Convexifying positive polynomials and a proximity algorithm

Krzysztof Kurdyka Stanisław Spodzieja Université Savoie Mont-Blanc University of Łódź

In honor of Bernard Teissier's 70th birthday June 22 – 26, 2015 Aussois • We prove that if *f* is a positive C^2 function on a convex compact set $X \subset \mathbb{R}^n$ then

$$\varphi_N = f(x)(1+|x|^2)^N$$

is strongly convex for *N* large enough.

For *f* polynomial we give an explicit estimate for *N*, which depends on the size of the coefficients of *f* and on the lower bound of *f* on *X*.
Application: an algorithm which for a given polynomial *f* on a convex compact semialgebraic set *X* produces a sequence (starting from an arbitrary point in *X*) which converges to a (lower) critical point of *f* on *X*. The convergence is based on the method of talweg which is a generalization of the Łojasiewicz gradient inequality

 $|\nabla f| \ge |f|^{\rho},$

with $\rho < 1$ for *f* analytic in a ngbh. of $0 \in \mathbb{R}^n$, f(0) = 0.

• We prove that if *f* is a positive C^2 function on a convex compact set $X \subset \mathbb{R}^n$ then

$$\varphi_N = f(x)(1+|x|^2)^N$$

is strongly convex for *N* large enough.

• For *f* polynomial we give an explicit estimate for *N*, which depends on the size of the coefficients of *f* and on the lower bound of *f* on *X*.

• Application: an algorithm which for a given polynomial *f* on a convex compact semialgebraic set *X* produces a sequence (starting from an arbitrary point in *X*) which converges to a (lower) critical point of *f* on *X*. The convergence is based on the method of talweg which is a generalization of the Łojasiewicz gradient inequality

 $|\nabla f| \ge |f|^{\rho},$

with $\rho < 1$ for *f* analytic in a ngbh. of $0 \in \mathbb{R}^n$, f(0) = 0.

• We prove that if *f* is a positive C^2 function on a convex compact set $X \subset \mathbb{R}^n$ then

$$\varphi_N = f(x)(1+|x|^2)^N$$

is strongly convex for *N* large enough.

• For *f* polynomial we give an explicit estimate for *N*, which depends on the size of the coefficients of *f* and on the lower bound of *f* on *X*.

• Application: an algorithm which for a given polynomial *f* on a convex compact semialgebraic set *X* produces a sequence (starting from an arbitrary point in *X*) which converges to a (lower) critical point of *f* on *X*. The convergence is based on the method of talweg which is a generalization of the Łojasiewicz gradient inequality

 $|\nabla f| \ge |f|^{\rho},$

with $\rho < 1$ for *f* analytic in a ngbh. of $0 \in \mathbb{R}^n$, f(0) = 0.

We denote by $\mathbb{R}[x]$ or $\mathbb{R}[x_1, \ldots, x_n]$ the ring of polynomials in $x = (x_1, \ldots, x_n)$ with coefficients in \mathbb{R} .

A set $X \subset \mathbb{R}^n$ is called *semialgebraic* if it is a finite union of sets of the form

 $\{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_j(x) \ge 0, g_{j+1}(x) > 0, \dots, g_r(x) > 0\},\$

where $g_1, \ldots, g_r \in \mathbb{R}[x]$.

We denote by $\mathbb{R}[x]$ or $\mathbb{R}[x_1, \ldots, x_n]$ the ring of polynomials in $x = (x_1, \ldots, x_n)$ with coefficients in \mathbb{R} . A set $X \subset \mathbb{R}^n$ is called *semialgebraic* if it is a finite union of sets of the form

 $\{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_j(x) \ge 0, g_{j+1}(x) > 0, \dots, g_r(x) > 0\},$ where $g_1, \dots, g_r \in \mathbb{R}[x].$ The aim of the lecture is convexification of polynomials.

Let X be a convex closed semialgebraic subset of \mathbb{R}^n and let f be a polynomial which is positive on X.

We give necessary and sufficient conditions for the existence of an exponent $N \in \mathbb{N}$ such that

 $(1 + |x|^2)^N f(x)$ is a strongly convex function on *X*.

A C^1 function $g: X \to \mathbb{R}$ is called μ -strongly convex if

$$g(y) \ge g(x) + \langle y - x, \nabla g(x) \rangle + \frac{\mu}{2} |y - x|^2 \quad \text{for } x, y \in X,$$

where $\mu > 0$ and $\langle \cdot , \cdot \rangle$ is the standard scalar product.

The aim of the lecture is convexification of polynomials.

Let X be a convex closed semialgebraic subset of \mathbb{R}^n and let f be a polynomial which is positive on X.

We give necessary and sufficient conditions for the existence of an exponent $N \in \mathbb{N}$ such that

 $(1 + |x|^2)^N f(x)$ is a strongly convex function on X.

A C^1 function $g: X \to \mathbb{R}$ is called μ -strongly convex if

$$g(y) \ge g(x) + \langle y - x, \nabla g(x) \rangle + \frac{\mu}{2} |y - x|^2 \text{ for } x, y \in X,$$

where $\mu > 0$ and $\langle \cdot , \cdot \rangle$ is the standard scalar product.

The aim of the lecture is convexification of polynomials.

Let X be a convex closed semialgebraic subset of \mathbb{R}^n and let f be a polynomial which is positive on X.

We give necessary and sufficient conditions for the existence of an exponent $N \in \mathbb{N}$ such that

 $(1 + |x|^2)^N f(x)$ is a strongly convex function on X.

A C^1 function $g: X \to \mathbb{R}$ is called μ -strongly convex if

$$g(y) \ge g(x) + \langle y - x, \nabla g(x) \rangle + \frac{\mu}{2} |y - x|^2 \text{ for } x, y \in X,$$

where $\mu > 0$ and $\langle \cdot, \cdot \rangle$ is the standard scalar product.

The key point in further considerations is the following lemma.

Lemma (1)

Let $f \in \mathbb{R}[t]$, and let f be positive on a closed interval $I \subset \mathbb{R}$. Then there exists $N_0 \in \mathbb{N}$ such that for any $N \ge N_0$ the polynomial

 $\varphi_N(t) := (1+t^2)^N f(t)$

is strongly convex on I.

Remark (2)

Let $f(t) = \sum_{i=0}^{d} a_i t^{d-i}$, $a_0, \dots, a_d \in \mathbb{R}$, $a_0 \neq 0$, $d = \deg f$. The number N_0 we may effectively estimate. Namely $N_0 = [\mathcal{N}(m, K, D)] + 1$, where $\mathcal{N}(m, K, D) := \max\left\{\frac{D}{m} + \frac{m}{16D}, \frac{(1+K^2)D}{Km} + 1, \frac{4D^2}{m^2} + 2, \frac{(1+K^2)D}{2m}\right\}$. $K = 1 + 2 \max_{1 \leq i \leq d} |a_i/a_0|^{1/i}$, $m = \min\{f(t) : t \in I\}$, $|f'(t)| \leq D$, $|f''(t)| \leq D$ for $|t| \leq K$.

Krzysztof Kurdyka, Stanisław Spodzieja ()

Convexifying positive polynomials

The key point in further considerations is the following lemma.

Lemma (1)

Let $f \in \mathbb{R}[t]$, and let f be positive on a closed interval $I \subset \mathbb{R}$. Then there exists $N_0 \in \mathbb{N}$ such that for any $N \ge N_0$ the polynomial

 $\varphi_N(t) := (1+t^2)^N f(t)$

is strongly convex on I.

Remark (2)

Let $f(t) = \sum_{i=0}^{d} a_i t^{d-i}$, $a_0, \dots, a_d \in \mathbb{R}$, $a_0 \neq 0$, $d = \deg f$. The number N_0 we may effectively estimate. Namely $N_0 = [\mathcal{N}(m, K, D)] + 1$, where $\mathcal{N}(m, K, D) := \max\left\{\frac{D}{m} + \frac{m}{16D}, \frac{(1+K^2)D}{Km} + 1, \frac{4D^2}{m^2} + 2, \frac{(1+K^2)D}{2m}\right\}$. $K = 1 + 2\max_{1 \leq i \leq d} |a_i/a_0|^{1/i}$, $m = \min\{f(t) : t \in I\}$, $|f'(t)| \leq D$, $|f''(t)| \leq D$ for $|t| \leq K$.

Convexifying polynomials on compact sets

Theorem (3, KS 2014)

Let $f \in \mathbb{R}[x]$ be positive on a compact convex set $X \subset \mathbb{R}^n$. Then there exists $N_0 \in \mathbb{N}$ such that for any integer $N \ge N_0$ the polynomial

$$\varphi_N(x) = (1 + x_1^2 + \cdots + x_n^2)^N f(x)$$

is strongly convex in X.

Sketch of the proof. Let $R = \max\{|x| : x \in X\}$, and let

$$\mathcal{A} = \{ (\alpha, \beta) \in \mathbb{R}^n \times \mathbb{R}^n : \langle \alpha, \beta \rangle = \mathbf{0}, \ |\alpha| \le \mathbf{R}, \ |\beta| = \mathbf{1} \},$$

where $\langle \cdot, \cdot \rangle$ denotes the standard scalar product on \mathbb{R}^n . Let

$$\gamma_{\alpha,\beta}(t) := \sqrt{1+|\alpha|^2}\beta t + \alpha.$$

Clearly the family of all $\gamma_{\alpha,\beta}$ with $(\alpha,\beta) \in \mathcal{A}$ parametrizes all affine lines in \mathbb{R}^n which intersects *X*. Since

$$\varphi_N \circ \gamma_{\alpha,\beta}(t) = (1+|\alpha|^2)^N (1+t^2)^N f \circ \gamma_{\alpha,\beta}(t),$$

applying Lemma 1 we deduce the assertion.

Krzysztof Kurdyka, Stanisław Spodzieja ()

Convexifying polynomials on compact sets

Theorem (3, KS 2014)

Let $f \in \mathbb{R}[x]$ be positive on a compact convex set $X \subset \mathbb{R}^n$. Then there exists $N_0 \in \mathbb{N}$ such that for any integer $N \ge N_0$ the polynomial

$$\varphi_N(x) = (1 + x_1^2 + \cdots + x_n^2)^N f(x)$$

is strongly convex in X.

Sketch of the proof. Let $R = \max\{|x| : x \in X\}$, and let

$$\mathcal{A} = \{ (\alpha, \beta) \in \mathbb{R}^n \times \mathbb{R}^n : \langle \alpha, \beta \rangle = \mathbf{0}, \ |\alpha| \le \mathbf{R}, \ |\beta| = \mathbf{1} \},$$

where $\langle \cdot, \cdot \rangle$ denotes the standard scalar product on \mathbb{R}^n . Let

$$\gamma_{\alpha,\beta}(t) := \sqrt{1+|\alpha|^2}\beta t + \alpha.$$

Clearly the family of all $\gamma_{\alpha,\beta}$ with $(\alpha,\beta) \in \mathcal{A}$ parametrizes all affine lines in \mathbb{R}^n which intersects *X*. Since

$$\varphi_{N} \circ \gamma_{\alpha,\beta}(t) = (1 + |\alpha|^2)^{N} (1 + t^2)^{N} f \circ \gamma_{\alpha,\beta}(t),$$

applying Lemma 1 we deduce the assertion.

Krzysztof Kurdyka, Stanisław Spodzieja ()

Question. Whether convexity of a polynomial φ_{N_0} implies convexity of all polynomials φ_N for $N \ge N_0$.

It turns out to be false, namely we have

Example

Let $f(x) = 7x^2 - 22x + 19$. The polynomial *f* is strictly positive on \mathbb{R} . Moreover,

$$\varphi_N''(1) = 2^{N+1} [2N^2 - 8N + 7].$$

Then $\varphi_1''(1) = 4$, $\varphi_2''(1) = -8$, nd $\varphi_3''(1) = 16$. Hence, there exists a closed interval $I \subset \mathbb{R}$ centered at 1 such that

- $\varphi_1''(x) > 0$ for $x \in I$, so φ_1 is strongly convex in I,
- $\varphi_2''(x) < 0$ for $x \in I$, so φ_2 is strongly concave in I,
- $\varphi_3''(x) > 0$ for $x \in I$, so φ_3 is strongly convex in *I*.

Question. Whether convexity of a polynomial φ_{N_0} implies convexity of all polynomials φ_N for $N \ge N_0$.

It turns out to be false, namely we have

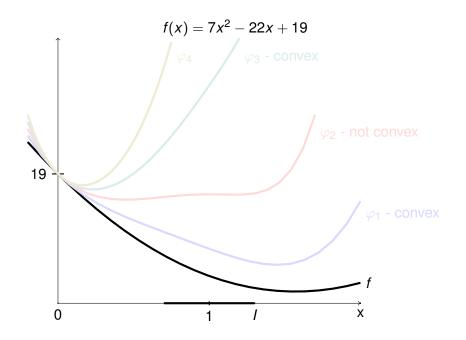
Example

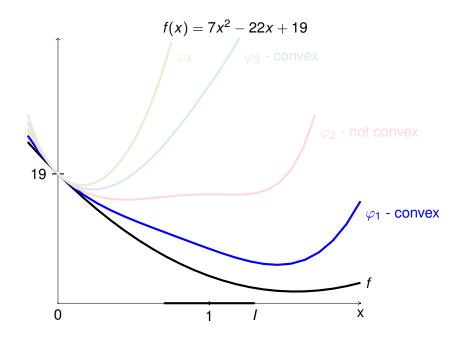
Let $f(x) = 7x^2 - 22x + 19$. The polynomial *f* is strictly positive on \mathbb{R} . Moreover,

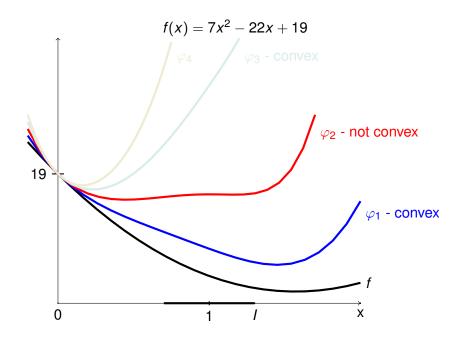
$$\varphi_N''(1) = 2^{N+1} [2N^2 - 8N + 7].$$

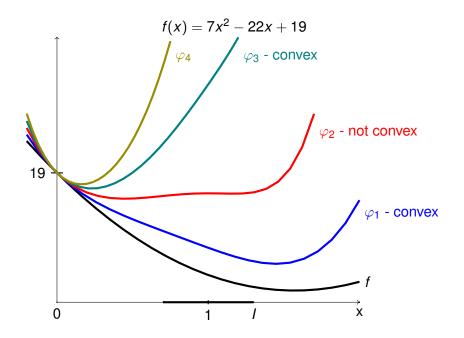
Then $\varphi_1''(1) = 4$, $\varphi_2''(1) = -8$, nd $\varphi_3''(1) = 16$. Hence, there exists a closed interval $I \subset \mathbb{R}$ centered at 1 such that

- $\varphi_1''(x) > 0$ for $x \in I$, so φ_1 is strongly convex in I,
- $\varphi_2''(x) < 0$ for $x \in I$, so φ_2 is strongly concave in I,
- $\varphi_3''(x) > 0$ for $x \in I$, so φ_3 is strongly convex in *I*.









A proximity algorithm for a polynomial on a convex set

Let *f* be a C^1 function in a neighborhood *U* of a closed set $X \subset \mathbb{R}^n$. Recall that $a \in X$ is a *lower critical point of f on X* if

 $\langle \nabla f(a), x - a \rangle \ge 0$ for any $x \in X$ in a ngbh. of a.

We denote by $\Sigma_X f$ the set of lower critical points of f on X, and by $\Sigma f := \{x \in U : \nabla f(x) = 0\}$ the set of ordinary critical points of f.

Proposition (4)

If $X \subset \mathbb{R}^n$ is closed convex and $f : \mathbb{R}^n \to \mathbb{R}$ is a C^1 function, then:

- $I X \cap \Sigma f \subset \Sigma_X f;$
- ⓐ if f restricted to X has a local minimum at a, then $a \in \Sigma_X f$;
- ③ if M ⊂ X is a smooth manifold and $a ∈ M ∩ Σ_X f$, then for any $z ∈ T_aM$,

 $\langle \nabla f(a), z \rangle = 0;$

if f is a polynomial and X is semialgebraic, then $\Sigma_X f$ is a semialgebraic set and $f(\Sigma_X f)$ is a finite set.

Krzysztof Kurdyka, Stanisław Spodzieja ()

A proximity algorithm for a polynomial on a convex set

Let *f* be a C^1 function in a neighborhood *U* of a closed set $X \subset \mathbb{R}^n$. Recall that $a \in X$ is a *lower critical point of f on X* if

 $\langle \nabla f(a), x - a \rangle \ge 0$ for any $x \in X$ in a ngbh. of a.

We denote by $\Sigma_X f$ the set of lower critical points of f on X, and by $\Sigma f := \{x \in U : \nabla f(x) = 0\}$ the set of ordinary critical points of f.

Proposition (4)

If $X \subset \mathbb{R}^n$ is closed convex and $f : \mathbb{R}^n \to \mathbb{R}$ is a C^1 function, then:

- $I X \cap \Sigma f \subset \Sigma_X f;$
- (2) if f restricted to X has a local minimum at a, then $a \in \Sigma_X f$;
- ③ if M ⊂ X is a smooth manifold and $a ∈ M ∩ Σ_X f$, then for any $z ∈ T_aM$,

 $\langle \nabla f(a), z \rangle = 0;$

if f is a polynomial and X is semialgebraic, then $\Sigma_X f$ is a semialgebraic set and $f(\Sigma_X f)$ is a finite set.

Krzysztof Kurdyka, Stanisław Spodzieja ()

A proximity algorithm for a polynomial on a convex set

Let *f* be a C^1 function in a neighborhood *U* of a closed set $X \subset \mathbb{R}^n$. Recall that $a \in X$ is a *lower critical point of f on X* if

 $\langle \nabla f(a), x - a \rangle \ge 0$ for any $x \in X$ in a ngbh. of a.

We denote by $\Sigma_X f$ the set of lower critical points of f on X, and by $\Sigma f := \{x \in U : \nabla f(x) = 0\}$ the set of ordinary critical points of f.

Proposition (4)

If $X \subset \mathbb{R}^n$ is closed convex and $f : \mathbb{R}^n \to \mathbb{R}$ is a C^1 function, then:

- $X \cap \Sigma f \subset \Sigma_X f;$
- 3 if f restricted to X has a local minimum at a, then $a \in \Sigma_X f$;
- **③** if M ⊂ X is a smooth manifold and $a ∈ M ∩ Σ_X f$, then for any $z ∈ T_a M$,

$$\langle
abla f(a), z
angle = 0;$$

(a) if f is a polynomial and X is semialgebraic, then $\Sigma_X f$ is a semialgebraic set and $f(\Sigma_X f)$ is a finite set.

Using a translation and a dilatation we may assume that X is contained in a ball of radius R = 1/2 centered at zero.

Replacing *f* by f + c, where *c* is a constant large enough we may assume that $m = \inf\{f(x) : x \in X\} = D > 0$, where *D* is a bound for the absolute value of the first and the second directional derivatives of *f* (along vectors of norm 1).

Then we have $\mathcal{N}(m, 2R, D) = 6$. So, for N = 6 and some $\mu > 0$ the function

$$\varphi_{N,\xi}(x) := (1 + |x - \xi|^2)^N f(x)$$

Using a translation and a dilatation we may assume that X is contained in a ball of radius R = 1/2 centered at zero.

Replacing *f* by f + c, where *c* is a constant large enough we may assume that $m = \inf\{f(x) : x \in X\} = D > 0$, where *D* is a bound for the absolute value of the first and the second directional derivatives of *f* (along vectors of norm 1).

Then we have $\mathcal{N}(m, 2R, D) = 6$. So, for N = 6 and some $\mu > 0$ the function

$$\varphi_{N,\xi}(x) := (1 + |x - \xi|^2)^N f(x)$$

Using a translation and a dilatation we may assume that X is contained in a ball of radius R = 1/2 centered at zero.

Replacing *f* by f + c, where *c* is a constant large enough we may assume that $m = \inf\{f(x) : x \in X\} = D > 0$, where *D* is a bound for the absolute value of the first and the second directional derivatives of *f* (along vectors of norm 1).

Then we have $\mathcal{N}(m, 2R, D) = 6$. So, for N = 6 and some $\mu > 0$ the function

$$\varphi_{N,\xi}(x) := (1 + |x - \xi|^2)^N f(x)$$

Using a translation and a dilatation we may assume that X is contained in a ball of radius R = 1/2 centered at zero.

Replacing *f* by f + c, where *c* is a constant large enough we may assume that $m = \inf\{f(x) : x \in X\} = D > 0$, where *D* is a bound for the absolute value of the first and the second directional derivatives of *f* (along vectors of norm 1).

Then we have $\mathcal{N}(m, 2R, D) = 6$. So, for N = 6 and some $\mu > 0$ the function

$$\varphi_{N,\xi}(x) := (1 + |x - \xi|^2)^N f(x)$$

Recall that any strictly convex, hence in particular any strongly convex, function φ on a convex closed set X admits a unique point, denoted by argmin_X φ , at which φ attains its minimum on X.

Choose an arbitrary point $a_0 \in X$, and by induction set

(1.1) $a_{\nu} := \operatorname{argmin}_{X} \varphi_{N, a_{\nu-1}}$

The main corollary of the convexification method is

Theorem (A, KS 2015)

Let $X \subset \mathbb{R}^n$ be a compact convex semialgebraic set and $f : \mathbb{R}^n \to \mathbb{R}$ a polynomial positive on X. Let a_{ν} be the sequence defined by (1.1) with $a_0 \in X$. Then the limit

 $a^* = \lim_{
u o \infty} a_
u$

exists, and $a^* \in \Sigma_X f$.

Recall that any strictly convex, hence in particular any strongly convex, function φ on a convex closed set *X* admits a unique point, denoted by argmin_{*X*} φ , at which φ attains its minimum on *X*.

Choose an arbitrary point $a_0 \in X$, and by induction set

(1.1)
$$a_{\nu} := \operatorname{argmin}_{X} \varphi_{N, a_{\nu-1}}$$

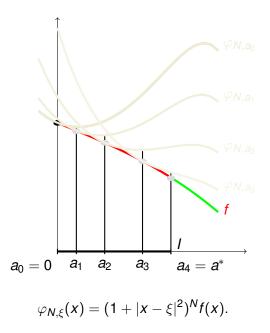
The main corollary of the convexification method is

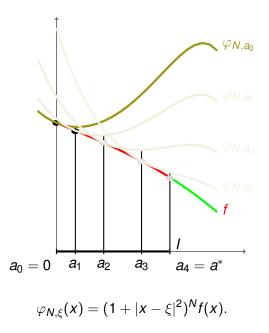
Theorem (A, KS 2015)

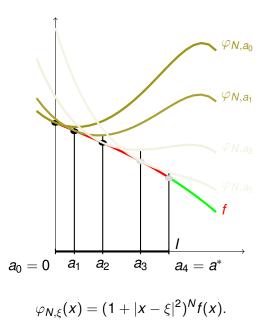
Let $X \subset \mathbb{R}^n$ be a compact convex semialgebraic set and $f : \mathbb{R}^n \to \mathbb{R}$ a polynomial positive on X. Let a_{ν} be the sequence defined by (1.1) with $a_0 \in X$. Then the limit

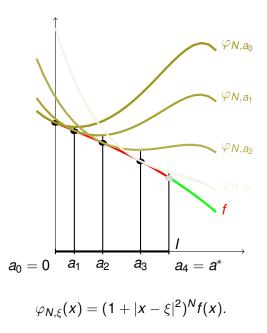
$$a^* = \lim_{
u o \infty} a_
u$$

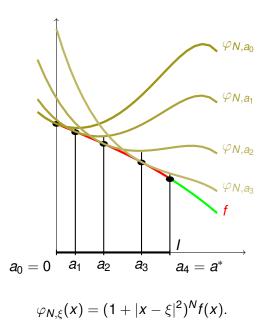
exists, and $a^* \in \Sigma_X f$.











Key points in the proof of Theorem A.

Step 1. Assuming that $a^* = \lim_{\nu \to \infty} a_{\nu}$ exists, we prove that $a^* \in \Sigma_X f$.

The main difficulty is to prove that $\lim_{\nu\to\infty} a_{\nu}$ exists.

Step 2. From the definition of $\varphi_{N,\xi}$ we obtain: for any $\nu \in \mathbb{N}$ we have

 $|a_{\nu+1} - a_{\nu}| = \text{dist}(a_{\nu}, f^{-1}(f(a_{\nu+1})) \cap X).$

Step 3. From Theorem 3 we obtain: for any $\nu \in \mathbb{N}$ we have

$$f(a_{\nu+1}) \leq rac{f(a_{
u}) - rac{\mu}{2}|a_{
u+1} - a_{
u}|^2}{(1+|a_{
u+1} - a_{
u}|^2)^N}.$$

In particular the sequence $f(a_{\nu})$ is decreasing.

Key points in the proof of Theorem A.

Step 1. Assuming that $a^* = \lim_{\nu \to \infty} a_{\nu}$ exists, we prove that $a^* \in \Sigma_X f$.

The main difficulty is to prove that $\lim_{\nu\to\infty} a_{\nu}$ exists.

Step 2. From the definition of $\varphi_{N,\xi}$ we obtain: for any $\nu \in \mathbb{N}$ we have

$$|a_{\nu+1} - a_{\nu}| = \text{dist}(a_{\nu}, f^{-1}(f(a_{\nu+1})) \cap X).$$

Step 3. From Theorem 3 we obtain: for any $\nu \in \mathbb{N}$ we have

$$f(a_{\nu+1}) \leq rac{f(a_{
u}) - rac{\mu}{2}|a_{
u+1} - a_{
u}|^2}{(1+|a_{
u+1} - a_{
u}|^2)^N}.$$

In particular the sequence $f(a_{\nu})$ is decreasing.

Key points in the proof of Theorem A.

Step 1. Assuming that $a^* = \lim_{\nu \to \infty} a_{\nu}$ exists, we prove that $a^* \in \Sigma_X f$.

The main difficulty is to prove that $\lim_{\nu\to\infty} a_{\nu}$ exists.

Step 2. From the definition of $\varphi_{N,\xi}$ we obtain: for any $\nu \in \mathbb{N}$ we have

$$|a_{\nu+1} - a_{\nu}| = \text{dist}(a_{\nu}, f^{-1}(f(a_{\nu+1})) \cap X).$$

Step 3. From Theorem 3 we obtain: for any $\nu \in \mathbb{N}$ we have

$$f(a_{\nu+1}) \leq rac{f(a_{
u}) - rac{\mu}{2} |a_{
u+1} - a_{
u}|^2}{(1 + |a_{
u+1} - a_{
u}|^2)^N}.$$

In particular the sequence $f(a_{\nu})$ is decreasing.

Step 4. A key point in the proof is the use of the Comparison Principle due to **D. D'Acunto** and **K. K** (2006).

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a polynomial and let $M \subset \mathbb{R}^n$ be a smooth bounded semialgebraic set. Let $\nabla f(x)$ denote the gradient of f with respect to the standard Euclidean scalar product, and

 $\nabla_M f(x)$ - the projection of $\nabla f(x)$ on $T_x M$, the tangent space to M at x.

Let $\Gamma_M \subset \overline{M}$ be a semialgebraic curve meeting each level set of f and such that for every point $y \in \Gamma$ we have

 $|\nabla_M f(y)| \leq |\nabla_M f(x)|$ for all $x \in f^{-1}(f(y))$.

By standard arguments (semialgebraic choice) such a curve always exists; it is called a *talweg* or *a ridge-valley line of f in X*.

Lemma (Comparison Principle)

For every pair of values a < b taken by f, the length of any trajectory of ∇f lying in $f^{-1}((a, b)) \cap M$ is bounded by the length of $\Gamma_M \cap f^{-1}((a, b))$.

To prove that $\lim_{\nu\to\infty} a_{\nu}$ exists recall first that by Step 3. we have

$$f(a_{\nu}) \geq f(a_{\nu+1}) \geq \cdots \geq f_* := \lim_{\nu \to \infty} f(a_{\nu}).$$

By Proposition 5 the set $f(\Sigma_X f)$ is finite, so we may assume that either the sequence $f(a_\nu)$ is eventually constant, or

$$(f(a_{\nu}), f_*) \cap f(\Sigma_X f) = \emptyset$$
 for ν large enough.

Clearly in the first case, by Step 3., also the sequence a_{ν} is eventually constant. So we assume from now on that the sequence $f(a_{\nu})$ is strictly decreasing and

$$(f(a_0), f_*) \cap f(\Sigma_X f) = \emptyset.$$

The set X is semialgebraic, so there exists a stratification

$$X=\bigcup_{i\in I}M_i,$$

i.e., a finite disjoint union of connected smooth semialgebraic sets, called *strata*.

Moreover $\overline{M}_i \setminus M_i$ is a union of some of the M_j 's of dimension smaller than dim M_i .

We can refine this stratification in such a way that *f* is of constant rank on each M_i , $i \in I$; then

our polynomial f restricted to M_i is either a constant or a submersion.

Let $I^* = \{i \in I : \text{rank } f|_{M_i} = 1\}$. Note that $C_X f = \bigcup_{i \in I \setminus I^*} f(M_i)$ is a finite set. Since the sequence $f(a_{\nu})$ is strictly decreasing we may assume that

$$(f(a_0), f_*) \cap C_X f = \emptyset.$$

To each M_i , $i \in I^*$, we can associate a semialgebraic curve $\Gamma_i := \Gamma_{M_i}$ which is a talweg of f in M_i . Set

 $\Gamma := \bigcup_{i \in I^*} \Gamma_i.$

Recall that, by Step 2.,

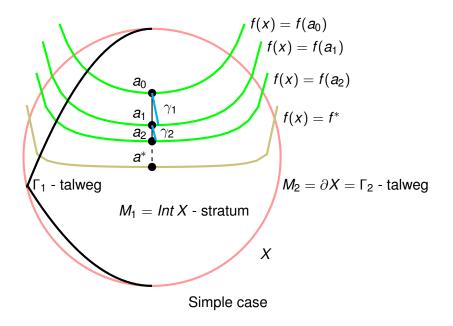
 $a_{\nu+1}$ is the point closest to a_{ν} on the fiber $f^{-1}(f(a_{\nu+1})) \cap X$. To estimate $|a_{\nu+1} - a_{\nu}|$ we will construct a continuous curve $\gamma_{\nu} : [t_{\nu}, t_{\nu+1}] \to X$ such that $\gamma_{\nu}(t_{\nu}) = a_{\nu}$ and $f(\gamma_{\nu}(t_{\nu+1})) = f(a_{\nu+1})$. By Step 2., we will then have

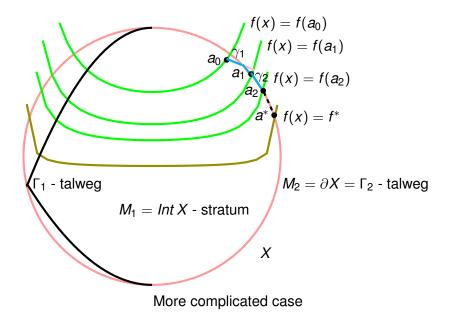
 $|a_{\nu+1}-a_{\nu}| \leq \text{length}(\gamma_{\nu}).$

The curve γ_{ν} will be a piecewise trajectory of $-\nabla_{M_i} f$ (more precisely, of $-\nabla_{M_i} f/|\nabla_{M_i} f|$).

Hence, by the Comparison Principle,

 $|a_{\nu+1} - a_{\nu}| \leq \text{length}(\gamma_{\nu}) \leq \text{length}\{\Gamma \cap f^{-1}(f(a_{\nu+1}), f(a_{\nu}))\}.$





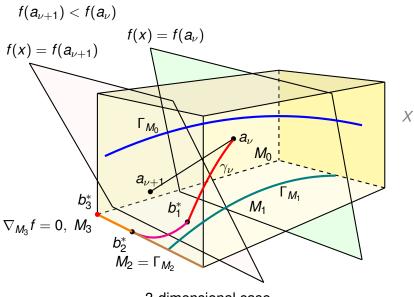
Recall thet Γ , being a bounded semialgebraic curve, has finite length; therefore

$$\sum_{\nu=0}^{\infty} |a_{\nu+1} - a_{\nu}| \leq \text{length}(\Gamma \cap f^{-1}(f_*, f(a_0))) < \infty.$$

So the series $\sum_{\nu=0}^{\infty} |a_{\nu+1} - a_{\nu}|$ is convergent, which implies that $a^* = \lim_{\nu \to \infty} a_{\nu}$ exists.

To complete the proof it is sufficient to construct the curves γ_{ν} .

We obtain this by using of Comparison Principle.



3-dimensional case

I used the example by Florian Lesaint http://creativecommons.org/licences/by/3.0

Krzysztof Kurdyka, Stanisław Spodzieja ()

Convexifying positive polynomials

Let *f* be an analytic function in an nghb. of \overline{U} where $U \subset \mathbb{R}^n$ is open and bounded. Let $\gamma(t)$ be a trajectory of ∇f starting at some point of *U*. By the Łojasiewicz gradient inequality either $\gamma(t)$ leaves *U* or it has a limit $\gamma^* = \lim_{t\to\infty} \gamma(t) \in U$. Clearly $\nabla(\gamma^*) = 0$.

Gradient Conjecture of R. Thom 70's

$$\lim_{\nu \to \infty} \frac{\gamma^* - \gamma(t)}{|\gamma^* - \gamma(t)|}$$

exists.

Answered affirmatively by KK, T. Mostowski, A. Parusiński in 2000.

Discrete Thom's Gradient Conjecture

Let $X \subset \mathbb{R}^n$ be a compact convex semialgebraic set and $f : \mathbb{R}^n \to \mathbb{R}$ a polynomial positive on *X*. Choose an arbitrary point $a_0 \in X$, and by induction set

 $a_{\nu} := \operatorname{argmin}_{X} \varphi_{N, a_{\nu-1}}.$

We have proved that

$$a^* = \lim_{
u o \infty} a_
u$$

exists and $a^* \in \Sigma_X f$.

Conjecture

$$\lim_{\nu \to \infty} \frac{\textit{a}^* - \textit{a}_\nu}{|\textit{a}^* - \textit{a}_\nu|}$$

exists.

There is some numerical evidence supporting this conjecture.

Happy Birthday Bernard Sto Lat !!! we wish you (at least) 100 years