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Many beautiful results of Bernard Teissier
in algebraic geometry and in singularities theory
have a flavor of convex geometry

I will talk about some interactions between these areas of
mathematics.

Newton polyhedra connect algebraic geometry and the theory of
singularities to the geometry of convex polyhedra with integral
vertices in the framework of toric geometry.

The theory of Newton-Okounkov bodies relates algebra,
singularities and geometry of convex bodies outside of that
framework.

There is also an intermediate version of these theories. It provides
such a relation in the framework of spherical varieties.
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Newton polyhedra

A Laurent polynomial P is a linear combination of monomials.
The support s(P) is the set of the powers of the monomials in P.
The Newton polyhedron ∆(P) is the convex hull of s(P).

Example. Let P be y2 + a0 + a1x + a2x
2 + a3x

3, where a0 6= 0,
a1 6= 0, a2 6= 0, a3 6= 0. Then ∆(P) is
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and s(P) = {(0, 0), (0, 1), (0, 2), (0, 3), (2, 0)}.

Discrete invariants of X ⊂ (C∗)n defined by a generic system of
equations P1(x) = · · · = Pk = 0 with fixed support s(Pi ) depend
only on Newton polyhedra ∆(P1), . . . ,∆(Pk) of P1, . . . ,Pk .
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Curve X ⊂ (C∗)2 defined by a generic equation P = 0

Example 1 (Kh). The genus g(X ) is equal to the number B(∆)
of integral points in the interior of ∆ = ∆(P).

Example 2 (Kh). Let X̄ = X
⋃
A(X ) be a smooth compact

model of X . Then #A(X ) equals to the number of integral
points in the boundary of ∆.

Example 3 (D.Berstein, Kh). The Euler characteristic χ(X ) of
X is equal to the volume V (∆) of ∆ multiplied by −2!

Toy geometric application. The invariants 1)-3) are related:
χ(X̄ ) = χ(X ) + #A(X ) = 2− 2g(X ).
It implies the Pick formula for an integral polygon ∆:
V (∆) = #((∆ \ ∂∆)

⋂
Z2) + 1/2#∂(∆

⋂
Z2)− 1.
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Toric varieties and the combinatorics of polyhedra
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Toric variety is a normal connected n-dimensional algebraic
variety M on which an (C∗)n acts algebraically and has one orbit
isomorphic to (C∗)n. Under the action of (C∗)n, M is broken up
into a finite number of orbits isomorphic to tori of different
dimensions. To every Newton polyhedron ∆ we can associate a
compact projective toric variety M∆ in such a way that every
k-dimensional face Γ ⊂ ∆ corresponds to a complex k-dimensional
orbit OΓ ⊂ M∆. If Γ1 ⊂ Γ2 then OΓ1 ⊂ ŌΓ2 .
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Simple polyhedra and quasismooth toric varieties

A polyhedron is simple if it is an intersection of half-spaces in
general position. An n-dimensional simple polyhedron about each
vertex has the same structure as the positive orthant in Rn near
the origin. In particular, each vertex of a simple n-dimensional
polyhedron is incident with n edges, and any k of these edges
belong to one k-dimensional face containing the vertex.

The F -vector of a simple n-dimensional polyhedron is the vector
(F0, . . . ,Fn) where Fk is the number of k-dimensional faces of the
polyhedron. The necessary and sufficient conditions for a vector to
be F -vector of a simple n-dimensional polyhedron were conjectured
by McMullen.

Simple polyhedra correspond to guasismooth toric varieties.
Using topology and algebraic geometry of such varieties Stanley,
Billera and Lee proved McMullen’s conjecture.
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Convex polyhedra and groups generated by reflections in
Lobachevsky spaces

Theorem (Nikulin).The average number of l-dimensional faces of
a k-dimensional face of a simple n-dimensional polyhedron for
0 ≤ l < k ≤ (n + 1)/2 is ≤ f (l , k, n) where f is an explicit
function. If n→∞, f tends to the number of l-dimensional faces
of a k-dimensional cube.

Theorem (Vinberg). In a Lobachevsky space of dimension > 32
there are no discrete groups generated by reflections with a
compact fundamental polyhedron.

Theorem (Kh). The bound in Nikulin’s Theorem is valid not only
for simple polyhedra, but also for edge simple polyhedra.

Theorem (Prokhorov, Kh). In a Lobachevsky space of dimension
> 995 there are no discrete groups generated by reflections with a
fundamental polyhedron of finite volume.
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How many solutions in (C∗)n has a system of equations
P1 = · · · = Pn = 0 where P1, . . . ,Pn are generic Laurent
polynomials with the fixed supports A1, . . . ,An ⊂ Zn?

Denote by LAi
be the space generated xm, where m ∈ Ai .

Denote by ∆i the convex hull of Ai .
How many solutions in (C∗)n has a system of equations
P1 = · · · = Pn = 0 where P1 ∈ LA1 , . . . ,Pn ∈ LAn is a generic
n-tuple of functions?

Theorem (Kouchnirenko). If A1 = · · · = An = A then the number
of solutions of the system is equal to the volume V (∆) of
∆ = ∆1 = · · · = ∆n multiplied by n!

Theorem (Bernstein) (also known as BKK theorem). The number
of solutions of the system is equal to the mixed volume
V (∆1, . . . ,∆n) of ∆1, . . . ,∆n multiplied ny n!
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Mixed volume is a unique function V (∆1, . . . ,∆n) on
n-tuples of convex bodies in ∆i ⊂ Rn, such that:

1 V (∆, . . . ,∆) is the volume of ∆;

2 V is symmetric;

3 V is multi-linear; for example,
V (∆′1 + ∆′′1,∆2, . . . ) = V (∆′1,∆2, . . . ) + V (∆′′1,∆2, . . . );

Mixed volume has the following properties:

4 V is nonnegative, i.e. 0 ≤ V (∆1, . . . ,∆n);

5 ∆′1 ⊆ ∆1, . . . ,∆
′
n ⊆ ∆n ⇒ V (∆′1, . . . ,∆

′
n) ≤ V (∆1, . . . ,∆n);

6 The following Alexandrov–Fenchel inequality holds:
V 2(∆1,∆2, . . . ,∆n) ≥
V (∆1,∆1, . . . ,∆n)V (∆2,∆2, . . . ,∆n);

7 in particular (for n = 2, the unite ball ∆1 and for ∆ = ∆2) the
isoperimetric inequality ( 1

2 length of ∂∆)2 ≥ πV (∆) holds.
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Intersection index on an irreducible variety X

Let K (X ) be the semigroup of spaces L of rational functions on
X such that: a) dim L <∞, and b) L 6= 0.
For L1, L2 ∈ K (X ), the product is the space L1L2 ∈ K (X )
generated by elements fg , where f ∈ L1, g ∈ L2.

If dimX = n then for L1, . . . , Ln ∈ K (X ) the intersection index
[L1, . . . , Ln] is defined as #X |x ∈ X ⇔ (f1(x) = · · · = fn(x) = 0),
where f1 ∈ L1, . . . , fn ∈ Ln is a generic n-tuple of functions.
We neglect roots x ∈ X such that ∃i : (f ∈ Li ⇒ f (x) = 0), and
such that ∃f ∈ Lj for 1 ≤ j ≤ n having a pole at x .

The intersection index is well-defined.
It is multi-linear with respect to the product in K (X ).

BKK theorem computes the intersection index for X = (C∗)n
and for an n-tuple of spaces generated by monomials.
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Grothendieck semigroup and group

For a commutative semigroup S consider the following
equivalence relation:
a ∼ b ⇔ (∃c ∈ S)|(a + c = b + c).
The Grothendieck semigroup Grs(S) of S is S modulo the
equivalents relation ∼.

The Grothendieck group Gr(S) of S is the group of formal
differences of Grs(S). Let ρ : S → Grs(S) be the natural map.

Theorem (Kh). Let K be the semigroup of finite subsets Zn ⊂ Rn

with respect to addition. Then Grs(K) is the semigroup of convex
integral polyhedra in Rn and ρ(A) is the convex hull ∆(A) of A.

We need the following algebraic analog of this theorem.
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The Grothendieck semigroup Grs(K (X )) of K (X )

A function f ∈ C(X ) is integral over L ∈ K (X ) if it satisfies an
equation f m + a1f

m−1 + · · ·+ am = 0 with m > 0 and ai ∈ Li .

The completion L of L ∈ K (X ) is the set of all functions integral
over L. The set L is a finite-dimensional space, so L ∈ K (X ).

The completion and the equivalence ∼ in K (X ) are related:

1 L1 ∼ L2 ⇔ L1 = L2;

2 L ∼ L.

The index [L1, . . . , Ln] can be extended to the Grothendieck group
Gr(K (X )) of K (X ) and can be considered as
a birationally invariant version of the intersection index of
divisors, which is applicable to non-complete varieties.
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Regularization of a semigroup of integral points

For a semigroup S ⊂ Zn of integral points let:
1) G (S) ⊂ Zn be the group generated by S ;
2) L(S) ⊂ Rn be the subspace spanned by S ;
3) C (S) be the closure of the convex spanned by S .

The regularization S̃ of S is the semigroup C (S) ∩ G (S).

Theorem (Kaveh, Kh) Let C ′ ⊂ C (S) be a strongly convex cone
which intersects the boundary (in the topology of the linear space
L(S)) of the cone C (S) only at the origin. Then there exists a
constant N > 0 (depending on C ′) such that any point in the
group G (S) which lies in C ′ and whose distance from the origin is
bigger than N belongs to S .
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Semigroup of integral points and its NO body

Let M by a hyperplane in L(S). Let Mk be the affine space parallel
to M and intersecting G (S) and C (S) which has distance k from
the origin (the distance is normalized in such a way that as values
it takes all the non-negative integers k).

The Hilbert function HS of the semigroup S in the
codirection M is defined by HS(k) = #Mk ∩ S .

The Newton–Okounkov body (NO body) of the semigroup S
in the codirection M is defined by ∆(S ,M) = C (S) ∩M1.

Theorem (Kaveh, Kh)The function HS(k) grows like aqk
q where

q is the dimension of the convex body ∆(S), and the q-th growth
coefficient aq is equal to the (normalized in the appropriate way)
q-dimensional volume of ∆(S).
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Algebra of almost finite type, its NO body (begging)

Let F be a field of transcendence degree n over k. We deal with
the following kinds of graded subalgebras in the algebra F [t]:

1 With any subspace L ⊂ F over k of finite dimension one
associates the algebra AL =

⊕
k≥0 L

ktk , where L0 = k and

Lk is the span of all the products f1 · · · fk with f1, . . . , fk ∈ L.

2 An algebra of almost finite type is a graded subalgebra in
some algebra AL.

One can construct a Zn+1-valued valuation vt on F [t] by extending
a Zn-valuation v on F which takes all the values in Zn.

The NO body of algebra A of almost finite type is the NO
body of the semigroup S(A) = vt(A \ {0}) projected to the first
factor Rn × R→ Rn.
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Algebra and its NO body (continuation)

Theorem (Kaveh, Kh). The Hilbert function HA(k) of an algebra
A of almost finite type grows like aqk

q, where q = dimR ∆(A) and
aq is the (normalized) q-dimensional volume of ∆(A).

One defines a componentwise product of graded subalgebras.
Consider the class of graded algebras of almost finite type such
that, for k � 0, all their k-th homogeneous components are
non-zero. Let A1, A2 be algebras of such kind and put A3 = A1A2.
It is easy to verify the inclusion ∆(A1) + ∆(A2) ⊂ ∆(A3).

Brunn–Minkowsky inequality in convex geometry
V 1/n(∆1) + V 1/n(∆2) ≤ V 1/n(∆1 + ∆2).

Theorem (Kaveh, Kh). a
1/n
n (A1) + a

1/n
n (A2) ≤ a

1/n
n (A3).
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NO bodies and Intersection theory

With a space L ∈ K (X ) we associate the NO body ∆(AL) of the
integral closure AL of the algebra AL.

Theorem (Kaveh, Kh). For L ∈ K (X ) we have:
1. [L, . . . , L] = n!Vol(∆(AL));
2. ∆(AL1L2) ⊇ ∆(AL1) + ∆(AL2).

The Kušnirenko theorem is a special case of this theorem.
The BBK theorem also follows for it because
for any couple of Laurent polynomials P1,P2 the relation
∆(P1P2) = ∆(P1) + ∆(P2) holds.

Theorem (Kaveh, Kh). Let L1, L2 ∈ K (X ) and L3 = L1L2.
1. [L1, . . . , L1]1/n + [L2, . . . , L2]1/n ≤ [L3, . . . , L3]1/n.
2. Hodge type inequality. For n = 2 we have
[L1, L1][L2, L2] ≤ [L1, L2]2.
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An inequality related to Teissier’s works

Alexandrov–Fenchel inequality in convex geometry claims that
V 2(∆1,∆2, . . . ,∆n) ≥ V (∆1,∆1, . . . ,∆n)V (∆2,∆2, . . . ,∆n).

Let X , dimX = n, be an irreducible variety, let L1, . . . , Ln ∈ K (X ).
Theorem (Kaveh, Kh). If L3, . . . , Ln are big subspaces then
[L1, L2, L3, . . . , Ln]2 ≥ [L1, L1, L3, . . . , Ln][L2, L2, L3, . . . , Ln].

An older version of this theorem dealing with the intersection
theory of divisors due to Bernard Teissier and me.

The Alexandrov–Fenchel inequality in convex geometry follows
easily from this theorem via the BKK theorem. This trick has been
known. Our elementary proof of the key analogue of the Hodge
index inequality which makes all the chain of arguments involved
elementary and more natural.
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Other results (begginng)

1. Let Ka be the set of primary ideals of the ring of regular
functions at a ∈ X , dimX = n. The local intersection index
[L1, . . . , Ln]a for Li ∈ Ka is equal to the multiplicity at a of a
system f1 = · · · = fn = 0, where fi is a generic function from Li .
A version of Teissier inequality for mixed multiplicities
[L1, L2, . . . , Ln]2a ≤ [L1, L1, . . . , Ln]a[L2, L2, . . . , Ln]a.

2. Let C ⊂ Rn be a strongly convex cone. A compact set A ⊂ C is
called C -co-convex body if C \ A is convex. One can construct a
theory of C - co-convex bodies analogous to the theory of
convex bodies and define the mixed volume VC (Ai1 . . . ,Ain) of an
n-tuple of C -co-convex bodies Ai1 . . . ,Ain).

Local geometric Alexandrov–Fenchel inequality
VC (A1,A2, . . . ,An)2 ≤ VC (A1,A1, . . . ,An)VC (A2,A2, . . . ,An).
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Other results (continuation)

3. NO body and Fujita approximation theorem. One can prove
an analogues of Fujita approximation theorem for semigroups of
integral points and for graded algebras of almost finite type.
As a corollary one obtains a generalization of the classical Fujita
theorem for arbitrary linear series.

4. NO body and reductive group action. Assume that X is
equipped with an action of a reductive group G and that
one is interested only in G -invariant subspaces L ∈ K(X ).
Then it is possible by choosing an appropriate Zn-valued valuation
v on C(X ) to make all results more precise and explicit.

If an action is spherical one can compute the arithmetic genus
an some other invariants of a generic complete intersection of
G -invariant linear systems.



Other results (continuation)

3. NO body and Fujita approximation theorem. One can prove
an analogues of Fujita approximation theorem for semigroups of
integral points and for graded algebras of almost finite type.
As a corollary one obtains a generalization of the classical Fujita
theorem for arbitrary linear series.

4. NO body and reductive group action. Assume that X is
equipped with an action of a reductive group G and that
one is interested only in G -invariant subspaces L ∈ K(X ).
Then it is possible by choosing an appropriate Zn-valued valuation
v on C(X ) to make all results more precise and explicit.

If an action is spherical one can compute the arithmetic genus
an some other invariants of a generic complete intersection of
G -invariant linear systems.



Other results (continuation)

3. NO body and Fujita approximation theorem. One can prove
an analogues of Fujita approximation theorem for semigroups of
integral points and for graded algebras of almost finite type.
As a corollary one obtains a generalization of the classical Fujita
theorem for arbitrary linear series.

4. NO body and reductive group action. Assume that X is
equipped with an action of a reductive group G and that
one is interested only in G -invariant subspaces L ∈ K(X ).
Then it is possible by choosing an appropriate Zn-valued valuation
v on C(X ) to make all results more precise and explicit.

If an action is spherical one can compute the arithmetic genus
an some other invariants of a generic complete intersection of
G -invariant linear systems.



References I

Khovanskii A. Newton Polyhedra and the genus of complete
intersections // Funct. Anal. Appl. 1978. V. 12, No 1, 38–46.

Khovanskii A. Newton polyhedra, and toroidal varieties //
Funct. Anal. Appl. 1977. V. 11, No 4, 289–296 (1978).

Khovanskii A. Combinatorics of sections of polytopes and
Coxeter groups in Lobachevsky spaces // Fields Inst.
Communications, AMS, Providence, RI. 2006. V. 46, 129–157.
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