"Germs of singular holomorphic two dimensional foliations"

Abstract: A holomorphic singular foliation \mathcal{F} of codimension q on a polydisc P of \mathbb{C}^n (where $n \geq 2$ and 0 < q < n), with singular set $sing(\mathcal{F})$ of codimension ≥ 2 , can always be defined by a holomorphic integrable q-form on P, say η , with the property that for any $z \in P \setminus sing(\mathcal{F})$ we have $\eta(z) \neq 0$ and

(1)
$$T_z \mathcal{F} = \{ v \in T_z P \mid i_v \eta(z) = 0 \} ,$$

where T_z denotes the tangent space at z and i the interior product. In particular, a two dimensional foliation \mathcal{F} on P, can be defined by a (n-2)-form η satisfying (1). When $d\eta \not\equiv 0$ we can define a 1-dimensional singular foliation on P by the vector field X given by

(2)
$$d\eta = i_X dz_1 \wedge ... \wedge dz_n .$$

The integrability condition implies that $i_X \eta = 0$. When $cod_{\mathbb{C}}(sing(X)) \geq 3$ then the division theorem implies that there exists another holomorphic vector field Y on P such that

(3)
$$\eta = i_Y i_X dz_1 \wedge ... \wedge dz_n$$

and \mathcal{F} is defined by the involutive system $\langle X,Y\rangle$. The situation that we consider in our main results is when X has an isolated singularity at $0 \in P \subset \mathbb{C}^n$. In this case, necessarily Y(0) = 0. We have essentially two results:

Theorem 1. Suppose that DX(0) is semi-simple with eigenvalues $\lambda_1, ..., \lambda_n$ such that $\lambda_j \neq 0$, $\forall 1 \leq j \leq n$. Assume also that there exists $\tau \in \mathbb{C}$ such that the linear part of $Z := Y + \tau. X$, DZ(0), has eigenvalues $\mu_1, ..., \mu_n$ satisfying Brjuno's condition of small denominators and also $\lambda_i. \mu_j - \lambda_j. \mu_i \neq 0$ for all $1 \leq i < j \leq n$. Then \mathcal{F} can be defined in some neighborhood of $0 \in \mathbb{C}^n$ by a local action of \mathbb{C}^2 generated by two vector fields S and T, which in some local holomorphic coordinate system around 0, say $w = (w_1, ..., w_n)$, are $S = \sum_j \lambda_j w_j \partial_{w_j}$ and $T = \sum_j \mu_j w_j \partial_{w_j}$.

Theorem 2. Assume that $0 \in \mathbb{C}^n$ is an isolated singularity of X and that DX(0) is nilpotent. Then there exists a coordinate system around 0, say $w = (w_1, ..., w_n)$, where η is polynomial. More precisely, in the coordinate system w we can write $\eta = i_L i_{\tilde{X}} dw_1 \wedge ... \wedge dw_n$, where L is linear with eigenvalues $k_1, ..., k_n \in \mathbb{N}$ and \tilde{X} satisfies

$$[L, \tilde{X}] = \ell. \tilde{X} ,$$

where $\ell \in \mathbb{N}$. In particular, \mathcal{F} can be defined by a local action of the affine group in a soma neighborhood of $0 \in \mathbb{C}^n$.

Remark 1. Theorem 2 in the case n=3 was proved originally in [LN]. We would like to observe that in [LN] we prove that the linear vector field L is necessarily semi-simple. However, for $n \geq 4$ we could not prove this fact, although we think it is true in general. In fact, we have proven that under a non-resonant condition that depends only on X and is generic then L is semi-simple.

If I have time, I will give an application of theorem 2 to the theory of irreducible components of two dimensional foliations on \mathbb{P}^n , $n \geq 4$.

1