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A C CN affine variety of dimension n with an isolated
singularity at 0.

La=ANS. where S, = {z € CV||z| = ¢}.

Here L, is a real 2n — 1 dimensional C° manifold called the
link of A at O for € small enough.

A C°° manifold diffeomorphic to L, is said to be Milnor
fillable by A.
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» Examples:
L(Cn — 52n—1

Lixesy2y,2—0y = RP3.

> A is called differentiably smooth if L, is diffeomorphic to
L(Cn — 52n—1'

> Question: Which singularities are differentiably smooth?



» Theorem (Mumford)
Let A be a normal surface singularity with link diffeomorphic
to S3. Then A is smooth at 0.

» This is false in higher dimensions (Brieskorn):

)
L{X2+y2+22+W3:O} — S

» Need more structure on the link.



Introduction to Contact Geometry

> Let C be a real 2n — 1 dimensional C* manifold and let
& C TC be a hyperplane distribution. For simplicity, assume
& = ker(a) for some 1-form « on M.

» (Frobenious Integrability Theorem): ¢ is the tangent space to
a foliation iff da¢ = 0.



» Definition: £ is a Contact structure if da¢ is a
non-degenerate 2-form at every point.

» A contact structure is the opposite of a Foliation!

» Equivalently: ¢ is a Contact structure iff o A (da)"~! # 0 at
every point.



We will call (C,¢&) a contact manifold.

Any 1-form « satisfying Ker(a) = £ is a contact form
associated to £.

Two contact manifolds are contactomorphic if there is a
diffeomorphism preserving the respective hyperplane
distributions.

(Gray's stability theorem). If | have a smooth family of
contact structures on a compact manifold, then they are all
contactomorphic.



Example:
n—1

(R?"! ker(dz — Zyjdxj))
j=1

where (x1, Y1, ,Xn—1, ¥n—1, Z) are the natural coordinates.




The Reeb vector field of « is the unique vector field R on C
satisfying irda = 0, irav = 1.

Intuition: Think of C as the level set of a Hamiltonian, and R
is the Hamiltonian flow inside that level set. l.e. some
dynamical system in some fixed energy level.

R is uniquely determined by «, but R is not an invariant of .
If | replace a with fo for some f: C — R\ {0}, the
associated Reeb vector field changes a lot.

A periodic Reeb orbit of period L is a map R/LZ — C
tangent to R.



Example: Reeb vector field of




» Let A C CN have an isolated singularity at 0 with link
La=ANS; as before. Let i: T(A\ {0}) — T(A\ {0}) be
complex multiplication.

> Define: £a:= TLaNITLA.

» Lemma (Varchenko): For all € > 0 small enough, (La,&a) is
a contact manifold and is an invariant of the germ of A at 0
up to contactomorphism.



» Conjecture (Seidel) If Ais normal and (La,&a) is
contactomorphic to (L¢n, &cn) then A is smooth at 0.

» Seidel observed that this is true for hypersurface singularities
using work by Eliashberg,Gromov,McDuff.



Definition of the Conley-Zehnder index

» Let (C,&) be a general contact manifold with £ = ker(«).

» Choose a complex structure J on the bundle £ compatible
with the symplectic form dale. We define ¢1(€) := c1(§, J).

» We will assume H(C; Q) =0, c1(&¢) = 0.



» These topological conditions tell us that for each periodic
Reeb orbit v, we get an index: CZ(y) € Q called the
Conley-Zehnder index.

» Intuition: CZ(+y) describes how many times the Reeb flow
‘wraps’ around .

>

Nearby Reeb flowline



> Let ¢ : C — C be the Flow of the Reeb vector field R of a.

» This flow preserves £ (i.e. Dg¢(§) =€).

» The linearized return map of v : R/LZ — C is the natural
map Dorle, ) : &(0) = &) = &x(0)-

g 3' {o}-



» For simplicity, we will define CZ(+y) under the following
conditions:
1. D¢¢le is J holomorphic for some compatible almost complex
structure J on &.
2. Doyle,, = id.
3. (&) =0.
» Choose a trivialization of the complex vector bundle v*¢£ with
complex structure J.



» Using this trivialization and the above properties, the map
t— (¢t|(€)7(0)) is viewed as a map from
Q:R/LZ — U(n—1). We define CZ(7y) to be twice the
degree of the map det(Q) : R/LZ — U(1).
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> Define
ISFT(7) := CZ(y) — 3dim ker(Doye|, , — id) + (n = 3).

» For any « such that ker(a)) = &, define the minimal index of
a as mi(«) := inf(ISFT(7)).

» Define the highest minimal index hmi(C, &) := sup,mi(«)
where the supremum is taken over all « such that ker(a) = €.



Minimal discrepancy

» Recall: A is an isolated singularity and L, is its link.

» Assume ci(TA|.,) is torsion. Fact: ¢1(TA|.,) = c1(§a). Such
a singularity is called numerically Q-Gorenstein.

» Fix some resolution 7 : A —» A so that 7~1(0) has smooth
normal crossing exceptional divisors Ei,--- , E;.



> Define: B, := {|z| < ¢}, Ac:= B.NAand A, := 77 }(A).
Note: 0A: = 0A. = L.

i

: A

s

A

a



0
I

Elcl(/ZmLA;Q) — CI(AVE;Q) — c(La; Q)
M M M
HY(La; Q) % H2(Ao, La; Q) — H*(A; Q) — H?(La; Q)
[

Hon—2(A; Q)

freely generated

by [E}]

So c1(Ae, La; Q) = >, ailEi] for unique a; € Q.
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Define a; to be the discrepancy of E;.

Define Minimal discrepancy to be

[ min(a;) if min(a;) > -1
md(A) = { 0 otherwise.

Minimal discrepancy measures how singular A is at 0.
Examples:

1. md(C")=n-1.

2. md({x*+y?+22+wd=0}) =1

3. md({x" +y? +zB8 + wl” =0}) = —o0.



» Theorem: If A is numerically Q-Gorenstein (i.e. c1(§a) is
torsion) and H(L; Q) = O then:

2md(A) if md(A) >0
<0 otherwise.

hmi(La,&a) = {



» Shokurov’s Conjecture (Combined with work from:
Boucksom, de Fernex, Favre, Urbinati): If A is numerically
Q-Gorenstein with md(A) = n— 1 then A is smooth at 0.

» Corollary. Suppose that Shokurov's Conjecture is true. If A is
normal and (La,&a) = (Lcn,&cn) then A is smooth at 0.

cont.
» (Markushevich, Reid, Kawamata), Shokurov's conjecture is
true in dimension < 3.

» Corollary. For all n <3, if Ais normal and
(La,€a) = (Lcn,&cn) then A is smooth at 0.



Proof

» Easier part: Find some contact form a4 associated to £4 so
that:
mi(aa) = 2md(A)
This gives us a lower bound form hmi(&).

» Hard part: For every compatible contact form, find a Reeb
orbit ~ so that:

2md(A) if md(A) >0
<0 otherwise.

<

This gives us a upper bound form hmi(&).



Proof in the case of cone singularities.

» Assume A is the cone over a smooth projective X ¢ CPN—1,
Eg X=CP"! A=C"
> A= BlgA and let 7 : A — A be the blowdown map.

> We also have the O(—1) bundle P : A — X. We identify X
with the zero section of P.



Easier Part:

» AC CN. Define ay = > %idy; — yjdxj|L, where z; = x; + iy;.
» P:A— X is a Hermitian line bundle Ox(—1) with Hermitain
form coming from the standard symplectic form on CV.

» The Reeb flow uniformly rotates the fibers of P. l.e.
¢+(z) = e"(z) (up to a time reparameterization).



» So through each point p in L4 there are Reeb orbits of period
2k wrapping k times around X.

» The ISFT index of such an orbit is 2k(a; + 1) — 2 where aj is
the discrepancy of X C A.

» Hence mi(ay) = 2a; = 2md(A).



Sketch of Proof of Hard Part

» We now start with any contact form « associated to £4. We
wish to find an orbit v with the right bound on its index.

» Compactify Ato A=P(C® Ox(—1)) and let 7 : A — X be
the natural map.

» Let [F] € Ha(A) be the class of the fiber of 7, then
GW(r),0([pt]) # 0. Hence for any compatible almost complex

structure J on A, there is a J-holomorphic curve: u;: P* — A
representing [F].



We now deform the symplectic form on A through symplectic
forms to a new symplectic form w so that we have an
embedding ¢ : C — A so that t*w = da.

We now choose a family J;'s compatible with w which
‘stretch’ along C.

The associated uy.'s ‘break’ and their ends converge to Reeb
orbits 1, -+, k.

Simple Example: X is a point, so A = CP'. Our degeneration
is {x?> +y? =1t} C CP? as t — 0. The complex structure
here stretches along the equator RP!.






Schematic Picture
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» The space of such broken maps U, converging to v1, -, vk
has dimension given by a formula involving the discrepancy
and Reeb orbits.

» This gives us an inequality:

2a1 — » ISFT(v) >0

J

proving the hard part of the theorem.



Further directions

» What other parts of the resolution can we recover? E.g.
Information from the dual graph? other invariants such as Log
Canonical Threshold?

» Some of the holomorphic curves involved look like arcs. What
is the relationship between these curves and the (short) arc
space?

» Secretly our proof is showing that a group called Contact
Homology has lowest non-zero degree equal to md(A) or is
< 0 depending on the sign of md(A). What is the relationship
between this group and the singularity?
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