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CYCLES EVANESCENTS, SECTIONS PLANES ET CONDITIONS DE WHITNEY
Bernard TEISSIER

Préambule : Le but que 1'on se propose ici est la construction d'inva-
riants numériques d'un germe d'hypersurface analytique complexe & singula-
rité isolée, invariants dont la constance dans une petite déformation de
1'hypersurface entrafne 1'"équisingularité" de cette déformation en un sens
trés fort (conditions de whitney). En fait, nous attachons & un germe d'hy-
persurface (X )X )C(G 0) i singularité isolée une suite décroissante
dentiers pit (xo) ;I‘MJ)X ),...,p(U(X ),...,p(o)(x )) ou p(i)(x ) est le
o

nombre de cycles évanescents de l'lntersectlon de (Xo,xn) avec un i-plan

général de (ﬂ:m1 0)

o
. Si F: XD = {te€/ |t| <1} est une déformation de
(x0|x0) munie d'une section ¢ telle que X~ o(D) soit lisse sur D, et si

“p(mi) constant" (resp. "p¥* constant") signifie que p.("(”)(x ) = (n+1)(xo)

(resp. avec p#), ol X, =F_ (t), pour tout t€ D, notre programme est le
! t

suivant

(n+1)

constant] : [#¥* constant] E[(x 6(D), o(D)) satisfait

\ les conditions de Whltney]
\ [L.R] R Mot
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>

Integral closure descriptions of equisingularity conditions—Whitney A
and B.

Control of integral closure conditions using algebraic
invariants—multiplicities of ideals, p*(X).

Geometric descriptions of the algebraic invariants— 1/(X) is the
Milnor number of a general section of X by an i-plane.

The invariants depend only on the members of the family, not the
family.

Development: Use integral closure of modules for general analytic
spaces, use multiplicity of modules and of pairs of modules for the
invariants. Invariants should be independent of family. For ICIS, the
invariant controlling the Whitney conditions is e(mJM(X), O%).
(JM(X) denotes the module of partial derivatives of a set of defining
equations of X.)(Inv. '92, '96, Sao Carlos, 2002.)
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I C Ox x, an ideal, I denotes the integral closure of /, h € Ox x is in
I if as you approach x € V/(I) h — 0 as fast as / does.

Set-up: Y =C x {0} c X", 0Cc C x C"", X = F71(0),

my = 1(Y), Y = 5(X).

If z € X is a smooth point, then DF(z) defines the tangent plane to
X at z. (DF(z) is a conormal vector.)

OF /0y € myJ(F) implies that all limiting tangent planes to X at 0
contain Y. (0F /0y(z) goes to 0 faster than OF /0z;(z) go to 0.)

In fact, the distance between each tangent plane and Y goes to zero
as fast as the distance to Y’; hence the Whitney conditions hold
(Teissier).

If X = F~%(0) is not a hypersurface, and [M] = [DF(z)], then the
columns of [M] are generators of JM(X), and the rows of M are a
basis of the conormal vectors at a smooth point of X, so JM(X)

controls limits of tangent hyperplanes at singular._points of X.
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I.3 Théoreme (Principe de spécialisation de la dépendance intégrale)

Soit
F:

(X,x) - (S,s) un germe de morphisme plat entre espaces de Cohen-Macaulay ré-
duits. Soit I un Ox—Idéal (pour un représentant de F) tel que
1) Le sous-espace Y de X défini
F: Y-S est fini.
2) La multiplicité e(I.ox

s' s'
somme des multiplicités des idéaux primaires induits par I dans Ox

par I soit fini au-dessus de S par F, i.e.

) est indépendante de s'€ S (ici, e(I-Ox ) est la

(Chacun des idéaux primaires est primaire dans OX pour un idéal maximal

st
correspondant a un point de X nY.)

Alors, pour tout représentant assez petit de F : X—= S, les conditions suivantes

sont équivalentes, pour une fonction hEI(X,Ox)

1) il existe un ouvert analytique dense U de S tel que pour tout s' €U,
h.@x 'EI'OX L
s s
2) heT Idéal cohérent "cldture intégrale de I" de he I'(X,T) [et donc

h.ox € I.0y pour tout s¢€ s].
s s

( 11 Resolution Simultanee et Cycles Evanescents-app: 1, 1980)
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Key points

v

X, Xs, S equidimensional.
e(/ - X;) independent of s.

v

v

hel-X,, for s in a Zariski open and every where dense subset of S,

v

then h € [ - X, so fiber wise control gives control on the total space.
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Dvert ——
wor  J€DT o7

CX "D XM 5 gl D E Ex " V(1)

C 0ecl

» NB(X),n is the normalization of the blow-up of X by /. D the
exceptional divisor.

» hel X, forsina Z-open and dense subset of S,implies h vanishes
to the desired order on Dy,,. (h € 'iff how € w*(1).)

» The Rees theorem, and upper-semicontinuity of e(/s) imply / has a
reduction with d elements, so D, is empty.
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v

X the germ of a reduced analytic space of pure dimension d.

v

F a free Ox-module,

M C N C F two nested submodules with M # N, M and N are
generically equal and free of rank e. Set r :=d + e — 1.

Set C := Projan(R(M)) where R(M) C Sym F is the subalgebra
induced by M in the symmetric algebra on F. Let c: C — X denote
the structure map. Let W be the closed set in X where N is not
integral over M, and set E 1= ¢t W.

v

v

Theorem
(JA '94) If N is not integral over M, then E has dimension r — 1, the
maximum possible.
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Suppose Y%, 0 C X9tk 0, Y* smooth, y coordinates on Y,
I(Y) =my a

Set M = myJM(X), N = M+ C{0f/0dy}, then
Projan(R(M)) = B, (C(X)), M = N off Y.

» Let E denote the exceptional divisor of B, (C(X)).

Theorem (Teissier, Larabida) If the fibers of E, the exceptional
divisor of By, (C(X)) over Y, have the same dimension, then the
Whitney conditions hold along Y.

Proof: If the Whitney conditions fail along Y, they do so on a proper
closed subset S C Y. Then S is the set where M # N. ( Inv.'92) By
the K-T theorem there must be a component of E over S, so the
fibers of E have larger dimension over points in S than over the
generic point of Y.

For ICIS, use multiplicity of mJM(X) to control the dimension of the
fibers of E. What do we do if the multiplicity is not defined? Try
e(JM(X), N), for N related to the geometry of X.



Inspiration 3: LaRabida—-1981

Soient f: (X,0)~ (ID,0) un morphisme d'espaces réduits, I un idéal de Ox

définissant un sous-espace Yc X tel que flY: Y-D soit fini, p: X' =X 1'écla-

tement de Y, Dvert la réunion des composantes du diviseur exceptionnel D (non

nécessairement réduites) dont 1'image ensembliste par p est O,

deg D = deg(OD (1)). Pour tout représentant suffisamment petit du ger-

vert.

me de f en O, on a 1'égalité

vert.

deg D = e(I. OX(O))—e(I . OX(S)) (pour s #0)

vert.

En particulier, on a ”e(I'OX(s)) est indépendant de s€ D" si et seulement si

dim p_1(0) = dim X - 2.
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Xd+1 - V(I) '
-——'.;'
M

C

» Hy = C™1 x hy, hy a generic plane of codimension d.
» Degree of D, is the number of sheets of B;(X) N H, over C.
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» V(h,) = V(Is)UT4(1)(s). At points x of V/(I), e(
/

Deg(Dyert) = multc(lq(/)) = Ae(l,, Ox,y)
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Polar variety of | of codimension d is the projection of B;(X) N Hy to
X.

(Polar variety of X is the polar variety of JM(X). Polar varieties of X
defined in LaRabida.)

[4(/) defined using d generic generators h.

e(h,, s) independent of s, so A(e(/)) = multc(T'y
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» Set-up: Y =C x {0} c X""1,0C C x C", X = F1(0),
my = 1(Y), Y = 5(X), J.(F) = (0F /0z,...0F |]0z,1),
fy = F(y, ).

» Consider By, (r)(X); its fiber over (y,z) € X consists of tangent
planes to X, at z.

» Suppose i(f,) changes at y = 0.

» Then e(J(f,)) changes, so there must be a vertical component of
D C By, r)(X) over zero.

» In other words, a change in the topology of the smoothing of X, (the
Milnor fiber) causes a change in the infinitesimal geometry of X.

» Moral: Families of sets are part of larger landscapes, and changes in
the topology of the landscape affects the infinitesimal geometry of
the family.
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» M C N C F, afree Ox module, X equidimensional, a family of sets
over Y,with equidimensional fibers, Y smooth.

» M = N off a set C of dimension k which is finite over Y.

> A(e(M7 N)) = e(M(O)a N(0)> OX(O)a O)—G(M(y)7 N(y)7 OX(y)a (y> X))
is the change in the multiplicity of the pair (M, N) as the parameter
changes from y to 0.

» Formula (MPT, '02):
A(e(M, N)) = mult,T (M) — mult,T4(N)

» With the appropriate N we can use this for a numerical criterion for
the Whitney conditions to hold for the open stratum at X, 0.

» Choosing N should reflect a choice of “landscape”.
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» We fix the class of deformations and fix a unique smoothing by only
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» Deformations of the entries of M induce deformations of the

generators of /; first order deformations define the module N(Xp).
Generators of N(Xy) are tuples of minors of M of size n — 1.
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» Ny is stable; Ny = JM(X), X the matrices of less than maximal rank.

» Stability implies the polar varieties of ¥ are the polar varieties of Ny .

» Universality implies [';(N(Xu)) = M*T;(Ny).

» Together they imply if M defines a smoothing X of Xg, then

multcTg(N(Xz))) = M(C) - T4(X)
» For maximal minors, M(C9) - I4(X) computed in terms of the entries
of M in [G-Rangachev], MathArxiv 1501.00201.
» As a corollary of the MPT,
e(mJIM(Xuy)), N(Xumy))) + M(y)(C9) - T4(X) controls the Whitney
conditions for the open stratum of X, along Y.

> e(IM(Xu)), NiXmg))) + My)(C9) - To(x) =
(—1)x(Xs,) + (1) ((X N H)s, ), Xs,, a smoothing of X(y).
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And all the others!



