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In his Cargèse paper, Teissier introduced

I Integral closure descriptions of equisingularity conditions–Whitney A
and B.

I Control of integral closure conditions using algebraic
invariants–multiplicities of ideals, µ∗(X ).

I Geometric descriptions of the algebraic invariants– µi(X ) is the
Milnor number of a general section of X by an i -plane.

I The invariants depend only on the members of the family, not the
family.

I Development: Use integral closure of modules for general analytic
spaces, use multiplicity of modules and of pairs of modules for the
invariants. Invariants should be independent of family. For ICIS, the
invariant controlling the Whitney conditions is e(mJM(X ),Op

X ).
(JM(X ) denotes the module of partial derivatives of a set of defining
equations of X .)(Inv. ’92, ’96, Sao Carlos, 2002.)
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Quick Introduction-Recall : Integral Closure and

Equisingularity

I I ⊂ OX ,x , an ideal, I denotes the integral closure of I , h ∈ OX ,x is in
I if as you approach x ∈ V (I ) h→ 0 as fast as I does.

I Set-up: Y = C× {0} ⊂ X n+1, 0 ⊂ C× Cn+1, X = F−1(0),
mY = I (Y ), Y = S(X ).

I If z ∈ X is a smooth point, then DF (z) defines the tangent plane to
X at z . (DF (z) is a conormal vector.)

I ∂F/∂y ∈ mY J(F ) implies that all limiting tangent planes to X at 0
contain Y . (∂F/∂y(z) goes to 0 faster than ∂F/∂zi(z) go to 0.)

I In fact, the distance between each tangent plane and Y goes to zero
as fast as the distance to Y ; hence the Whitney conditions hold
(Teissier).

I If X = F−1(0) is not a hypersurface, and [M] = [DF (z)], then the
columns of [M] are generators of JM(X ), and the rows of M are a
basis of the conormal vectors at a smooth point of X , so JM(X )
controls limits of tangent hyperplanes at singular points of X .
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Principle of Specialization of Integral Dependence

I Key points

I X , XS , S equidimensional.

I e(I · Xs) independent of s.

I h ∈ I · Xs , for s in a Zariski open and every where dense subset of S ,

I then h ∈ I · X , so fiber wise control gives control on the total space.
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Ingredients of the Proof: PSID Schematic

I NBI (X ), π is the normalization of the blow-up of X by I . D the
exceptional divisor.

I h ∈ I · Xs , for s in a Z-open and dense subset of S ,implies h vanishes
to the desired order on DHor . (h ∈ I iff h ◦ π ∈ π∗(I ).)

I The Rees theorem, and upper-semicontinuity of e(Is) imply I has a
reduction with d elements, so Dvert is empty.
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Development: Kleiman-Thorup Theorem

I X the germ of a reduced analytic space of pure dimension d .

I F a free OX -module,

I M ⊂ N ⊂ F two nested submodules with M 6= N , M and N are
generically equal and free of rank e. Set r := d + e − 1.

I Set C := Projan(R(M)) where R(M) ⊂ SymF is the subalgebra
induced by M in the symmetric algebra on F . Let c : C → X denote
the structure map. Let W be the closed set in X where N is not
integral over M , and set E := c−1W .

I Theorem
(JA ’94) If N is not integral over M, then E has dimension r − 1, the
maximum possible.
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Application

I Suppose Y k , 0 ⊂ X d+k , 0, Y k smooth, y coordinates on Y ,
I (Y ) = mY

I Set M = mY JM(X ), N = M + C{∂f /∂y}, then
Projan(R(M)) = BmY

(C (X )), M = N off Y .
I Let E denote the exceptional divisor of BmY

(C (X )).
I Theorem (Teissier, Larabida) If the fibers of E , the exceptional

divisor of BmY
(C (X )) over Y , have the same dimension, then the

Whitney conditions hold along Y .
I Proof: If the Whitney conditions fail along Y , they do so on a proper

closed subset S ⊂ Y . Then S is the set where M 6= N . ( Inv.’92) By
the K-T theorem there must be a component of E over S , so the
fibers of E have larger dimension over points in S than over the
generic point of Y .

I For ICIS, use multiplicity of mJM(X ) to control the dimension of the
fibers of E . What do we do if the multiplicity is not defined? Try
e(JM(X ),N), for N related to the geometry of X .
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divisor of BmY
(C (X )) over Y , have the same dimension, then the

Whitney conditions hold along Y .
I Proof: If the Whitney conditions fail along Y , they do so on a proper

closed subset S ⊂ Y . Then S is the set where M 6= N . ( Inv.’92) By
the K-T theorem there must be a component of E over S , so the
fibers of E have larger dimension over points in S than over the
generic point of Y .

I For ICIS, use multiplicity of mJM(X ) to control the dimension of the
fibers of E . What do we do if the multiplicity is not defined? Try
e(JM(X ),N), for N related to the geometry of X .
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Inspiration 3: LaRabida–1981



Schematic: Degree of Dvert over C

I Hd = Cn+1 × hd , hd a generic plane of codimension d .

I Degree of Dvert is the number of sheets of BI (X ) ∩ Hd over C.
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Deg(Dvert) = multC(Γd (I )) = ∆e(Iy ,OX ,y )

I Polar variety of I of codimension d is the projection of BI (X ) ∩Hd to
X .

I (Polar variety of X is the polar variety of JM(X ). Polar varieties of X
defined in LaRabida.)

I Γd(I ) defined using d generic generators h.
I V (hs) = V (Is) ∪ Γd(I )(s). At points x of V (Is), e(Is , x) = e(hs , x).
I e(hs , s) independent of s, so ∆(e(I )) = multC(Γd(I )).
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Implications for equisingularity

I Set-up: Y = C× {0} ⊂ X n+1, 0 ⊂ C× Cn+1, X = F−1(0),
mY = I (Y ), Y = S(X ), Jz(F ) = (∂F/∂z1, . . . ∂F/∂zn+1),
fy = F (y , ).

I Consider BJz (F )(X ); its fiber over (y , z) ∈ X consists of tangent
planes to Xy at z .

I Suppose µ(fy ) changes at y = 0.

I Then e(J(fy )) changes, so there must be a vertical component of
D ⊂ BJz (F )(X ) over zero.

I In other words, a change in the topology of the smoothing of Xy (the
Milnor fiber) causes a change in the infinitesimal geometry of X .

I Moral: Families of sets are part of larger landscapes, and changes in
the topology of the landscape affects the infinitesimal geometry of
the family.
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Development: The Multiplicity Polar Theorem

(MPT)

I M ⊂ N ⊂ F , a free OX module, X equidimensional, a family of sets
over Y ,with equidimensional fibers, Y smooth.

I M = N off a set C of dimension k which is finite over Y .

I ∆(e(M ,N)) = e(M(0),N(0),OX (0), 0)−e(M(y),N(y),OX (y), (y , x))
is the change in the multiplicity of the pair (M ,N) as the parameter
changes from y to 0.

I Formula (MPT, ’02):

∆(e(M ,N)) = multyΓd(M)−multyΓd(N)

I With the appropriate N we can use this for a numerical criterion for
the Whitney conditions to hold for the open stratum at X , 0.

I Choosing N should reflect a choice of “landscape”.
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Determinantal singularities

I Given M , a (n + k , n) matrix, with entries in Oq; view M as a map
from Cq → Hom(Cn,Cn+k). Assume M is transverse to the rank
stratification of Hom(Cn,Cn+k) on Cq − 0.

I XM := V (IM), IM generated by the maximal minors of M . XM is
determinantal i.e. codim(XM) is as small as possible.

I If q < 2(2 + k) then XM has a smoothing.

I We fix the class of deformations and fix a unique smoothing by only
considering deformations of XM which come from deformations of the
entries of M . Geometric meaning of invariants depends on the
smoothing.

I Deformations of the entries of M induce deformations of the
generators of I ; first order deformations define the module N(XM).
Generators of N(XM) are tuples of minors of M of size n − 1.
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Properties of N(X )
I N is universal. If the entries of M are coordinates on Hom(Cn,Cn+k)

denote N(X ) by NU . Then for any M , N(XM) = M∗NU .

I NU is stable; NU = JM(Σ), Σ the matrices of less than maximal rank.
I Stability implies the polar varieties of Σ are the polar varieties of NU .
I Universality implies Γi(N(XM)) = M∗Γi(NU).
I Together they imply if M̃ defines a smoothing X̃ of X d

M , then
I

multCΓd(N(X̃M̃)) = M(Cq) · Γd(Σ)

I For maximal minors, M(Cq) · Γd(Σ) computed in terms of the entries
of M in [G-Rangachev], MathArxiv 1501.00201.

I As a corollary of the MPT,
e(mJM(XM(y)),N(XM(y))) + M(y)(Cq) · Γd(Σ) controls the Whitney
conditions for the open stratum of XM along Y .

I e(JM(XM(y)),N(XM(y))) + M(y)(Cq) · Γd(Σ) =
(−1)dχ(Xs,y ) + (−1)d−1χ((X ∩ H)s,y ),Xs,y a smoothing of X (y).
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“Proc. La Rábida, 1981.” J. M. Aroca, R. Buchweitz, M. Giusti and
M. Merle (eds.) Springer Lecture Notes 961 1982 314–491

I And all the others!



I Joyeux Anniversaire,

Bernard !

I Merci beaucoup pour
tous les dons !
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I Résolution simultanée et cycles évanescents, in “Sém. sur les
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