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Setting

Let X be our ambient variety (assumed smooth or with mild singularities).
We work over k = k , with char(k) = 0. Assume dim(X ) ≥ 2.

Let Z ⊂ X be defined by some IZ ⊂ OX . We want to study the
singularities of the pair (X , qZ ), where q ∈ Q≥0 (or q ∈ R≥0).

The invariant that we will discuss is obtained by considering all divisorial
valuations of k(X ). Such a valuation corresponds to a prime divisor
E ⊂ Y , where Y normal, with a birational morphism Y → X . Get
valuation ordE on k(X ) = k(Y ). Its center is cX (E ) := f (E ).

Example. If x ∈ X smooth point and E is the exceptional divisor on
Blx(X ), then ordE = ordx , where ordx(f ) = max{j | f ∈ I jx}.
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The log discrepancy

Given a pair (X , qZ ) as above and ordE , one measures the singularities of
the pair with respect to this valuation by considering

q · ordE (Z ) := q ·min{ordE (h) | h ∈ IZ}.
These numbers have to be normalized. This is done using the log
discrepancy function.

Suppose that X is smooth and E is a prime divisor on Y , with f : Y → X
birational. May assume Y is smooth (replace Y by Ysm). We have a
morphism of vector bundles

f ∗(ΩX )→ ΩY

of the same rank, which drops rank along a divisor (defined by the
determinant of the map), denoted by KY /X .
The log discrepancy of ordE (with respect to X ) is

AX (ordE ) := ordE (KY /X ) + 1.
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The log discrepancy, cont’d

The log discrepancy measures ”how far the divisor lies over X”.
Example. If W ↪→ X smooth subvariety and E is the exceptional divisor
on BlW (X ), then AX (ordE ) = codimX (W ).

Remark. If Y ′ → Y → X are birational morphisms of smooth varieties
and E is a prime divisor on Y ′, then

AX (ordE ) = AY (ordE ) + ordE (KY /X ).

Since X is smooth, every divisor E can be obtained by a sequence of
smooth blow-ups. By the example and remark, AX (ordE ) is determined by
the codimensions of the centers and by which proper transforms of
previous exceptional divisors contain the center at each step.
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Remarks on the singular case

When X is singular, there are several possible definitions. In birational
geometry the most useful is the following:

Assume that X is normal, hence KX makes sense as a Weil divisor.
Assume also that X is Q-Gorenstein, that is, some mKX is Cartier, m ≥ 1.

One can still define KY /X when f : Y → X is birational, with Y smooth,
as the unique divisor supported on Exc(f ), linearly equivalent to
KY − f ∗(KX ) (note: it might not be effective). Then define AX (ordE ) as
before.

However: meaning is somewhat more subtle.
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Minimal log discrepancy

Fix a pair (X , qZ ) and a closed subset W ⊆ X (most of the time will take
W to be a point). The minimal log discrepancy of (X , qZ ) with respect to
W is

mldW (X , qZ ) := inf
cX (E)⊆W

{AX (ordE )− q · ordE (Z )}.

Note: ”good singularities” of (X , qZ ) ↔ small ordE (Z )↔ large mld.

Basic facts:
• If mldW (X , qZ ) < 0, then mldW (X , qZ ) = −∞. Otherwise, one says
that (X , qZ ) is log canonical (in a neighborhood of W ).

• If (X , qZ ) log canonical and f : Y → X is a monomialization of IZ such
that f −1(W ) is a divisor, then the infimum is a minimum over the divisors
on Y .
Say: a divisor E computes mldW (X , qZ ) if cX (E ) ⊆W and

mldW (X , qZ ) = AX (ordE )− q · ordE (Z ).
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Comparison with the log canonical threshold

It is instructive to compare mldW (X , qZ ) to another invariant of the pair
(X ,Z ), the log canonical threshold lct(X ,Z ). This is defined as

lct(X ,Z ) := max{t ≥ 0 | (X , tZ ) is log canonical}

= min
E

AX (ordE )

ordE (Z )
.

In spite of the similarity in the definition, the minimal log discrepancy
turns out to be a much more subtle invariant than the log canonical
threshold. In particular, the analogues of the questions we will see later are
now well-understood for log canonical thresholds.

This difference is analogous to that between linear programming and
integer programming.
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Example 1: the monomial case

Let Z ↪→ X = An defined by monomial ideal I . Let PI be the Newton
polyhedron

PI = conv{u ∈ Zn
≥0 | xu ∈ I}.

If Eu is the toric divisor corresponding to u ∈ Zn
≥0 (primitive), then

AX (ordEu) = u1 + . . .+ un.

It follows that (An, qZ ) is log canonical if and only if (1, . . . , 1) ∈ q · PI .
For such q, we have

mld0(An, qZ ) = min{u1 + . . .+ un − q · min
v∈PI

〈u, v〉} | u ∈ Zn
>0}.
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Example 2: a cone with isolated singularities

Let Z = V (f ) ↪→ An, with f homogeneous, such that Z has an isolated
singularity at 0.

Bl0An → An is a monomialization of f , hence

(An, qZ ) is log canonical iff q ≤ min{1, n/d}.

If this is the case, then

mld0(An, qZ ) = n − qd .
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Two open questions

Semicontinuity conjecture (Ambro). Given (X , qZ ), the function
X 3 x → mldx(X , qZ ) is lower semicontinuous, that is, all sets
{x ∈ X | mldx(X , qZ ) ≥ t} are open.

ACC conjecture (Shokurov). Fix a DCC subset Γ of R≥0. If n is fixed,
then the set

{mldx(X , qZ ) | x ∈ X ,dim(X ) ≤ n, q ∈ Γ}

satisfies ACC.

The interest in these comes from the following
Theorem (Shokurov). If the above conjectures hold, then we have
Termination of Flips in the Minimal Model Program.
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A valuation-theoretic version of semicontinuity

Using Ambro’s work, one can reduce the Semicontinuity Conjecture to the
following purely valuation-theoretic conjecture. Here a divisorial valuation
is a valuation of the form q · ordE , with q ∈ Z>0.

Semicontinuity conjecture, strong version. Given X affine and two closed
irreducible subsets T1 ⊆ T2 ( X , if v2 is a divisorial valuation of k(X ) with
cX (v2) = T2, then there is a divisorial valuation v1 of k(X ) such that:

i) cX (v1) = T1.

ii) v1(f ) ≥ v2(f ) for every f ∈ O(X ).

iii) AX (v1) ≤ AX (v2) + codimT2(T1).

This is known when
• X is toric (Ambro)
• X is smooth (Ein, M-, Yasuda)
• dim(X ) = 2 (in general, can reduce to X having terminal singularities)
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Outline of proof in the smooth case

The proof uses the description of divisorial valuations on smooth varieties
via arcs. For the sake of concreteness, say X = An. Consider the space of
arcs of X :

X∞ = Hom(Spec k[[t]],X ) = k[[t]]n.

A cylinder C in X∞ is the inverse image of a locally closed subset S of
(k[[t]]/(tm+1))n via the obvious projection map. We put

codimX∞C := codimXmS .

For every C ⊆ X∞ and f ∈ O(X ), we put

ordC (f ) := min
γ∈C

ordtγ
∗(f ) ∈ Z≥0 ∪ {∞}.

The following result gives an approach to divisorial valuations via cylinders
in X∞.
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Outline of proof in the smooth case, cont’d

Theorem (Ein, M-, Lazarsfeld). Let X be a smooth variety.

1) If C is an irreducible, closed cylinder in X∞, then ordC extends to a
divisorial valuation of k(X ), whose center is the closure of the image of C
in X .

2) Given any divisorial valuation v of k(X ), there is a unique maximal
irreducible closed cylinder C (v) such that v = ordC(v).

3) We have codimX∞C (v) = AX (v).

What is C (v): say v = q · ordE , where E smooth divisor on smooth Y ,
with f : Y → X birational. We have

C (v) = f∞(Cont≥m(E )).
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Outline of proof in the smooth case, cont’d

Goal: explain how the previous result implies the valuation-theoretic
version of semicontinuity when X is smooth.
Recall that v2 is a divisorial valuation with center T2 and T1 is an
irreducible closed subset of T2. Let π : X∞ → X be the canonical
projection and consider an irreducible component

C ⊆ C (v2) ∩ π−1(T1)

that dominates T1. Then v1 = ordC satisfies our requirements:

• C dominates T1 implies cX (v1) = T1.
• C ⊆ C (v2) implies v1 = ordC ≥ ordC(v2) = v2.
• AX (v1) = codimX∞(C (v1)) ≤ codimX∞(C ) ≤
codimX∞(C (v2)) + codimT2(T1) = AX (v2) + codimT2(T1).
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A boundedness question on divisors computing mld’s

We now turn to the ACC conjecture. We will be interested in a special
case, when the ambient variety is fixed (this is sufficient, for example, if we
are only interested in the case of ambient smooth varieties). What follows
is joint work with Yusuke Nakamura.

The following question is motivated by the above problem:
Question (Nakamura). Let X and x ∈ X be fixed, and let also q ∈ R>0

be fixed. Is there a fixed M > 0 such that for every subscheme Z ↪→ X
with (X , qZ ) log canonical, there is a divisor E over X such that

a) E computes mldx(X , qZ ), and

b) AX (ordE ) ≤ M?

Remark. It is easy to see that if this has a positive answer, then for every
DCC subset Γ ⊆ R≥0, the set

{mldx(X , qZ ) | q ∈ Γ,Z ↪→ X}

satisfies ACC.
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Mircea Mustaţă (University of Michigan) Some questions on minimal log discrepancies Aussois June 25, 2015 15 / 24



A partial result

Theorem (M-, Nakamura). If X , x ∈ X , and q ∈ R>0 are fixed, then
there a fixed M > 0 such that for every subscheme Z ↪→ X with (X , qZ )
log canonical, there is a divisor E over X such that

a) E computes mldx(X , qZ ).

b) ordE (Ix) ≤ M.

Remark 1: Suppose that X is smooth and we describe E via a sequence
of smooth blow-ups. To give a positive answer to the question: need to
bound the length of this sequence. The theorem says that all but a
bounded number of the blow-ups in the sequence are “free blow-ups” (the
center is contained in only one proper transform of the previous exc.
divisors).
Remark 2: AX (ordEm) ≥ ordEm(Ix) · lct(X , {x}), hence the assertion in
the theorem would follow from a positive answer to the question.
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Sketch of proof

The proof uses the generic limit construction (de Fernex, M-; Kollár).

Say we have a sequence of subschemes Zm ↪→ X such that each (X , qZm)
is log canonical and no matter how we choose divisors Em computing
mldx(X , qZm), we have limm→∞ ordEm(Ix) =∞.
For simplicity: say X = An

k , x = 0, and Zm is defined by fm ∈ k[x1, . . . , xn].

By “putting together the coefficients of the fm”, we get a formal power
series f ∈ K [[x1, . . . , xn]], where K/k is a suitable field extension
(obtained by a non-standard extension). This has the property that after
passing to a subsequence, if X ′ = SpecK [[x1, . . . , xn]] and Z ′ is defined by
f , then we may assume

lct0(X ′, qZ ′) = lim
m→∞

lct0(X , qZm).

By assumption q ≤ lct0(X ,Zm) for every m ≥ 1, hence q ≤ lct0(X ′,Z ′).
There are two cases to consider.
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Sketch of proof, cont’d

Case 1: mld0(X ′, qZ ′) = 0. If E ′ is a divisor over 0 ∈ X ′ computing this
mld, after passing to a subsequence, this comes from a sequence of
divisors Em over 0 ∈ X such that

AX (ordEm) = AX ′(ordE ′)

ordEm(I0) = ordE ′(I0) and ordEm(fm) = ordE ′(f ′).

This is non-trivial: it uses the adic semicontinuity property of log canonical
thresholds. One sees that in this case each Em computes
mld0(X , qZm) = 0, while {ordEm(fm)} is bounded, a contradiction.
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Sketch of proof, cont’d

Case 2: mld0(X ′, qZ ′) > 0. In this case there is δ > 0 such that
lct0(X ′, qZ ′ + δ{0}) = 1.

Key point: after passing to a subsequence, we may assume that

lct0(X , qZm + δ{0}) ≥ 1 for all m.

Indeed, we may assume that

lim
m→∞

lct0(X , qZm + δ{0}) = 1

and the assertion follows from ACC for log canonical thresholds.
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Sketch of proof, cont’d

Let’s choose now for each m a divisor Em that computes mld0(X , qZm).
By the key point, we have

AX (ordEm) ≥ q · ordEm(Zm) + δ · ordEm(I0).

By choice of Em, we have

AX (ordEm)− q · ordEm(Zm) = mld0(X , qZm).

Combining these, we get

ordEm(I0) ≤ mld0(X , qZm)

δ
≤ mld0(X )

δ
.

The right-hand side is independent of m and this completes the proof of
the theorem.
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The boundedness question: the monomial case

Nakamura’s question has a positive answer for monomial subschemes of
X = An:
Suppose that Zm = V (Im), with m ≥ 1, are such that each
Im ⊆ k[x1, . . . , xn] is a monomial ideal with (An, qZm) log canonical such
that no matter how we choose Em that computes mld0(An, qZm), we have
limm→∞ AX (ordEm) =∞. For simplicity, assume q ∈ Q. One can easily
reduce to the case when all Im are (x1, . . . , xn)-primary

By a result of Maclagan, after restricting to a subset and reordering, we
may assume that

I1 ⊇ I2 ⊇ . . . , hence

mld0(An, qZ1) ≥ mld0(An, qZ2) ≥ . . .
All these mld’s lie in 1

r Z≥0 for some integer r ≥ 1, hence they stabilize for
m ≥ m0.
We now see that if E computes mld0(An, qZm0), it also computes
mld0(An, qZm) for m ≥ m0, a contradiction.
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The boundedness question: the surface case

Nakamura’s question has a positive answer when X is a smooth surface:

Suppose that E is a divisor computing mldx(X , qZ ) with AX (ordE )
minimal. Say Z = Z (f ). Consider the corresponding sequence of point
blow-ups:

XN
πN−→ XN−1 . . . −→ X2

π2−→ X1
π1−→ X0 = X ,

with Xi+1 = Blxi (Xi ), with exceptional divisor Ei , where xi = cXi
(E ). We

have E = EN and need to bound N in terms of q.

For every i with 1 ≤ i ≤ N − 1, we put pi = q · ordxi (Z̃ ), where Z̃ stands
for the strict transform of Z . Note that we have

2 ≥ p0 ≥ p1 ≥ . . . ≥ pN−1 > 0,

where the first inequality comes from the fact that (X , qZ ) is log
canonical. The pi lie in a discrete set only depending on q.
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blow-ups:

XN
πN−→ XN−1 . . . −→ X2

π2−→ X1
π1−→ X0 = X ,

with Xi+1 = Blxi (Xi ), with exceptional divisor Ei , where xi = cXi
(E ). We

have E = EN and need to bound N in terms of q.

For every i with 1 ≤ i ≤ N − 1, we put pi = q · ordxi (Z̃ ), where Z̃ stands
for the strict transform of Z . Note that we have

2 ≥ p0 ≥ p1 ≥ . . . ≥ pN−1 > 0,

where the first inequality comes from the fact that (X , qZ ) is log
canonical. The pi lie in a discrete set only depending on q.
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The boundedness question: the surface case ,cont’d

Let τi := AX (ordEi
)− q · ordEi

(Z ). For each blow-up Xi+1 → Xi we have
two cases:

Case 1: xi only lies on Ei (“free blow-up”). In this case

τi+1 = τi + 1− pi .

Case 2. xi lies on Ei and on the strict transform of Ej , with j < i . In this
case

τi+1 = τi + τj − pi .

By the theorem, the number of blow-ups in Case 2 is bounded. Therefore
we only need to show that also the number of blow-ups in Case 1 is
bounded.

Important point: if pi < 1 and we are in Case 1, then τi+1 > τi . In fact,
there is ε > 0 (only depending on q), such that if this is the case, then
τi+1 > τi + ε.
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The boundedness question: the surface case ,cont’d

(1) One can show that if pi = pi+1 = 1, then mldx(X , qZ ) is computed by
Ei+1, hence i = N − 1.

(2) Using the fact that (X , qZ ) is log canonical, we can bound the number
of pi > 1, hence the number of those ≥ 1. Note that if Xi+1 → Xi is in
Case 1, then we still have τi+1 − τi ≥ −1.

(3) Note also that in Case 2, we always have τi+1 − τi ≥ −pi ≥ −2. Since
we have only finitely many steps in Case 2 or with pi ≥ 1 and otherwise
τi+1 > τi + ε, and since

τN = mldx(X , qZ ) ≤ mldx(X ) = 2,

we conclude that N is bounded.

Mircea Mustaţă (University of Michigan) Some questions on minimal log discrepancies Aussois June 25, 2015 24 / 24



The boundedness question: the surface case ,cont’d

(1) One can show that if pi = pi+1 = 1, then mldx(X , qZ ) is computed by
Ei+1, hence i = N − 1.

(2) Using the fact that (X , qZ ) is log canonical, we can bound the number
of pi > 1, hence the number of those ≥ 1. Note that if Xi+1 → Xi is in
Case 1, then we still have τi+1 − τi ≥ −1.

(3) Note also that in Case 2, we always have τi+1 − τi ≥ −pi ≥ −2. Since
we have only finitely many steps in Case 2 or with pi ≥ 1 and otherwise
τi+1 > τi + ε, and since

τN = mldx(X , qZ ) ≤ mldx(X ) = 2,

we conclude that N is bounded.
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