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Objective

» Study the large time behaviour of solutions of the Cauchy problem in an
infinite dimensional real Hilbert space H:

{8— Zu(t.x) +F(x Vu(t.)6), V(Ex) ERxH,
(0,x) = g(x), Vx € H,

(Zh)(x) = %Tr(GG*VZh(x))—k < Ax + F(x), Vh(x) >

is the formal generator of the Kolmogorov semigroup #; of an H-valued
random process solution of the following Ornstein-Uhlenbeck stochastic
differential equation:

dX: = (AXe + F(X7))dt + GdAW,, t € Ry,
Xo = x, x € H,

» W is a Wiener process with values in another real Hilbert space =,
assumed to be separable.
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Method

First, let (v, \) be the solution of the ergodic PDE:
Lv+f(x,Vv(x)G)—A=0, VxeH.

Then we have the following probabilistic representation. Let (Y7, Z7) be
solution of the BSDE:

{ dY, > = —f(XX, ZT*)ds + ZT*dW.
Y7 = g(X7),

and (Y, Z, A) be solution of the EBSDE:
dYs = —(f(XJ, Z5) — N)ds + ZZXdW.
Then

Y = u(T —s,XX),
Y = v(X)).
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Results

First behaviour
Second behaviour
Third behaviour

First behaviour
Second behaviour

Third behaviour

Deterministic
u(T,x) A — 0
T T—+o0

u(T,x) = AT — v(x) T L

|u(T,x) = AT —v(x) = L| < C(1 + |x|*"*)e="T

Probabilistic
T,x
o~ _ ,
T A T—+o0 0
Yo AT Y5 _— L

T—+o0

Yo ™ — AT = Vg — L] < C(1+ |x[>#)eT
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Some references

» 1997 : Namah, Roquejoffre, (periodic, finite dimension, with speed of
convergence)

» 2001 : Barles and Souganidis, (periodic, finite dimension)

> 2006 : Fujita, Ishii, Loreti, (finite dimension, f(x,z) = Hi(x) + H2(z), H
Lipschitz and Hy locally Holder)

» 2013 : Ichihara, Sheu (finite dimension, quadratic and convex with respect
to z)
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Preliminaries : some results about a perturbed forward SDE

t t
Xe = e'-‘Ax+/ e(t_s)AF(s,Xs)ds—i—/ et Gaw, (2)
0 0

Hypothesis

1. Ais an unbounded operator A: D(A) C H — H, with D(A) dense in H.
We assume that A is dissipative and generates a stable Co-semigroup
{etA}t>0. By this we mean that there exist constants 7 > 0 and M > 0
such that

(Ax,x) < —77|x\27 Vx € D(A); \etA|L(H7H) < Me™ ™, VYt >0.

2. For all s >0, e* is a Hilbert-Schmidt operator. Moreover
||y (H,H) < Ms™ and 7 € [0,1/2).

. F:R,y x H— H is bounded and measurable.

ROV

. G is a bounded linear operator in L(=Z, H).
5. G is invertible. We denote by G ™! its bounded inverse.
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Some results about a perturbed forward SDE

Lemma
Assume that Hypothesis 1 (only points (1.)-(4.)) hold and that F is bounded

and Lipschitz in x. Then for every p € [2,00), for every T > 0 there exists a
unique process X* € L*,,(Q,€([0, T]; H)) solution of (2). Moreover,

sup  E[X[” < C(1+[x])?, (3)
0<t<+oo

for some constant C depending only on p,~, M and sup,sqsup,cy |F(t, x)|.
If F is only bounded and measurable, then the solution to equation 2 still exists
but in the martingale sense. By this we mean that there exists a new
F -Wiener process (W )e>o with respect to a new probability measure P
(absolutely continuous with respect to P), and an .7 -adapted process X* with
continuous trajectories for which (2) holds with W replaced by W. Moreover
(3) still holds (with respect to the new probability). Finally such a martingale
solution is unique in law.
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Some results about a perturbed forward SDE
Lemma (Basic Coupling Estimates)

Assume that Hypothesis above holds true and that F is a bounded and
Lipschitz function. Then there exist ¢ > 0 and 7} > 0 such that for all

¢ : H — R measurable with polynomial growth (i.e. 3C, > 0 such that
Vx € H, |p(x)] < C(1+ |x|*)), Vx,y € H,

| Z2[81(x) = Ze[dl(y)] < e(1+ x| + [y [F)e™ ™ (4)

We stress the fact that ¢ and 7j depend on F only through
SUP¢>o SUPxen | F(E; X)|.

Corollary

Relation (4) can be extended to the case in which F is only bounded
measurable and for all t > 0, there exists a uniformly bounded sequence of
Lipschitz functions in x (Fn(t,-))a>1 (i.e. Yt > 0,Yn € N, Fy(t,-) is Lipschitz
and sup,, sup, sup, |Fn(t, x)| < +o00 ) such that

lim Fo(t,x) = F(t,x), Vt>0,Vx € H.
Clearly in this case in the definition of P:[¢] the mean value is taken with

respect to the new probability P.
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Some results about a perturbed forward SDE

Lemma

Let ¢, ¢ : Ry x H — =* such that for all s > 0, ((s,-) and ('(s,-) are weakly*
continuous with polynomial growth. We define

T(sx) = § CEREFRETERCs ) — (e x)s i ls,x) # (5,%),
0, if {(s,x) = ¢'(s, x).

There exists a uniformly bounded sequence of Lipschitz functions (Tna(s,))a>1
(i.e. Vn, Ta(s,-) is Lipschitz and sup,, sup, sup, |Ta(s, x)| < 0o) such that

lim Th(s,x) = T(s,x), Vs>0,VxeH.
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The BSDE and the EBSDE
BSDE

T T
WVZgwﬂ+/)HﬁJfﬂ“_/ Zl*aw.,  telo,T]
t

t

EBSDE
T T
n:Y++/ a&mz)—xu—/ ZXdW,, VT >0,Vte 0, T]
t t

We will assume the following assumptions.

Hypothesis
There exist / > 0, & > 0 such that the function f : H x =* — R and ¢7 satisfy

1. F: H — H is a Lipschitz, bounded and belongs to the class ¢*,

2. g(+) is continuous and have polynomial growth : for all x € H,
lg()| < C(1+ |x[*),

3. Vx € H,Vz,z/ € =%, |f(x,z) — f(x,2')| < l|z — Z'|,

4. f(-, z) is continuous and Vx € H, |f(x,0)| < C(1 + |x|*).
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First behaviour

Theorem
Assume that our hypothesis hold true. Then, VT >0 :

Y| cat e
—\ <7 5
=A< = (5)
In particular,
YOT,X )\7
T T—+c

uniformly in any bounded set of H.
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Sketch of the proof

' Yy — Y = AT

Yo
- :

—A T

<

We have :
-
Yo = Yo — AT = g(XF) — v(X5F) +/ (F(XZ,Z]7) — (XS, ZX))ds
0
,
- [ @ -z,
0

T T
= g(XF) — v(XF) +/ (zI>* - z,)8las — / (Z7> - Z)aws,
0 0

where

EARE s ’
0, otherwise.

x 5T ,X\_f(xX 7x Tox _ oxy*
BT B { (F(X),Z, )= F(X),ZI)Z, ZY) if ZST,X _ st # 0
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Sketch of the proof

Taking the expectation with respect to Q7 we get

T,x X _ QT x x
Y% = Y§ = AT = E® (g(XE) — v(X3)).

So we have

Y, X — Vg — AT

T X
- cl +EY (|XT|”“)'

T - T
The process (X{)e>0 is the mild solution of

{ AXF = AXZdt + F(XZ)dt + GBI Leerdt + GAW,T,
X5 = x.

tel0,T],
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Second and Third behaviour

Hypothesis

n
1l
o

Note that setting F = 0 is not restrictive. Indeed we study

ot

{ 9t — Pu(t,x) + f(x, Vu(t,x)G), ¥(t,x) € Ry x H,
u(0, x) = g(x), Vx € H.

Now remark that
(Ax + F(x), Vu(t,x)) + f(x, Vu(t,x)G) = (Ax, Vu(t,x)) + ?(X, Vu(t,x)G),

where ?(x,z) = f(x,2) + (F(x),zG™") is a continuous function in x with
polynomial growth in x and Lipschitz in z.
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Second and Third behaviour

Theorem
Assume that our hypothesis hold true. Then there exists L € R such that,

VxeH, Yy —-AT-Y{ — L

T—+oco

Furthermore the following speed of convergence holds

Yy X = AT — Y& — L] < C(1+ |x|*")e 7.
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Second and third behaviour, some notations

Let us fix T > 0 and let us consider the following BSDE in finite horizon for an
unknown process (YST’t’X,ZsT"’X)SE[t,T] with values in R x =*:

Y = g (XP) + /T FXP, ZT0)dr — /T zZ7aw,, Vselt, T],
s s (7)
where (X$7)s>0 is the mild solution of
dXs = [AX: + F(X.)]ds + GAWe, X = x

If t =0, we use the following standard notations XX = X2, Y7 := Y, 7.0
and ZJ > := z]T0x,
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Sketch of the proof
We define

ur(t,x) = Y, "~

wr(t,x) == ur(t,x) = MT —t) — v(x).

Key property

ut(0,x) = urys(S,x)

= WT(OaX) = WT+5(57X)

Lemma

Under the hypothesis of Theorem 2, there exist constant C > 0 and Ct: such
that Vx,y € H,VT >0,

wr(0,x)] < C(1+ [x*4),
Vawr (0| € ST+ M), W< T'<T,

wr(0,x) = wr(0,y)] < C(L+ [x[*** + [y[*)e™"T.
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First estimate of Lemma

[wr(0,x)] = |uT(0,x) = AT — v(x)]
=Yy " = Y& = AT|
< C(1+|x|)"H). (8)
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Second estimate of Lemma

T
wr (s, X&) = wr (T, X5) +/ (F(XP™, Z70%) — F(XP, ZP))dr

.
_ / (ZT 0% — ZE%)dW, .

s

T
wr(s, X2™) = wr (T, X5) + / (F(XE>, 270 — F(XP™, Z8))dr

T’
_ (ZrT,t,x _ Zrt,X)dW’

s

T/
wr— (0, X5 + / (F(XE™, ZT% — Z0% 4 Z0%) — (X5, Z8))dr

T/

- (ZrT,t,X - Zrth)dW'y
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Second estimate of Lemma

ZI = Veur(s, X2)G, and Z7 = V,v(XI)G.
Then we easily obtain that
Z7t = 72 = Vwr(r, XP)G6.
Thus, applying the Bismut-Elworthy formula, we get Vx,h € H, Vt < T,
T
Vwr(t,x)h = E/t [F (X5, Vawr (r, XP¥)G + ZE%) — £ (XE™, Z2)]U (s, t, x)ds

+E e (0, X500 (T, £.0)]
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Second estimate of Lemma

where, VO <s < T, Vx € H,
Ul(s, t,x) = L/ (GTIV, XE*h, dW,).
s—t/,
Let us recall that
VX h = ™4,

then,

h 2 1 S ) C|h|?
E[U"(s, t, )] = P |G VX (u, t, x)hPdu < =,
t

s —

where C is independent on t,s and x.
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Third estimate of Lemma

We have

T X X
wr(0,x) = E% (g(X7) — v(X7))
=E(g(Ut) — v(UT)),
where U* is the mild solution of the following equation defined Vt € R:
dU; = [AUS 4+ GBT (¢, U)]dt + GdWe, Ug = x,

and where 87 (t,x) =

[(Vur(t,x)—Vv(x)G[?

(F(x,Vur (£,x)G)—f(x,Vv(x)G))(Vur(t,x) G—Vv(x)G)* 1t<T if VUT(t X) . VV(X) ?é 0
0, otherwise.

Therefore, Vx € HVT > 0 we can write

lwr(0,x) — wr (0, y)| = [E(g(UT) + v(UT)) — E(g(U7) + v(UT))I-

wr(0,x) = wr(0,y)| < C(L+ x| + |y[**)e ™, (9)
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Proof of Theorem 2

By the three estimates of Lemma : 3(T;); and L; € R such that

lim wr, (0, x) = Li.
For any compact subset K of H, {WT(O7 J: T > 1} is a relatively compact
subspace of the space of continuous functions K — R for the uniform distance

(denoted by (€(K,R),|| - ||k,c0)-

We show that the accumulation point is unique. We assume that there exists
(T7)i such that wy/(0,x) — Lz x uniformly.
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Proof of Second behaviour
Let us write, Vx € H, VT,S5 >0 :
wris(0,x) = Y N = NT +85) = ¥¢

)
— YIS AT vE g / (FOXE, ZT5%) — (X2, Z2))dr

S
_/ (ZrT+5,x _ Z,X)dWr

0

S —_—
_ YST+S,X AT — Yé( +/0 (Z’T+5,x _ Z’x)dW’T,S7

with

. t
AR _/ BT (s, XX)ds + W,
0

and where 7°(t,x) =

{ (. Vurss(£)6)F 0.V (Vurs(ex) =TV 3 if Turr,s(E x) — Vv(x) 5

[(Vurss(tx)—Vv(x)G[?
0, otherwise.
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Proof of Second behaviour

wris(0,x) = B2 (YT HS% AT — v2)
T,8 x
=E% " (wrys(S, X3))
(

—E2° (wr (0, X2))
= E(wr(0, U3)) (10)

where U* is the mild solution of the following equation defined Vt € R.:
dUF = [AUF + GBT (¢, U))dt + GAW,, Uy = x.
T<+— T/and S«— (T; — T;), for all x € H,

WT;(07 x) = ]E(WT,/(Ov Uzl(',-le.’))'
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Proof of Theorem 2 : Third behaviour

Finally we prove that this convergence holds with an explicit speed of
convergence. Let us write, Vx € H,VT > 0,

|WT(07X) - L‘ = lim |WT(07X) - WV(OaX)l

V =400

lim |wr(0,x) — E(wr(0, Uy_7))|
V—+o0

thanks to equality (10), where U™ is the mild solution of the following equation
defined Vt € Ry

dUr = [AUS + 8Y(t, UN)]dt + GAW,, Uy = x.
Now, thanks to the third estimate in Lemma 4, one have,
lwr(0,x) — L] < lim CE (1+ x> +|Uy_+[>"") e
V —+oco

< C(1+|x)ye T,
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Thank you for your attention
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