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Objective

I Study the large time behaviour of solutions of the Cauchy problem in an
in�nite dimensional real Hilbert space H:{

∂u(t,x)
∂t

= L u(t, x) + f (x ,∇u(t, x)G), ∀(t, x) ∈ R+ × H,
u(0, x) = g(x), ∀x ∈ H,

(1)

I

(L h)(x) =
1

2
Tr(GG∗∇2h(x))+ < Ax + F (x),∇h(x) > .

is the formal generator of the Kolmogorov semigroup Pt of an H-valued
random process solution of the following Ornstein-Uhlenbeck stochastic
di�erential equation:{

dXt = (AXt + F (X x
t ))dt + GdWt , t ∈ R+,

X0 = x , x ∈ H,

I W is a Wiener process with values in another real Hilbert space Ξ,
assumed to be separable.
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Method

First, let (v , λ) be the solution of the ergodic PDE:

L v + f (x ,∇v(x)G)− λ = 0, ∀x ∈ H.

Then we have the following probabilistic representation. Let (Y T ,x ,ZT ,x) be
solution of the BSDE:{

dY T ,x
s = −f (X x

s ,Z
T ,x
s )ds + ZT ,x

s dWs

Y T ,x
T = g(X x

T ),

and (Y ,Z , λ) be solution of the EBSDE:

dYs = −(f (X x
s ,Z

x
s )− λ)ds + Z x

s dWs .

Then {
Y T ,x
s = u(T − s,X x

s ),
Y x
s = v(X x

s ).
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Results

Deterministic

First behaviour u(T ,x)
T
− λ −→

T→+∞
0

Second behaviour u(T , x)− λT − v(x) −→
T→+∞

L

Third behaviour |u(T , x)− λT − v(x)− L| ≤ C(1 + |x |2+µ)e−η̂T

Probabilistic

First behaviour
Y
T,x
0
T
− λ −→

T→+∞
0

Second behaviour Y T ,x
0 − λT − Y x

0 −→
T→+∞

L

Third behaviour |Y T ,x
0 − λT − Y x

0 − L| ≤ C(1 + |x |2+µ)e−η̂T
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Some references

I 1997 : Namah, Roquejo�re, (periodic, �nite dimension, with speed of
convergence)

I 2001 : Barles and Souganidis, (periodic, �nite dimension)

I 2006 : Fujita, Ishii, Loreti, (�nite dimension, f (x , z) = H1(x) + H2(z), H2

Lipschitz and H1 locally Hölder)

I 2013 : Ichihara, Sheu (�nite dimension, quadratic and convex with respect
to z)
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Preliminaries : some results about a perturbed forward SDE

Xt = etAx +

∫ t

0

e(t−s)AF (s,Xs)ds +

∫ t

0

e(t−s)AGdWs , (2)

Hypothesis

1. A is an unbounded operator A : D(A) ⊂ H → H, with D(A) dense in H.
We assume that A is dissipative and generates a stable C0-semigroup{
etA
}
t≥0. By this we mean that there exist constants η > 0 and M > 0

such that

〈Ax , x〉 ≤ −η|x |2, ∀x ∈ D(A); |etA|L(H,H) ≤ Me−ηt , ∀t ≥ 0.

2. For all s > 0, esA is a Hilbert-Schmidt operator. Moreover
|esA|L2(H,H) ≤ Ms−γ and γ ∈ [0, 1/2).

3. F : R+ × H → H is bounded and measurable.

4. G is a bounded linear operator in L(Ξ,H).

5. G is invertible. We denote by G−1 its bounded inverse.
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Some results about a perturbed forward SDE

Lemma

Assume that Hypothesis 1 (only points (1.)-(4.)) hold and that F is bounded
and Lipschitz in x. Then for every p ∈ [2,∞), for every T > 0 there exists a
unique process X x ∈ LpP(Ω,C ([0,T ];H)) solution of (2). Moreover,

sup
0≤t<+∞

E|X x
t |p ≤ C(1 + |x |)p, (3)

for some constant C depending only on p, γ,M and supt≥0 supx∈H |F (t, x)|.
If F is only bounded and measurable, then the solution to equation 2 still exists
but in the martingale sense. By this we mean that there exists a new
F -Wiener process (Ŵ x)t≥0 with respect to a new probability measure P̂
(absolutely continuous with respect to P), and an F -adapted process X̂ x with

continuous trajectories for which (2) holds with W replaced by Ŵ . Moreover
(3) still holds (with respect to the new probability). Finally such a martingale
solution is unique in law.
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Some results about a perturbed forward SDE

Lemma (Basic Coupling Estimates)

Assume that Hypothesis above holds true and that F is a bounded and
Lipschitz function. Then there exist ĉ > 0 and η̂ > 0 such that for all
φ : H → R measurable with polynomial growth (i.e. ∃C , µ > 0 such that
∀x ∈ H, |φ(x)| ≤ C(1 + |x |µ)), ∀x , y ∈ H,

|Pt [φ](x)−Pt [φ](y)| ≤ ĉ(1 + |x |1+µ + |y |1+µ)e−η̂t . (4)

We stress the fact that ĉ and η̂ depend on F only through
supt≥0 supx∈H |F (t, x)|.

Corollary

Relation (4) can be extended to the case in which F is only bounded
measurable and for all t ≥ 0, there exists a uniformly bounded sequence of
Lipschitz functions in x (Fn(t, ·))n≥1 (i.e. ∀t ≥ 0, ∀n ∈ N, Fn(t, ·) is Lipschitz
and supn supt supx |Fn(t, x)| < +∞ ) such that

lim
n
Fn(t, x) = F (t, x), ∀t ≥ 0,∀x ∈ H.

Clearly in this case in the de�nition of Pt [φ] the mean value is taken with

respect to the new probability P̂.
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Some results about a perturbed forward SDE

Lemma

Let ζ, ζ′ : R+ × H → Ξ∗ such that for all s ≥ 0, ζ(s, ·) and ζ′(s, ·) are weakly*
continuous with polynomial growth. We de�ne

Υ(s, x) =

{
ψ(x,ζ(s,x))−ψ(x,ζ′(s,x))
|ζ(s,x)−ζ′(s,x)|2 (ζ(s, x)− ζ′(s, x))∗, if ζ(s, x) 6= ζ′(s, x),

0, if ζ(s, x) = ζ′(s, x).

There exists a uniformly bounded sequence of Lipschitz functions (Υn(s, ·))n≥1
(i.e. ∀n, Υn(s, ·) is Lipschitz and supn sups supx |Υn(s, x)| <∞) such that

lim
n

Υn(s, x) = Υ(s, x), ∀s ≥ 0, ∀x ∈ H.
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The BSDE and the EBSDE

BSDE

Y T ,x
t = g(X x

T ) +

∫ T

t

f (X x
s ,Z

T ,x
s )ds −

∫ T

t

ZT ,x
s dWs , t ∈ [0,T ]

EBSDE

Yt = YT +

∫ T

t

f (X x
s ,Z

x
s )− λds −

∫ T

t

Z x
s dWs , ∀T > 0, ∀t ∈ [0,T ]

We will assume the following assumptions.

Hypothesis

There exist l > 0, µ ≥ 0 such that the function f : H × Ξ∗ → R and ξT satisfy
:

1. F : H → H is a Lipschitz, bounded and belongs to the class G 1,

2. g(·) is continuous and have polynomial growth : for all x ∈ H,
|g(x)| ≤ C(1 + |x |µ),

3. ∀x ∈ H, ∀z , z ′ ∈ Ξ∗, |f (x , z)− f (x , z ′)| ≤ l |z − z ′|,
4. f (·, z) is continuous and ∀x ∈ H, |f (x , 0)| ≤ C(1 + |x |µ).
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First behaviour

Theorem

Assume that our hypothesis hold true. Then, ∀T > 0 :∣∣∣∣∣Y T ,x
0

T
− λ

∣∣∣∣∣ ≤ C(1 + |x |1+µ)

T
. (5)

In particular,

Y T ,x
0

T
−→

T→+∞
λ,

uniformly in any bounded set of H.

12 / 29



Sketch of the proof

∣∣∣∣∣Y T ,x
0

T
− λ

∣∣∣∣∣ ≤
∣∣∣∣∣Y T ,x

0 − Y x
0 − λT

T

∣∣∣∣∣+

∣∣∣∣Y x
0

T

∣∣∣∣ .
We have :

Y T ,x
0 − Y x

0 − λT = g(X x
T )− v(X x

T ) +

∫ T

0

(f (X x
s ,Z

T ,x
s )− f (X x

s ,Z
x
s ))ds

−
∫ T

0

(ZT ,x
s − Z x

s )dWs

= g(X x
T )− v(X x

T ) +

∫ T

0

(ZT ,x
s − Zs)β

T
s ds −

∫ T

0

(ZT ,x
s − Zs)dWs ,

where

βTs =

{
(f (Xx

s
,ZT,x

s
)−f (Xx

s
,Zx

s
))(ZT,x

s
−Zx

s
)∗

|ZT,x
s −Zx

s
|2

, if ZT ,x
s − Z x

s 6= 0

0, otherwise.
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Sketch of the proof

Taking the expectation with respect to QT we get

Y T ,x
0 − Y x

0 − λT = EQT

(g(X x
T )− v(X x

T )). (6)

So we have ∣∣∣∣∣Y T ,x
0 − Y x

0 − λT
T

∣∣∣∣∣ ≤ C
1 + EQT (

|X x
T |1+µ

)
T

.

The process (X x
t )t≥0 is the mild solution of{

dX x
t = AX x

t dt + F (X x
t )dt + GβTt 1t<Tdt + GdW̃T

t , t ∈ [0,T ],
X x
0 = x .
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Second and Third behaviour

Hypothesis

F ≡ 0.

Note that setting F ≡ 0 is not restrictive. Indeed we study{
∂u(t,x)
∂t

= L u(t, x) + f (x ,∇u(t, x)G), ∀(t, x) ∈ R+ × H,
u(0, x) = g(x), ∀x ∈ H.

Now remark that

〈Ax + F (x),∇u(t, x)〉+ f (x ,∇u(t, x)G) = 〈Ax ,∇u(t, x)〉+ f̃ (x ,∇u(t, x)G),

where f̃ (x , z) = f (x , z) + 〈F (x), zG−1〉 is a continuous function in x with
polynomial growth in x and Lipschitz in z .
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Second and Third behaviour

Theorem

Assume that our hypothesis hold true. Then there exists L ∈ R such that,

∀x ∈ H, Y T ,x
0 − λT − Y x

0 −→
T→+∞

L.

Furthermore the following speed of convergence holds

|Y T ,x
0 − λT − Y x

0 − L| ≤ C(1 + |x |2+µ)e−η̂T .
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Second and third behaviour, some notations

Let us �x T > 0 and let us consider the following BSDE in �nite horizon for an
unknown process (Y T ,t,x

s ,ZT ,t,x
s )s∈[t,T ] with values in R× Ξ∗:

Y T ,t,x
s = g(X t,x

T ) +

∫ T

s

f (X t,x
r ,ZT ,t,x

r )dr −
∫ T

s

ZT ,t,x
r dWr , ∀s ∈ [t,T ],

(7)

where (X t,x
s )s≥0 is the mild solution of

dXs = [AXs + F (Xs)]ds + GdWt , Xt = x

If t = 0, we use the following standard notations X x
s = X 0,x

s , Y T ,x
s := Y T ,0,x

s

and ZT ,x
s := ZT ,0,x

s .
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Sketch of the proof
We de�ne

uT (t, x) := Y T ,t,x
t

wT (t, x) := uT (t, x)− λ(T − t)− v(x).

Key property

uT (0, x) = uT+S(S , x)

=⇒ wT (0, x) = wT+S(S , x)

Lemma

Under the hypothesis of Theorem 2, there exist constant C > 0 and CT ′ such
that ∀x , y ∈ H, ∀T > 0,

|wT (0, x)| ≤ C(1 + |x |1+µ),

|∇xwT (0, x)| ≤ CT ′√
T ′

(1 + |x |1+µ), ∀0 < T ′ ≤ T ,

|wT (0, x)− wT (0, y)| ≤ C(1 + |x |2+µ + |y |2+µ)e−η̂T .
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First estimate of Lemma

|wT (0, x)| = |uT (0, x)− λT − v(x)|

= |Y T ,x
0 − Y x

0 − λT |

≤ C(1 + |x |1+µ). (8)
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Second estimate of Lemma

wT (s,X t,x
s ) = wT (T ,X t,x

T ) +

∫ T

s

(f (X t,x
r ,ZT ,t,x

r )− f (X t,x
r ,Z t,x

r ))dr

−
∫ T

s

(ZT ,t,x
r − Z t,x

r )dWr .

wT (s,X t,x
s ) = wT (T ′,X t,x

T ′ ) +

∫ T ′

s

(f (X t,x
r ,ZT ,t,x

r )− f (X t,x
r ,Z t,x

r ))dr

−
∫ T ′

s

(ZT ,t,x
r − Z t,x

r )dWr

= wT−T ′(0,X
t,x
T ′ ) +

∫ T ′

s

(f (X t,x
r ,ZT ,t,x

r − Z t,x
r + Z t,x

r )− f (X t,x
r ,Z t,x

r ))dr

−
∫ T ′

t

(ZT ,t,x
r − Z t,x

r )dWr ,
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Second estimate of Lemma

ZT ,t,x
s = ∇xuT (s,X t,x

s )G , and Z x
s = ∇xv(X t,x

s )G .

Then we easily obtain that

ZT ,t,x
r − Z t,x

r = ∇xwT (r ,X t,x
r )G .

Thus, applying the Bismut-Elworthy formula, we get ∀x , h ∈ H, ∀t < T ,

∇xwT (t, x)h = E
∫ T ′

t

[f
(
X t,x
s ,∇xwT (r ,X t,x

r )G + Z t,x
s

)
− f

(
X t,x
s ,Z t,x

s

)
]Uh(s, t, x)ds

+ E
[
[w(T−T ′)(0,X

t,x
T ′ )]Uh(T ′, t, x)

]
,
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Second estimate of Lemma

where, ∀0 ≤ s ≤ T , ∀x ∈ H,

Uh(s, t, x) =
1

s − t

∫ s

t

〈G−1∇xX
t,x
u h, dWu〉.

Let us recall that

∇xX
t,x
s h = e(s−t)Ah,

then,

E|Uh(s, t, x)|2 =
1

|s − t|2

∫ s

t

|G−1∇xX (u, t, x)h|2du ≤ C |h|2

s − t
,

where C is independent on t, s and x .
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Third estimate of Lemma

We have

wT (0, x) = EQT

(g(X x
T )− v(X x

T ))

= E(g(Ux
T )− v(Ux

T )),

where Ux is the mild solution of the following equation de�ned ∀t ∈ R:

dUx
t = [AUx

t + GβT (t,Ux
t )]dt + GdWt , Ux

0 = x ,

and where βT (t, x) ={
(f (x,∇uT (t,x)G)−f (x,∇v(x)G))(∇uT (t,x)G−∇v(x)G)∗

|(∇uT (t,x)−∇v(x))G |2 1t<T , if ∇uT (t, x)−∇v(x) 6= 0

0 , otherwise.

Therefore, ∀x ∈ H ∀T > 0 we can write

|wT (0, x)− wT (0, y)| = |E(g(Ux
T ) + v(Ux

T ))− E(g(Uy
T ) + v(Uy

T ))|.

|wT (0, x)− wT (0, y)| ≤ C(1 + |x |2+µ + |y |2+µ)e−η̂T , (9)
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Proof of Theorem 2

By the three estimates of Lemma : ∃(Ti )i and L1 ∈ R such that

lim
i
wTi

(0, x) = L1.

For any compact subset K of H,
{
wT (0, ·)|K ;T > 1

}
is a relatively compact

subspace of the space of continuous functions K → R for the uniform distance
(denoted by (C (K ,R), || · ||K ,∞).

We show that the accumulation point is unique. We assume that there exists
(T ′i )i such that wT ′

i
(0, x)→ L2,K uniformly.
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Proof of Second behaviour

Let us write, ∀x ∈ H, ∀T , S > 0 :

wT+S(0, x) = Y T+S,x
0 − λ(T + S)− Y x

0

= Y T+S,x
S − λT − Y x

S +

∫ S

0

(f (X x
r ,Z

T+S,x
r )− f (X x

r ,Z
x
r ))dr

−
∫ S

0

(ZT+S,x
r − Z x

r )dWr

= Y T+S,x
S − λT − Y x

S +

∫ S

0

(ZT+S,x
r − Z x

r )dW̃T ,S
r ,

with

W̃T ,S
t = −

∫ t

0

βT ,S(s,X x
s )ds + Wt ,

and where βT ,S(t, x) ={
(f (x,∇uT+S (t,x)G)−f (x,∇v(x)G))((∇uT+S (t,x)−∇v(x))G)∗

|(∇uT+S (t,x)−∇v(x))G |2
1t<S , if ∇uT+S(t, x)−∇v(x) 6= 0

0, otherwise.
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Proof of Second behaviour

wT+S(0, x) = EQT,S

(Y T+S,x
S − λT − Y x

S )

= EQT,S

(wT+S(S ,X x
S ))

= EQT,S

(wT (0,X x
S ))

= E(wT (0,Ux
S )) (10)

where Ux is the mild solution of the following equation de�ned ∀t ∈ R+:

dUx
t = [AUx

t + GβT ,S(t,Ux
t )]dt + GdWt , Ux

0 = x .

T ←− T ′i and S ←− (Ti − T ′i ), for all x ∈ H,

wTi
(0, x) = E(wT ′

i
(0,Ux

Ti−T ′i
)).
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Proof of Theorem 2 : Third behaviour

Finally we prove that this convergence holds with an explicit speed of
convergence. Let us write, ∀x ∈ H, ∀T > 0,

|wT (0, x)− L| = lim
V→+∞

|wT (0, x)− wV (0, x)|

= lim
V→+∞

|wT (0, x)− E(wT (0,Ux
V−T ))|

thanks to equality (10), where Ux is the mild solution of the following equation
de�ned ∀t ∈ R+:

dUx
t = [AUx

t + βV (t,Ux
t )]dt + GdWt , Ux

0 = x .

Now, thanks to the third estimate in Lemma 4, one have,

|wT (0, x)− L| ≤ lim
V→+∞

CE
(
1 + |x |2+µ + |Ux

V−T |2+µ
)
e−η̂T

≤ C(1 + |x |2+µ)e−η̂T .
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Thank you for your attention
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