N(X)$ by N_{U}. Then for any $M, N\left(X_{M}\right)=M^{*} N_{U}$.

Properties of $N(X)$

- N is universal. If the entries of M are coordinates on $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ denote $N(X)$ by N_{U}. Then for any $M, N\left(X_{M}\right)=M^{*} N_{U}$.
- N_{U} is stable; $N_{U}=J M(\Sigma), \Sigma$ the matrices of less than maximal rank.

Properties of $N(X)$

- N is universal. If the entries of M are coordinates on $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ denote $N(X)$ by N_{U}. Then for any $M, N\left(X_{M}\right)=M^{*} N_{U}$.
- N_{U} is stable; $N_{U}=J M(\Sigma), \Sigma$ the matrices of less than maximal rank.
- Stability implies the polar varieties of Σ are the polar varieties of N_{U}.

Properties of $N(X)$

- N is universal. If the entries of M are coordinates on $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ denote $N(X)$ by N_{U}. Then for any $M, N\left(X_{M}\right)=M^{*} N_{U}$.
- N_{U} is stable; $N_{U}=J M(\Sigma), \Sigma$ the matrices of less than maximal rank.
- Stability implies the polar varieties of Σ are the polar varieties of N_{U}.
- Universality implies $\Gamma_{i}\left(N\left(X_{M}\right)\right)=M^{*} \Gamma_{i}\left(N_{U}\right)$.

Properties of $N(X)$

- N is universal. If the entries of M are coordinates on $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ denote $N(X)$ by N_{U}. Then for any $M, N\left(X_{M}\right)=M^{*} N_{U}$.
- N_{U} is stable; $N_{U}=J M(\Sigma), \Sigma$ the matrices of less than maximal rank.
- Stability implies the polar varieties of Σ are the polar varieties of N_{U}.
- Universality implies $\Gamma_{i}\left(N\left(X_{M}\right)\right)=M^{*} \Gamma_{i}\left(N_{U}\right)$.
- Together they imply if \tilde{M} defines a smoothing \tilde{X} of X_{M}^{d}, then

Properties of $N(X)$

- N is universal. If the entries of M are coordinates on $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ denote $N(X)$ by N_{U}. Then for any $M, N\left(X_{M}\right)=M^{*} N_{U}$.
- N_{U} is stable; $N_{U}=J M(\Sigma), \Sigma$ the matrices of less than maximal rank.
- Stability implies the polar varieties of Σ are the polar varieties of N_{U}.
- Universality implies $\Gamma_{i}\left(N\left(X_{M}\right)\right)=M^{*} \Gamma_{i}\left(N_{U}\right)$.
- Together they imply if \tilde{M} defines a smoothing \tilde{X} of X_{M}^{d}, then

$$
\operatorname{mult}_{\boldsymbol{C}} \Gamma_{d}\left(N\left(\tilde{X}_{\tilde{M}}\right)\right)=M\left(\mathbf{C}^{q}\right) \cdot \Gamma_{d}(\Sigma)
$$

Properties of $N(X)$

- N is universal. If the entries of M are coordinates on $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ denote $N(X)$ by N_{U}. Then for any $M, N\left(X_{M}\right)=M^{*} N_{U}$.
- N_{U} is stable; $N_{U}=J M(\Sigma), \Sigma$ the matrices of less than maximal rank.
- Stability implies the polar varieties of Σ are the polar varieties of N_{U}.
- Universality implies $\Gamma_{i}\left(N\left(X_{M}\right)\right)=M^{*} \Gamma_{i}\left(N_{U}\right)$.
- Together they imply if \tilde{M} defines a smoothing \tilde{X} of X_{M}^{d}, then

$$
\operatorname{mult}_{\boldsymbol{c}} \Gamma_{d}\left(N\left(\tilde{X}_{\tilde{M}}\right)\right)=M\left(\mathbf{C}^{q}\right) \cdot \Gamma_{d}(\Sigma)
$$

- For maximal minors, $M\left(\mathbf{C}^{q}\right) \cdot \Gamma_{d}(\Sigma)$ computed in terms of the entries of M in [G-Rangachev], MathArxiv 1501.00201.

Properties of $N(X)$

- N is universal. If the entries of M are coordinates on $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ denote $N(X)$ by N_{U}. Then for any $M, N\left(X_{M}\right)=M^{*} N_{U}$.
- N_{U} is stable; $N_{U}=J M(\Sigma), \Sigma$ the matrices of less than maximal rank.
- Stability implies the polar varieties of Σ are the polar varieties of N_{U}.
- Universality implies $\Gamma_{i}\left(N\left(X_{M}\right)\right)=M^{*} \Gamma_{i}\left(N_{U}\right)$.
- Together they imply if \tilde{M} defines a smoothing \tilde{X} of X_{M}^{d}, then

$$
\operatorname{mult}_{\mathrm{C}} \Gamma_{d}\left(N\left(\tilde{X}_{\tilde{M}}\right)\right)=M\left(\mathbf{C}^{q}\right) \cdot \Gamma_{d}(\Sigma)
$$

- For maximal minors, $M\left(\mathbf{C}^{q}\right) \cdot \Gamma_{d}(\Sigma)$ computed in terms of the entries of M in [G-Rangachev], MathArxiv 1501.00201.
- As a corollary of the MPT, $e\left(m J M\left(X_{M(y)}\right), N\left(X_{M(y)}\right)\right)+M(y)\left(\mathbf{C}^{q}\right) \cdot \Gamma_{d}(\Sigma)$ controls the Whitney conditions for the open stratum of X_{M} along Y.

Properties of $N(X)$

- N is universal. If the entries of M are coordinates on $\operatorname{Hom}\left(\mathbf{C}^{n}, \mathbf{C}^{n+k}\right)$ denote $N(X)$ by N_{U}. Then for any $M, N\left(X_{M}\right)=M^{*} N_{U}$.
- N_{U} is stable; $N_{U}=J M(\Sigma), \Sigma$ the matrices of less than maximal rank.
- Stability implies the polar varieties of Σ are the polar varieties of N_{U}.
- Universality implies $\Gamma_{i}\left(N\left(X_{M}\right)\right)=M^{*} \Gamma_{i}\left(N_{U}\right)$.
- Together they imply if \tilde{M} defines a smoothing \tilde{X} of X_{M}^{d}, then

$$
\operatorname{mult}_{\mathrm{C}} \Gamma_{d}\left(N\left(\tilde{X}_{\tilde{M}}\right)\right)=M\left(\mathbf{C}^{q}\right) \cdot \Gamma_{d}(\Sigma)
$$

- For maximal minors, $M\left(\mathbf{C}^{q}\right) \cdot \Gamma_{d}(\Sigma)$ computed in terms of the entries of M in [G-Rangachev], MathArxiv 1501.00201.
- As a corollary of the MPT, $e\left(m J M\left(X_{M(y)}\right), N\left(X_{M(y)}\right)\right)+M(y)\left(\mathbf{C}^{q}\right) \cdot \Gamma_{d}(\Sigma)$ controls the Whitney conditions for the open stratum of X_{M} along Y.
- $e\left(J M\left(X_{M(y)}\right), N\left(X_{M(y)}\right)\right)+M(y)\left(\mathbf{C}^{q}\right) \cdot \Gamma_{d}(\Sigma)=$
$(-1)^{d} \chi\left(X_{s, y}\right)+(-1)^{d-1} \chi\left((X \cap H)_{s, y}\right), X_{s, y}$ a smoothing of $X(y)$.
- Joyeux Anniversaire,

Bernard!

- Joyeux Anniversaire,

Bernard!

Merci beaucoup pour tous les dons!

Joyeux Anniversaire,

Bernard!

Merci beaucoup pour tous les dons!

- Cycles évanescents, sections planes et conditions de Whitney, in "Singularités à Cargèse," Astérisque 7-8 (1973), 285-362

Joyeux Anniversaire,

Bernard!

Merci beaucoup pour tous les dons!

- Cycles évanescents, sections planes et conditions de Whitney, in "Singularités à Cargèse," Astérisque 7-8 (1973), 285-362
- Résolution simultanée et cycles évanescents, in "Sém. sur les singularités des surfaces." Springer Lecture Notes 7771980 82-146

Joyeux Anniversaire,

Bernard!

$-$

Merci beaucoup pour tous les dons!

- Cycles évanescents, sections planes et conditions de Whitney, in "Singularités à Cargèse," Astérisque 7-8 (1973), 285-362
- Résolution simultanée et cycles évanescents, in "Sém. sur les singularités des surfaces." Springer Lecture Notes 7771980 82-146
- Multiplicités polaires, sections planes, et conditions de Whitney, in "Proc. La Rábida, 1981." J. M. Aroca, R. Buchweitz, M. Giusti and M. Merle (eds.) Springer Lecture Notes 9611982 314-491

Joyeux Anniversaire,

Bernard!

$-$

Merci beaucoup pour tous les dons!

- Cycles évanescents, sections planes et conditions de Whitney, in "Singularités à Cargèse," Astérisque 7-8 (1973), 285-362
- Résolution simultanée et cycles évanescents, in "Sém. sur les singularités des surfaces." Springer Lecture Notes 7771980 82-146
- Multiplicités polaires, sections planes, et conditions de Whitney, in "Proc. La Rábida, 1981." J. M. Aroca, R. Buchweitz, M. Giusti and M. Merle (eds.) Springer Lecture Notes 9611982 314-491
- And all the others!

