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 We prove that if f is a positive C? function on a convex compact set
X C R" then
on = FO)(1 + X[V

is strongly convex for N large enough.
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» We prove that if f is a positive C? function on a convex compact set
X C R" then
on = FO)(1 + X[V

is strongly convex for N large enough.
e For f polynomial we give an explicit estimate for N, which depends
on the size of the coefficients of f and on the lower bound of f on X.
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» We prove that if f is a positive C? function on a convex compact set
X C R" then
on = FO)(1 + X[V

is strongly convex for N large enough.

e For f polynomial we give an explicit estimate for N, which depends
on the size of the coefficients of f and on the lower bound of f on X.

¢ Application: an algorithm which for a given polynomial f on a convex
compact semialgebraic set X produces a sequence (starting from an
arbitrary point in X) which converges to a (lower) critical point of f on
X. The convergence is based on the method of talweg which is a
generalization of the Lojasiewicz gradient inequality

[V = |7,

with p < 1 for f analytic in a ngbh. of 0 € R", f(0) = 0.
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We denote by R[x] or R[x1, ..., Xp] the ring of polynomials in
x = (X1, ..., Xn) with coefficients in R.
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We denote by R[x] or R[x1, ..., Xp] the ring of polynomials in

x = (X1, ..., Xn) with coefficients in R.

A set X C R"is called semialgebraic if it is a finite union of sets of the
form

{x eR":g1(x) >0,...,gi(x) > 0,g541(x) > 0,...,gr(x) > 0},

where g1, ..., gr € R[x].
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Convexifying

The aim of the lecture is convexification of polynomials.

Let X be a convex closed semialgebraic subset of R”
and let f be a polynomial which is positive on X.
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Convexifying

The aim of the lecture is convexification of polynomials.

Let X be a convex closed semialgebraic subset of R”
and let f be a polynomial which is positive on X.

We give necessary and sulfficient conditions for the existence of an
exponent N € N such that

(1 + |x|?)Nf(x) is a strongly convex function on X.
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Convexifying

The aim of the lecture is convexification of polynomials.

Let X be a convex closed semialgebraic subset of R”
and let f be a polynomial which is positive on X.

We give necessary and sulfficient conditions for the existence of an
exponent N € N such that

(1 + |x|?)Nf(x) is a strongly convex function on X.
A C' function g : X — R is called p-strongly convex if
ay) = 9(x) + {y — x,Vg(x)) + gly —x|? forx,y € X,

where 1 > 0 and (-, -) is the standard scalar product.
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The key point in further considerations is the following lemma.

Lemma (1)

Let f € R[t], and let f be positive on a closed interval | C R.
Then there exists Ny € N such that for any N > Ny the polynomial

pn(t) = (1 + 2)NE(2)
is strongly convex on |I.
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The key point in further considerations is the following lemma.

Lemma (1)

Let f € R[t], and let f be positive on a closed interval | C R.
Then there exists Ny € N such that for any N > Ny the polynomial

pn(t) = (1 + 2)NE(2)
is strongly convex on |I.

§

Remark (2)

Let f(t) = 3% yait?, ap,...,ag € R, a9 # 0, d = deg f.
The number Ny we may effectively estimate. Namely
NOI [N(m,K D)]+1

where N(m, K, D) := max{%+1g’D, (1+K )D+1 4 +2 (=240

2m

K=1 +2max1§,§d]a,/ao\1/i, m= mln{f(t) ctel},
() <D, |f"(t) <D for |t| <K.

b
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Convexifying polynomials on compact sets
Theorem ( 3, KS 2014)

Let f € R[x] be positive on a compact convex set X C R".
Then there exists Ny € N such that for any integer N > Ny the
polynomial

on(x) = (1+ X3 + -+ x3)Vf(x)
is strongly convex in X.

Krzysztof Kurdyka, Stanistaw Spodzieja () Convexifying positive polynomials Singular Landscapes 6/25



Convexifying polynomials on compact sets
Theorem ( 3, KS 2014)

Let f € R[x] be positive on a compact convex set X C R".
Then there exists Ny € N such that for any integer N > Ny the
polynomial

on(x) = (1+ X3 + -+ x3)Vf(x)
is strongly convex in X.

Sketch of the proof. Let R = max{|x| : x € X}, and let
A={(e, 8) eR"xR":(a, 8) =0, |a] < R, || =1},
where (-, -) denotes the standard scalar product on R". Let
Ya,8(t) == /1 + |28t + a.
Clearly the family of all v, s with (o, 3) € A parametrizes all affine lines
in R™ which intersects X. Since

oN © Ya,5(8) = (1 +[af)N(1 + 2)NF o v (1),
applying Lemma 1 we deduce the assertion. O
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Question. Whether convexity of a polynomial op, implies convexity of
all polynomials ppn for N > Np.
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Question. Whether convexity of a polynomial op, implies convexity of
all polynomials ppn for N > Np.

It turns out to be false, namely we have

Example

Let f(x) = 7x? — 22x + 19. The polynomial f is strictly positive on R.
Moreover,
on(1) =2V+1[2N2 — 8N + 7].

Then (1) =4, p5(1) = —8, nd ¢4(1) = 16. Hence, there exists a
closed interval / C R centered at 1 such that

@ ©{(x) > 0for x € I, s0 1 is strongly convex in /,

@ 5(x) < 0forx € 1, s0 o is strongly concave in /,

@ y5(x) > 0for x € I, s0 3 is strongly convex in /.
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f(x) =7x% —22x +19
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f(x) =7x% —22x +19

1 - convex
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f(x) =7x% —22x +19

(2 - ot convex

1 - convex
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f(x) =7x% —22x +19

(3 - convex

(2 - ot convex

19

1 - convex

Krzysztof Kurdyka, Stanistaw Spodzieja () Convexifying positive polynomials Singular Landscapes 8/25



A proximity algorithm for a polynomial on a convex set

Let f be a C' function in a neighborhood U of a closed set X ¢ R”.
Recall that a € X is a lower critical point of f on X if
(Vf(a),x —a) >0 forany x € X in a ngbh. of a.
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A proximity algorithm for a polynomial on a convex set

Let f be a C' function in a neighborhood U of a closed set X ¢ R”.
Recall that a € X is a lower critical point of f on X if

(Vf(a),x —a) >0 forany x € X in angbh. of a.
We denote by ¥ xf the set of lower critical points of f on X, and by
Yf:={x e U: Vf(x) =0} the set of ordinary critical points of f.
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A proximity algorithm for a polynomial on a convex set

Let f be a C' function in a neighborhood U of a closed set X ¢ R”.
Recall that a € X is a lower critical point of f on X if

(Vf(a),x —a) >0 forany x € X in a ngbh. of a.
We denote by ¥ xf the set of lower critical points of f on X, and by
Yf:={x e U: Vf(x) =0} the set of ordinary critical points of f.

Proposition (4)

If X ¢ R" is closed convex and f : R" — R is a C' function, then:
Q@ XNXfcXxf;
@ iff restricted to X has a local minimum at a, then a € ¥ xf;

© if M c X is a smooth manifold and a € M N X xf, then for any
z e TaM,
(Vi(a),z) =0;
© iff is a polynomial and X is semialgebraic, then ~xf is a
semialgebraic set and f(X xf) is a finite set.
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Let X ¢ R"” be a compact convex semialgebraic set.
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Let X ¢ R"” be a compact convex semialgebraic set.

Using a translation and a dilatation we may assume that X is
contained in a ball of radius R = 1/2 centered at zero.
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Let X c R" be a compact convex semialgebraic set.

Using a translation and a dilatation we may assume that X is
contained in a ball of radius R = 1/2 centered at zero.

Replacing f by f + ¢, where c is a constant large enough we may
assume that m = inf{f(x) : x € X} = D > 0, where D is a bound for
the absolute value of the first and the second directional derivatives of
f (along vectors of norm 1).
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Let X c R" be a compact convex semialgebraic set.

Using a translation and a dilatation we may assume that X is
contained in a ball of radius R = 1/2 centered at zero.

Replacing f by f + ¢, where c is a constant large enough we may
assume that m = inf{f(x) : x € X} = D > 0, where D is a bound for
the absolute value of the first and the second directional derivatives of
f (along vectors of norm 1).

Then we have N (m,2R, D) = 6. So, for N = 6 and some p > 0 the
function
pne(X) = (1+ [x = ¢P)N(x)

is u-strongly convex on X for any £ € X.
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Recall that any strictly convex, hence in particular any strongly convex,
function ¢ on a convex closed set X admits a unique point, denoted by
argminy ¢, at which ¢ attains its minimum on X.
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Recall that any strictly convex, hence in particular any strongly convex,
function ¢ on a convex closed set X admits a unique point, denoted by
argminy ¢, at which ¢ attains its minimum on X.

Choose an arbitrary point a; € X, and by induction set
(1.1) a, :=argminy oy a, -

The main corollary of the convexification method is

Theorem (A, KS 2015)

Let X C R" be a compact convex semialgebraic setand f : R" — R a
polynomial positive on X. Let a,, be the sequence defined by (1.1) with
ag € X. Then the limit

a = lim a,

V—r00

exists, and a* € ¥ xf.
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) ——

a=0 a a as a,=a*

ene(x) = (14 |x =€) F(x).
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PN.aO

a=0 a a as a,=a*

ene(x) = (14 |x =€) F(x).
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PN.aO

7:N.61

Krzysztof Kurdyka, Stanistaw Spodzieja () Convexifying positive polynomials Singular Landscapes



PN.aO

7:N.61
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PN.aO

7:N.61
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Key points in the proof of Theorem A.

Step 1. Assuming that a* = lim,_, . a, exists, we prove that a* € ¥ xf.
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Key points in the proof of Theorem A.
Step 1. Assuming that a* = lim,_, . a, exists, we prove that a* € ¥ xf.
The main difficulty is to prove that lim,_, . a, exists.

Step 2. From the definition of py ¢ we obtain: for any v € N we have

\a, .1 — a,| =dist(a,, f(f(a,+1)) N X).

Singular Landscapes 13/25
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Key points in the proof of Theorem A.

Step 1. Assuming that a* = lim,_, . a, exists, we prove that a* € ¥ xf.

The main difficulty is to prove that lim,_, . a, exists.

Step 2. From the definition of py ¢ we obtain: for any v € N we have
\a, .1 — a,| =dist(a,, f(f(a,+1)) N X).

Step 3. From Theorem 3 we obtain: for any » € N we have

f(a) ~ 4la,1 — af?
(1 + |au+1 - al/|2)N '

f(au+1 ) <

In particular the sequence f(a,) is decreasing.
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Step 4. A key point in the proof is the use of the Comparison Principle
due to D. D’Acunto and K. K (2006).

Let f: R" — R be a polynomial and let M C R"” be a smooth bounded
semialgebraic set. Let Vf(x) denote the gradient of f with respect to
the standard Euclidean scalar product, and

Vuf(x) - the projection of V£(x) on T,M, the tangent space to M at x.

Let 'y C M be a semialgebraic curve meeting each level set of f and
such that for every point y € I we have

IVuf(y)| < |[Vuf(x)| forall x € f~1(f(y)).

By standard arguments (semialgebraic choice) such a curve always
exists; it is called a talweg or a ridge-valley line of f in X.

Lemma (Comparison Principle)

For every pair of values a < b taken by f, the length of any trajectory of
VT lying in f~1((a, b)) N M is bounded by the length of Ty, N f~1((a, b)).
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To prove that lim,_, a, exists recall first that by Step 3. we have

f(a,) > f(ay+1) > --- > f.:= lim f(a,).

V—00

By Proposition 5 the set f(Xxf) is finite, so we may assume that either
the sequence f(a,) is eventually constant, or

(f(ay), f)Nf(Xxf) =0 for v large enough.

Clearly in the first case, by Step 3., also the sequence a, is eventually
constant. So we assume from now on that the sequence f(a,) is
strictly decreasing and

(f(ao), f.) N f(Xxf) = 0.
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The set X is semialgebraic, so there exists a stratification
X=JMm,
icl

i.e., a finite disjoint union of connected smooth semialgebraic sets,
called strata.

Moreover M, \ M; is a union of some of the M;’s of dimension smaller
than dim M;.

We can refine this stratification in such a way that f is of constant rank
oneach M;, i € I;then

our polynomial f restricted to M; is either a constant or a submersion.
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Let I* = {ic I: rankf|y, = 1}.
Note that Cxf = U;cp - f(M;) is a finite set. Since the sequence f(a,)
is strictly decreasing we may assume that

(f(ao),£.) N Cxf = 0.

To each M;, i € I", we can associate a semialgebraic curve I'; := 'y,
which is a talweg of f in M;. Set

r=_r.

iel*
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Recall that, by Step 2.,
a,, 1 is the point closest to a, on the fiber f~'(f(a, 1)) N X.
To estimate |a, .1 — a,| we will construct a continuous curve
Yo [t tyss] = X such that 7,(t,) = &, and f(3 (t,11)) = f(as1).
By Step 2., we will then have

‘31,4_1 - azl| < Iength(%/)'

The curve v, will be a piecewise trajectory of —Vy, f (more precisely, of

Hence, by the Comparison Principle,

|41 — a| < length(v,) < length{T N F~"(f(a,+1), f(a,))}.
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f(x) = f(ao)
f(x) = f(ay)

f(x) = f(a)

f(x)=f*

M, = 90X =T, - talweg
My = Int X - stratum

X

Simple case
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f(x) = f(ao)
/ f(x) = f(ay)

1 - talweg M, = 90X =T, - talweg

My = Int X - stratum

X

More complicated case
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Recall thet I, being a bounded semialgebraic curve, has finite length;
therefore

> a1 — ay| < length(T N (£, f(ap))) < oo.

v=0
So the series .7y |a,+1 — a,| is convergent, which implies that
a* =lim,_ a, exists.
To complete the proof it is sufficient to construct the curves ~,.

We obtain this by using of Comparison Principle.
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3-dimensional case

| used the example by Florian Lesaint  http://creativecommons.org/licences/by/3.0
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Let f be an analytic function in an nghb. of U where U c R” is open
and bounded. Let ~(t) be a trajectory of Vf starting at some point of
U. By the tojasiewicz gradient inequality either ~(t) leaves U or it has
a limit v* = lim;_,o 7(t) € U. Clearly V(v*) = 0.

Gradient Conjecture of R. Thom 70’s

lim =)
v—oo [y* —(1)]

exists.
Answered affirmatively by KK, T. Mostowski, A. Parusinski in 2000.
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Discrete Thom’s Gradient Conjecture
Let X C R"” be a compact convex semialgebraic setand f : R” — R a
polynomial positive on X. Choose an arbitrary point a; € X, and by
induction set

a, ;== argminy oy a, ;-

We have proved that

a = Ilim a,
V—00

exists and a* € ¥ xf.
Conjecture

. a —a

lim Y

v—oo |@* — @y
exists.

There is some numerical evidence supporting this conjecture.
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Happy Birthday Bernard

Sto Lat !l!
we wish you (at least) 100 years
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