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I A ⊂ CN affine variety of dimension n with an isolated
singularity at 0.

I LA = A ∩ Sε where Sε = {z ∈ CN
∣∣|z | = ε}.

I Here LA is a real 2n − 1 dimensional C∞ manifold called the
link of A at 0 for ε small enough.

I A C∞ manifold diffeomorphic to LA is said to be Milnor
fillable by A.



I Examples:
LCn = S2n−1

L{x2+y2+z2=0} = RP3.

I A is called differentiably smooth if LA is diffeomorphic to
LCn = S2n−1.

I Question: Which singularities are differentiably smooth?



I Theorem (Mumford)
Let A be a normal surface singularity with link diffeomorphic
to S3. Then A is smooth at 0.

I This is false in higher dimensions (Brieskorn):

L{x2+y2+z2+w3=0} = S5

I Need more structure on the link.



Introduction to Contact Geometry

I Let C be a real 2n − 1 dimensional C∞ manifold and let
ξ ⊂ TC be a hyperplane distribution. For simplicity, assume
ξ = ker(α) for some 1-form α on M.

I (Frobenious Integrability Theorem): ξ is the tangent space to
a foliation iff dα|ξ = 0.



I Definition: ξ is a Contact structure if dα|ξ is a
non-degenerate 2-form at every point.

I A contact structure is the opposite of a Foliation!

I Equivalently: ξ is a Contact structure iff α∧ (dα)n−1 6= 0 at
every point.



I We will call (C , ξ) a contact manifold.

I Any 1-form α satisfying Ker(α) = ξ is a contact form
associated to ξ.

I Two contact manifolds are contactomorphic if there is a
diffeomorphism preserving the respective hyperplane
distributions.

I (Gray’s stability theorem). If I have a smooth family of
contact structures on a compact manifold, then they are all
contactomorphic.



Example:

(R2n−1, ker(dz −
n−1∑
j=1

yjdxj))

where (x1, y1, · · · , xn−1, yn−1, z) are the natural coordinates.



I The Reeb vector field of α is the unique vector field R on C
satisfying iRdα = 0, iRα = 1.

I Intuition: Think of C as the level set of a Hamiltonian, and R
is the Hamiltonian flow inside that level set. I.e. some
dynamical system in some fixed energy level.

I R is uniquely determined by α, but R is not an invariant of ξ.
If I replace α with f α for some f : C → R \ {0}, the
associated Reeb vector field changes a lot.

I A periodic Reeb orbit of period L is a map R/LZ→ C
tangent to R.



Example: Reeb vector field of

dz −
n−1∑
j=1

yjdxj is
∂

∂z
.



I Let A ⊂ CN have an isolated singularity at 0 with link
LA = A ∩ Sε as before. Let i : T (A \ {0})→ T (A \ {0}) be
complex multiplication.

I Define: ξA := TLA ∩ iTLA.

I Lemma (Varchenko): For all ε > 0 small enough, (LA, ξA) is
a contact manifold and is an invariant of the germ of A at 0
up to contactomorphism.



I Conjecture (Seidel) If A is normal and (LA, ξA) is
contactomorphic to (LCn , ξCn) then A is smooth at 0.

I Seidel observed that this is true for hypersurface singularities
using work by Eliashberg,Gromov,McDuff.



Definition of the Conley-Zehnder index

I Let (C , ξ) be a general contact manifold with ξ = ker(α).

I Choose a complex structure J on the bundle ξ compatible
with the symplectic form dα|ξ. We define c1(ξ) := c1(ξ, J).

I We will assume H1(C ;Q) = 0, c1(ξ) = 0.



I These topological conditions tell us that for each periodic
Reeb orbit γ, we get an index: CZ(γ) ∈ Q called the
Conley-Zehnder index.

I Intuition: CZ(γ) describes how many times the Reeb flow
‘wraps’ around γ.



I Let φt : C → C be the Flow of the Reeb vector field R of α.

I This flow preserves ξ (i.e. Dφt(ξ) = ξ).

I The linearized return map of γ : R/LZ→ C is the natural
map DφL|ξγ(0) : ξγ(0) → ξγ(L) = ξγ(0).



I For simplicity, we will define CZ(γ) under the following
conditions:

1. Dφt |ξ is J holomorphic for some compatible almost complex
structure J on ξ.

2. DφL|ξγ(0)
= id.

3. c1(ξ) = 0.

I Choose a trivialization of the complex vector bundle γ∗ξ with
complex structure J.



I Using this trivialization and the above properties, the map
t → (φt |(ξ)γ(0)) is viewed as a map from

Q : R/LZ→ U(n − 1). We define CZ(γ) to be twice the
degree of the map det(Q) : R/LZ→ U(1).



I Define
lSFT(γ) := CZ(γ)− 1

2dim ker(DφL|ξ|γ(0) − id) + (n − 3).

I For any α such that ker(α) = ξ, define the minimal index of
α as mi(α) := inf(lSFT(γ)).

I Define the highest minimal index hmi(C , ξ) := supαmi(α)
where the supremum is taken over all α such that ker(α) = ξ.



Minimal discrepancy

I Recall: A is an isolated singularity and LA is its link.

I Assume c1(TA|LA) is torsion. Fact: c1(TA|LA) = c1(ξA). Such
a singularity is called numerically Q-Gorenstein.

I Fix some resolution π : Ã� A so that π−1(0) has smooth
normal crossing exceptional divisors E1, · · · ,El .



I Define: Bε := {|z | ≤ ε}, Aε := Bε ∩ A and Ãε := π−1(Aε).
Note: ∂Ãε = ∂Aε = LA.



0

∃c1(Ãε, LA;Q) c1(Ãε;Q) c1(LA;Q)

H1(LA;Q) H2(Ãε, LA;Q) H2(Ãε;Q) H2(LA;Q)

H2n−2(Ã;Q)

by [Ej ]

t t t
0

freely generated

So c1(Ãε, LA;Q) =
∑

i ai [Ei ] for unique ai ∈ Q.



I Define aj to be the discrepancy of Ej .

I Define Minimal discrepancy to be

md(A) =

{
min(aj) if min(aj) ≥ −1

0 otherwise.

I Minimal discrepancy measures how singular A is at 0.
I Examples:

1. md(Cn) = n − 1.
2. md({x2 + y2 + z2 + w3 = 0}) = 1.
3. md({x7 + y11 + z13 + w17 = 0}) = −∞.



I Theorem: If A is numerically Q-Gorenstein (i.e. c1(ξA) is
torsion) and H1(LA;Q) = 0 then:

hmi(LA, ξA) =

{
2md(A) if md(A) ≥ 0
< 0 otherwise.



I Shokurov’s Conjecture (Combined with work from:
Boucksom, de Fernex, Favre, Urbinati): If A is numerically
Q-Gorenstein with md(A) = n − 1 then A is smooth at 0.

I Corollary. Suppose that Shokurov’s Conjecture is true. If A is
normal and (LA, ξA) ∼=

cont.
(LCn , ξCn) then A is smooth at 0.

I (Markushevich, Reid, Kawamata), Shokurov’s conjecture is
true in dimension ≤ 3.

I Corollary. For all n ≤ 3, if A is normal and
(LA, ξA) ∼=

cont.
(LCn , ξCn) then A is smooth at 0.



Proof

I Easier part: Find some contact form αA associated to ξA so
that:

mi(αA) = 2md(A)

This gives us a lower bound form hmi(ξ).

I Hard part: For every compatible contact form, find a Reeb
orbit γ so that:

lSFT(γ) ≤
{

2md(A) if md(A) ≥ 0
< 0 otherwise.

This gives us a upper bound form hmi(ξ).



Proof in the case of cone singularities.

I Assume A is the cone over a smooth projective X ⊂ CPN−1.
E.g. X = CPn−1, A = Cn.

I Ã = Bl0A and let π : Ã� A be the blowdown map.

I We also have the O(−1) bundle P : Ã→ X . We identify X
with the zero section of P.



Easier Part:

I A ⊂ CN . Define αA :=
∑

j xjdyj − yjdxj |LA where zj = xj + iyj .

I P : Ã� X is a Hermitian line bundle OX (−1) with Hermitain
form coming from the standard symplectic form on CN .

I The Reeb flow uniformly rotates the fibers of P. I.e.
φt(z) = e it(z) (up to a time reparameterization).



I So through each point p in LA there are Reeb orbits of period
2kπ wrapping k times around X .

I The lSFT index of such an orbit is 2k(a1 + 1)− 2 where a1 is
the discrepancy of X ⊂ Ã.

I Hence mi(αA) = 2a1 = 2md(A).



Sketch of Proof of Hard Part

I We now start with any contact form α associated to ξA. We
wish to find an orbit γ with the right bound on its index.

I Compactify Ã to A = P(C⊕OX (−1)) and let π : A� X be
the natural map.

I Let [F ] ∈ H2(A) be the class of the fiber of π, then
GW[F ],0([pt]) 6= 0. Hence for any compatible almost complex

structure J on A, there is a J-holomorphic curve: uJ : P1 → A
representing [F ].



I We now deform the symplectic form on A through symplectic
forms to a new symplectic form ω so that we have an
embedding ι : C ↪→ A so that ι∗ω = dα.

I We now choose a family Ji ’s compatible with ω which
‘stretch’ along C .

I The associated uJi ’s ‘break’ and their ends converge to Reeb
orbits γ1, · · · , γk .

I Simple Example: X is a point, so A = CP1. Our degeneration
is {x2 + y2 = t} ⊂ CP2 as t → 0. The complex structure
here stretches along the equator RP1.





Schematic Picture



I The space of such broken maps u∞ converging to γ1, · · · , γk
has dimension given by a formula involving the discrepancy
and Reeb orbits.

I This gives us an inequality:

2a1 −
∑
j

lSFT(γj) ≥ 0

proving the hard part of the theorem.



Further directions

I What other parts of the resolution can we recover? E.g.
Information from the dual graph? other invariants such as Log
Canonical Threshold?

I Some of the holomorphic curves involved look like arcs. What
is the relationship between these curves and the (short) arc
space?

I Secretly our proof is showing that a group called Contact
Homology has lowest non-zero degree equal to md(A) or is
< 0 depending on the sign of md(A). What is the relationship
between this group and the singularity?
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