Minimal Log Discrepancy of Isolated Singularities and Reeb Orbits

Mark McLean

arXiv:1404.1857
www.youtube.com/watch?v=ZEsnt1oVjNw

Minimal Log Discrepancy of Isolated Singularities and Reeb Orbits

Mark McLean

arXiv:1404.1857
www.youtube.com/watch?v=ZEsnt1oVjNw

- $A \subset \mathbb{C}^{N}$ affine variety of dimension n with an isolated singularity at 0 .
- $L_{A}=A \cap S_{\epsilon}$ where $S_{\epsilon}=\left\{z \in \mathbb{C}^{N}| | z \mid=\epsilon\right\}$.
- Here L_{A} is a real $2 n-1$ dimensional C^{∞} manifold called the link of A at 0 for ϵ small enough.
- A C^{∞} manifold diffeomorphic to L_{A} is said to be Milnor fillable by A.

- Examples:

$$
\begin{gathered}
L_{\mathbb{C}^{n}}=S^{2 n-1} \\
L_{\left\{x^{2}+y^{2}+z^{2}=0\right\}}=\mathbb{R} \mathbb{P}^{3} .
\end{gathered}
$$

- A is called differentiably smooth if L_{A} is diffeomorphic to $L_{\mathbb{C}^{n}}=S^{2 n-1}$.
- Question: Which singularities are differentiably smooth?
- Theorem (Mumford)

Let A be a normal surface singularity with link diffeomorphic to S^{3}. Then A is smooth at 0 .

- This is false in higher dimensions (Brieskorn):

$$
L_{\left\{x^{2}+y^{2}+z^{2}+w^{3}=0\right\}}=S^{5}
$$

- Need more structure on the link.

Introduction to Contact Geometry

- Let C be a real $2 n-1$ dimensional C^{∞} manifold and let $\xi \subset T C$ be a hyperplane distribution. For simplicity, assume $\xi=\operatorname{ker}(\alpha)$ for some 1-form α on M.
- (Frobenious Integrability Theorem): ξ is the tangent space to a foliation iff $\left.d \alpha\right|_{\xi}=0$.
- Definition: ξ is a Contact structure if $\left.d \alpha\right|_{\xi}$ is a non-degenerate 2-form at every point.
- A contact structure is the opposite of a Foliation!
- Equivalently: ξ is a Contact structure iff $\alpha \wedge(d \alpha)^{n-1} \neq 0$ at every point.
- We will call (C, ξ) a contact manifold.
- Any 1 -form α satisfying $\operatorname{Ker}(\alpha)=\xi$ is a contact form associated to ξ.
- Two contact manifolds are contactomorphic if there is a diffeomorphism preserving the respective hyperplane distributions.
- (Gray's stability theorem). If I have a smooth family of contact structures on a compact manifold, then they are all contactomorphic.

Example:

$$
\left(\mathbb{R}^{2 n-1}, \operatorname{ker}\left(d z-\sum_{j=1}^{n-1} y_{j} d x_{j}\right)\right)
$$

where $\left(x_{1}, y_{1}, \cdots, x_{n-1}, y_{n-1}, z\right)$ are the natural coordinates.

- The Reeb vector field of α is the unique vector field R on C satisfying $i_{R} d \alpha=0, i_{R} \alpha=1$.
- Intuition: Think of C as the level set of a Hamiltonian, and R is the Hamiltonian flow inside that level set. I.e. some dynamical system in some fixed energy level.
- R is uniquely determined by α, but R is not an invariant of ξ. If I replace α with $f \alpha$ for some $f: C \rightarrow \mathbb{R} \backslash\{0\}$, the associated Reeb vector field changes a lot.
- A periodic Reeb orbit of period L is a map $\mathbb{R} / L \mathbb{Z} \rightarrow C$ tangent to R.

Example: Reeb vector field of

$$
d z-\sum_{j=1}^{n-1} y_{j} d x_{j} \quad \text { is } \quad \frac{\partial}{\partial z}
$$

- Let $A \subset \mathbb{C}^{N}$ have an isolated singularity at 0 with link $L_{A}=A \cap S_{\epsilon}$ as before. Let $i: T(A \backslash\{0\}) \rightarrow T(A \backslash\{0\})$ be complex multiplication.
- Define: $\xi_{A}:=T L_{A} \cap i T L_{A}$.
- Lemma (Varchenko): For all $\epsilon>0$ small enough, $\left(L_{A}, \xi_{A}\right)$ is a contact manifold and is an invariant of the germ of A at 0 up to contactomorphism.
- Conjecture (Seidel) If A is normal and $\left(L_{A}, \xi_{A}\right)$ is contactomorphic to ($L_{\mathbb{C}^{n}}, \xi_{\mathbb{C}^{n}}$) then A is smooth at 0 .
- Seidel observed that this is true for hypersurface singularities using work by Eliashberg,Gromov,McDuff.

Definition of the Conley-Zehnder index

- Let (C, ξ) be a general contact manifold with $\xi=\operatorname{ker}(\alpha)$.
- Choose a complex structure J on the bundle ξ compatible with the symplectic form $\left.d \alpha\right|_{\xi}$. We define $c_{1}(\xi):=c_{1}(\xi, J)$.
- We will assume $H^{1}(C ; \mathbb{Q})=0, c_{1}(\xi)=0$.
- These topological conditions tell us that for each periodic Reeb orbit γ, we get an index: $\mathbf{C Z}(\gamma) \in \mathbb{Q}$ called the Conley-Zehnder index.
- Intuition: CZ (γ) describes how many times the Reeb flow 'wraps' around γ.

- Let $\phi_{t}: C \rightarrow C$ be the Flow of the Reeb vector field R of α.
- This flow preserves ξ (i.e. $D \phi_{t}(\xi)=\xi$).
- The linearized return map of $\gamma: \mathbb{R} / L \mathbb{Z} \rightarrow C$ is the natural $\left.\operatorname{map} D \phi_{L}\right|_{\xi_{\gamma(0)}}: \xi_{\gamma(0)} \rightarrow \xi_{\gamma(L)}=\xi_{\gamma(0)}$.

- For simplicity, we will define $\mathbf{C Z}(\gamma)$ under the following conditions:

1. $\left.D \phi_{t}\right|_{\xi}$ is J holomorphic for some compatible almost complex structure J on ξ.
2. $\left.D \phi_{L}\right|_{\xi_{\gamma(0)}}=\mathrm{id}$.
3. $c_{1}(\xi)=0$.

- Choose a trivialization of the complex vector bundle $\gamma^{*} \xi$ with complex structure J.
- Using this trivialization and the above properties, the map $t \rightarrow\left(\left.\phi_{t}\right|_{(\xi)_{\gamma(0)}}\right)$ is viewed as a map from $Q: \mathbb{R} / L \mathbb{Z} \rightarrow U(n-1)$. We define $C Z(\gamma)$ to be twice the degree of the map $\operatorname{det}(Q): \mathbb{R} / L \mathbb{Z} \rightarrow U(1)$.

- Define $\operatorname{ISFT}(\gamma):=\mathrm{CZ}(\gamma)-\frac{1}{2} \operatorname{dim} \operatorname{ker}\left(\left.D \phi_{L}\right|_{\left.\xi\right|_{\gamma(0)}}-\mathrm{id}\right)+(n-3)$.
- For any α such that $\operatorname{ker}(\alpha)=\xi$, define the minimal index of α as $\operatorname{mi}(\alpha):=\inf (\operatorname{ISFT}(\gamma))$.
- Define the highest minimal index $\operatorname{hmi}(C, \xi):=\sup _{\alpha} \operatorname{mi}(\alpha)$ where the supremum is taken over all α such that $\operatorname{ker}(\alpha)=\xi$.

Minimal discrepancy

- Recall: A is an isolated singularity and L_{A} is its link.
- Assume $c_{1}\left(\left.T A\right|_{L_{A}}\right)$ is torsion. Fact: $c_{1}\left(\left.T A\right|_{L_{A}}\right)=c_{1}\left(\xi_{A}\right)$. Such a singularity is called numerically \mathbb{Q}-Gorenstein.
- Fix some resolution $\pi: \widetilde{A} \rightarrow A$ so that $\pi^{-1}(0)$ has smooth normal crossing exceptional divisors E_{1}, \cdots, E_{l}.
- Define: $B_{\epsilon}:=\{|z| \leq \epsilon\}, A_{\epsilon}:=B_{\epsilon} \cap A$ and $\widetilde{A}_{\epsilon}:=\pi^{-1}\left(A_{\epsilon}\right)$. Note: $\partial \widetilde{A}_{\epsilon}=\partial A_{\epsilon}=L_{A}$.

So $c_{1}\left(\widetilde{A}_{\epsilon}, L_{A} ; \mathbb{Q}\right)=\sum_{i} a_{i}\left[E_{i}\right]$ for unique $a_{i} \in \mathbb{Q}$.

- Define a_{j} to be the discrepancy of E_{j}.
- Define Minimal discrepancy to be

$$
\operatorname{md}(A)=\left\{\begin{array}{cll}
\min \left(a_{j}\right) & \text { if } & \min \left(a_{j}\right) \geq-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

- Minimal discrepancy measures how singular A is at 0 .
- Examples:

1. $\operatorname{md}\left(\mathbb{C}^{n}\right)=n-1$.
2. $\operatorname{md}\left(\left\{x^{2}+y^{2}+z^{2}+w^{3}=0\right\}\right)=1$.
3. $\operatorname{md}\left(\left\{x^{7}+y^{11}+z^{13}+w^{17}=0\right\}\right)=-\infty$.

- Theorem: If A is numerically \mathbb{Q}-Gorenstein (i.e. $c_{1}\left(\xi_{A}\right)$ is torsion) and $H^{1}\left(L_{A} ; \mathbb{Q}\right)=0$ then:

$$
\operatorname{hmi}\left(L_{A}, \xi_{A}\right)=\left\{\begin{array}{cc}
2 \operatorname{md}(A) & \text { if } \operatorname{md}(A) \geq 0 \\
<0 & \text { otherwise }
\end{array}\right.
$$

- Shokurov's Conjecture (Combined with work from: Boucksom, de Fernex, Favre, Urbinati): If A is numerically \mathbb{Q}-Gorenstein with $\operatorname{md}(A)=n-1$ then A is smooth at 0 .
- Corollary. Suppose that Shokurov's Conjecture is true. If A is normal and $\left(L_{A}, \xi_{A}\right) \cong\left(L_{\mathbb{C}^{n}}, \xi_{\mathbb{C}^{n}}\right)$ then A is smooth at 0 .
- (Markushevich, Reid, Kawamata), Shokurov's conjecture is true in dimension ≤ 3.
- Corollary. For all $n \leq 3$, if A is normal and $\left(L_{A}, \xi_{A}\right) \underset{\text { cont. }}{\cong}\left(L_{\mathbb{C}^{n}}, \xi_{\mathbb{C}^{n}}\right)$ then A is smooth at 0 .

Proof

- Easier part: Find some contact form α_{A} associated to ξ_{A} so that:

$$
\operatorname{mi}\left(\alpha_{A}\right)=2 \operatorname{md}(A)
$$

This gives us a lower bound form $\mathrm{hmi}(\xi)$.

- Hard part: For every compatible contact form, find a Reeb orbit γ so that:

$$
\operatorname{ISFT}(\gamma) \leq\left\{\begin{array}{cc}
2 \operatorname{md}(A) & \text { if } \quad \operatorname{md}(A) \geq 0 \\
<0 & \text { otherwise }
\end{array}\right.
$$

This gives us a upper bound form $\mathrm{hmi}(\xi)$.

Proof in the case of cone singularities.

- Assume A is the cone over a smooth projective $X \subset \mathbb{C P}^{N-1}$. E.g. $X=\mathbb{C P}^{n-1}, A=\mathbb{C}^{n}$.
- $\widetilde{A}=\mathrm{Bl}_{0} A$ and let $\pi: \widetilde{A} \rightarrow A$ be the blowdown map.
- We also have the $\mathcal{O}(-1)$ bundle $P: \widetilde{A} \rightarrow X$. We identify X with the zero section of P.

Easier Part:

- $A \subset \mathbb{C}^{N}$. Define $\alpha_{A}:=\sum_{j} x_{j} d y_{j}-y_{j} d x_{j} \mid L_{A}$ where $z_{j}=x_{j}+i y_{j}$.
- $P: \widetilde{A} \rightarrow X$ is a Hermitian line bundle $\mathcal{O}_{X}(-1)$ with Hermitain form coming from the standard symplectic form on \mathbb{C}^{N}.
- The Reeb flow uniformly rotates the fibers of P. I.e. $\phi_{t}(z)=e^{i t}(z)$ (up to a time reparameterization).
- So through each point p in L_{A} there are Reeb orbits of period $2 k \pi$ wrapping k times around X.
- The ISFT index of such an orbit is $2 k\left(a_{1}+1\right)-2$ where a_{1} is the discrepancy of $X \subset \widetilde{A}$.
- Hence $\operatorname{mi}\left(\alpha_{A}\right)=2 a_{1}=2 \operatorname{md}(A)$.

Sketch of Proof of Hard Part

- We now start with any contact form α associated to ξ_{A}. We wish to find an orbit γ with the right bound on its index.
- Compactify \widetilde{A} to $\bar{A}=\mathbb{P}\left(\mathbb{C} \oplus \mathcal{O}_{X}(-1)\right)$ and let $\bar{\pi}: \bar{A} \rightarrow X$ be the natural map.
- Let $[F] \in H_{2}(\bar{A})$ be the class of the fiber of $\bar{\pi}$, then $\mathrm{GW}_{[F], 0}([\mathrm{pt}]) \neq 0$. Hence for any compatible almost complex structure J on \bar{A}, there is a J-holomorphic curve: $u_{J}: \mathbb{P}^{1} \rightarrow \bar{A}$ representing $[F]$.
- We now deform the symplectic form on \bar{A} through symplectic forms to a new symplectic form ω so that we have an embedding $\iota: C \hookrightarrow \bar{A}$ so that $\iota^{*} \omega=d \alpha$.
- We now choose a family J_{i} 's compatible with ω which 'stretch' along C.
- The associated $u_{J_{i}}$'s 'break' and their ends converge to Reeb orbits $\gamma_{1}, \cdots, \gamma_{k}$.
- Simple Example: X is a point, so $\bar{A}=\mathbb{C P}^{1}$. Our degeneration is $\left\{x^{2}+y^{2}=t\right\} \subset \mathbb{C P}^{2}$ as $t \rightarrow 0$. The complex structure here stretches along the equator $\mathbb{R P}^{1}$.

Schematic Picture

- The space of such broken maps \bar{u}_{∞} converging to $\gamma_{1}, \cdots, \gamma_{k}$ has dimension given by a formula involving the discrepancy and Reeb orbits.
- This gives us an inequality:

$$
2 a_{1}-\sum_{j} \operatorname{ISFT}\left(\gamma_{j}\right) \geq 0
$$

proving the hard part of the theorem.

Further directions

- What other parts of the resolution can we recover? E.g. Information from the dual graph? other invariants such as Log Canonical Threshold?
- Some of the holomorphic curves involved look like arcs. What is the relationship between these curves and the (short) arc space?
- Secretly our proof is showing that a group called Contact Homology has lowest non-zero degree equal to $\operatorname{md}(A)$ or is <0 depending on the sign of $\operatorname{md}(A)$. What is the relationship between this group and the singularity?

