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Classical Risk Model

the insurance company has an initial surplus x > 0

Xt(x) is a surplus at time t ≥ 0 provided that the initial surplus
equals x

Premium arrivals

the insurance company receives premiums with constant intensity
c > 0

Claim arrivals

the claim sizes form a sequence (Yi )i≥1 of nonnegative i.i.d. random
variables with c.d.f. F (y) = P[Yi ≤ y ] and finite expectations µ; τi is
the time when the ith claim arrives

the number of claims on the time interval [0, t] is a Poisson process
(Nt)t≥0 with constant intensity λ > 0; the random variables Yi ,
i ≥ 1, and the process (Nt)t≥0 are independent

the total claims on [0, t] equal
∑Nt

i=1 Yi ; we set
∑0

i=1 Yi = 0 if
Nt = 0
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Classical Risk Model

The surplus of the insurance company at time t equals

Xt(x) = x + ct −
Nt∑
i=1

Yi , t ≥ 0. (1)

We assume that the net profit condition holds, i.e.

c > λµ.

The insurance company uses the expected value principle for premium
calculation, i.e.

c = λµ(1 + θ),

where θ > 0 is a safety loading.
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Optimal Control Problems

optimal control by investments: C. Hipp, M. Plum (2000);
C. Hipp, M. Plum (2003); C. S. Liu, H. Yang (2004); P. Azcue,
N. Muler (2009)

optimal control by reinsurance: H. Schmidli (2001); C. Hipp,
M. Vogt (2003)

optimal control by investments and reinsurance: H. Schmidli
(2002); M. I. Taksar, C. Markussen (2003); S. D. Promislow,
V. R. Young (2005); C. Hipp, M. Taksar (2010)
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Franchise and Deductible

Definitions

A franchise is a provision in the insurance policy whereby the insurer
does not pay unless damage exceeds the franchise amount.

A deductible is a provision in the insurance policy whereby the
insurer pays any amounts of damage that exceed the deductible
amount.

Example 1

The franchise/deductible amount is 10.

Case 1: the claim size is 5

If the franchise is used, then the insurance company pays nothing.
If the deductible is used, then the insurance company pays nothing.

Case 2: the claim size is 100

If the franchise is used, then the insurance company pays 100.
If the deductible is used, then the insurance company pays
100− 10 = 90.
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Franchise and Deductible

Motivation

a franchise and a deductible are applied when the insured’s losses are
relatively small to deter a large number of trivial claims

a deductible encourages the insured to take more care of the insured
property
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Optimal Control by the Franchise Amount

Additional assumptions

the insurance company adjusts the franchise amount dt at every time
t ≥ 0 on the basis of the information available before time t, i.e.
every admissible strategy (dt)t≥0 ((dt) for brevity) of the franchise
amount choice is a predictable process w.r.t. the natural filtration
generated by (Nt)t≥0 and (Yi )i≥1

0 ≤ dt ≤ dmax, where dmax is the maximum allowed franchise amount
such that 0 < F (dmax) < 1; in particular, if dt = 0, then the franchise
is not used at time t

the safety loading θ > 0 is constant

The premium intensity at time t depends on the franchise amount at this
time and it is given by

c(dt) = λ(1 + θ)

∫ +∞

dt

y dF (y).
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Optimal Control by the Franchise Amount

Let X
(dt)
t (x) be the surplus of the insurance company at time t provided

its initial surplus is x and the strategy (dt) is used. Then

X
(dt)
t (x) = x +

∫ t

0
c(ds) ds −

Nt∑
i=1

Yi I{Yi>dτi }, t ≥ 0. (2)

The ruin time under the admissible strategy (dt) is defined as

τ (dt)(x) = inf
{
t ≥ 0: X

(dt)
t (x) < 0

}
.

The corresponding infinite-horizon survival probability is given by

ϕ(dt)(x) = P
[
τ (dt)(x) =∞

]
.
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Optimal Control by the Franchise Amount

Our aim is to maximize the survival probability over all admissible
strategies (dt), i.e. to find

ϕ∗(x) = sup
(dt)

ϕ(dt)(x),

and show that there exists an optimal strategy (d∗t ) such that
ϕ∗(x) = ϕ(d∗

t )(x) for all x ≥ 0.

The optimal strategy will be a function of the initial surplus only.
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Hamilton-Jacobi-Bellman Equation

Proposition 1

Let the surplus process
(
X

(dt)
t (x)

)
t≥0

follow (2) under the above

assumptions. If ϕ∗(x) is differentiable on R+, then it satisfies the
Hamilton-Jacobi-Bellman equation

sup
d∈[0, dmax]

(
(1 + θ)

∫ +∞

d
y dF (y)

(
ϕ∗(x)

)′
+
(
F (d)− 1

)
ϕ∗(x) +

∫ d∨x

d
ϕ∗(x − y) dF (y)

)
= 0,

(3)

which is equivalent to

(
ϕ∗(x)

)′
= inf

d∈[0, dmax]

((
1− F (d)

)
ϕ∗(x)−

∫ d∨x
d ϕ∗(x − y) dF (y)

(1 + θ)
∫ +∞
d y dF (y)

)
. (4)
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Hamilton-Jacobi-Bellman Equation

Remark 1

Note that if there exists one solution to (3) or (4), then there exist
infinitely many solutions to these equations which differ with a
multiplicative constant.
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Existence Theorem

Theorem 1

If the random variables Yi , i ≥ 1, have a p.d.f. f (y), then there exists the
solution G (x) to (4) with G (0) = θ/(1 + θ), which is nondecreasing and
continuously differentiable on R+, and θ/(1 + θ) ≤ limx→+∞ G (x) ≤ 1.

The solution G (x) to (4) that satisfies the conditions of Theorem 1 can be
found as the limit of the sequence of functions

(
Gn(x)

)
n≥0

on R+, where

G0(x) = ϕ(0)(x) is the survival probability provided that dt = 0 for all
t ≥ 0, and

G ′n(x) = inf
d∈[0, dmax]

((
1− F (d)

)
Gn−1(x)−

∫ d∨x
d Gn−1(x − y) dF (y)

(1 + θ)
∫ +∞
d y dF (y)

)
,

Gn(0) = θ/(1 + θ), n ≥ 1.

(5)
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Verification Theorem

Theorem 2

Let the surplus process
(
X

(dt)
t (x)

)
t≥0

follow (2) and G (x) be the solution

to (4) that satisfies the conditions of Theorem 1. Then for any x ≥ 0 and
arbitrary admissible strategy (dt), we have

ϕ(dt)(x) ≤ G (x)

limx→+∞ G (x)
, (6)

and equality in (6) is attained under the strategy (d∗t ) =
(
d∗t
(
X

(d∗
t )

t− (x)
))

,

where
(
d∗t (x)

)
minimizes the right-hand side of (4), i.e.

ϕ∗(x) = ϕ(d∗
t )(x) =

G (x)

limx→+∞ G (x)
.
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Verification Theorem

Remark 2

In Theorem 2 we used any solution to (4) that satisfies the conditions of
Theorem 1. However, Theorem 2 also implies uniqueness of such a
solution. The corresponding strategy (d∗t ) may not be unique in the
general case.
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Exponentially Distributed Claim Sizes

Theorem 3

Let the surplus process
(
X

(dt)
t (x)

)
t≥0

follow (2), the claim sizes be
exponentially distributed with mean µ, and dmax = µ. Then the strategy
(dt) with dt = 0 for all t ≥ 0 is not optimal.

Remark 3

Theorem 3 implies that we can always increase the survival probability
adjusting the franchise amount if the claim sizes are exponentially
distributed.
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Exponentially Distributed Claim Sizes

Example 2

If the claim sizes are exponentially distributed with mean µ = 10,
dmax = µ, and θ = 0.1, then

ϕ(0)(x) ≈ 1− 0.9090909 e−x/110 , x ≥ 0 ,

ϕ∗(x) ≈

{
0.111048767 ex/22 if x ≤ 8.93258,

1− 0.90382792 ex/110 if x > 8.93258,

d∗t (x) =

{
10 if x ≤ 8.93258,

0 if x > 8.93258.
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Constant Franchise Amount

Theorem 4

Let the surplus process
(
X

(dt)
t (x)

)
t≥0

follow (2) with dt ≡ d where d > 0
is constant, and the claim sizes be exponentially distributed with mean µ.

Then ϕ(d)(x) = ϕ
(d)
n+1(x) for all x ∈ [nd , (n + 1)d), n ≥ 0, where

ϕ
(d)
1 (x) = C1, 1 e

x/γ , ϕ
(d)
2 (x) =

(
C2, 1 + A2, 0 x

)
ex/γ + C2, 2 e

−x/µ,

ϕ
(d)
n+1(x) =

(
Cn+1, 1 +

n−1∑
i=0

An+1, i x
i+1

)
ex/γ

+

(
Cn+1, 2 +

n−2∑
i=0

Bn+1, i x
i+1

)
e−x/µ , n ≥ 2.
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Constant Franchise Amount

Theorem 4

Here

γ = (1 + θ)(µ+ d),

C1, 1 = θ/(1 + θ),

A2, 0 = − θ

(1 + θ)(γ + µ)
e−d/γ ,

C2, 1 =
θ

1 + θ

(
1 +

γµ+ d(γ + µ)

(γ + µ)2
e−d/γ

)
,

C2, 2 = − θγµ

(1 + θ)(γ + µ)2
ed/µ,

and other coefficients can be found by recurrent formulas.
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Constant Franchise Amount

Theorem 5

Let conditions of Theorem 4 hold.

If d > 0 and x ∈
[

0, min

{
µ(1+θ)

θ ln

(
1 + θd

µ(1+θ)

)
, d

}]
, then the

correspoding survival probability is less than the classical one.

If d ∈
(

0, µ(1+θ) ln(1+θ)
θ

)
and x is large enough, then the

correspoding survival probability is greater than the classical one.
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Optimal Control by the Deductible Amount

Additional assumptions

the insurance company adjusts the deductible amount d̄t at every
time t ≥ 0 on the basis of the information available before time t, i.e.
every admissible strategy (d̄t)t≥0 ((d̄t) for brevity) of the deductible
amount choice is a predictable process w.r.t. the natural filtration
generated by (Nt)t≥0 and (Yi )i≥1

0 ≤ d̄t ≤ d̄max, where d̄max is the maximum allowed deductible
amount such that 0 < F (d̄max) < 1; in particular, if d̄t = 0, then the
deductible is not used at time t

the safety loading θ > 0 is constant

The premium intensity at time t depends on the deductible amount at this
time and it is given by

c(d̄t) = λ(1 + θ)

∫ +∞

d̄t

(y − d̄t) dF (y).
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Optimal Control by the Deductible Amount

Let X
(d̄t)
t (x) be the surplus of the insurance company at time t provided

its initial surplus is x and the strategy (d̄t) is used. Then

X
(d̄t)
t (x) = x +

∫ t

0
c(d̄s)ds −

Nt∑
i=1

(Yi − d̄τi )
+. (7)

The ruin time under the admissible strategy (d̄t) is defined as

τ (d̄t)(x) = inf
{
t ≥ 0: X

(d̄t)
t (x) < 0

}
.

The corresponding infinite-horizon survival probability is given by

ϕ(d̄t)(x) = P
[
τ (d̄t)(x) =∞

]
.
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Optimal Control by the Deductible Amount

Our aim is to maximize the survival probability over all admissible
strategies (d̄t), i.e. to find

ϕ∗(x) = sup
(d̄t)

ϕ(d̄t)(x),

and show that there exists an optimal strategy (d̄∗t ) such that

ϕ∗(x) = ϕ(d̄∗
t )(x) for all x ≥ 0.

Olena Ragulina (Kyiv) Optimal Control 7 - 9 July, 2014 23 / 31



Hamilton-Jacobi-Bellman Equation

Proposition 2

Let the surplus process
(
X

(d̄t)
t (x)

)
t≥0

follow (7) under the above

assumptions. If ϕ∗(x) is differentiable on R+, then it satisfies the
Hamilton-Jacobi-Bellman equation

sup
d̄∈[0, d̄max]

(
(1 + θ)

∫ +∞

d̄
(y − d̄) dF (y)

(
ϕ∗(x)

)′
+
(
F (d̄)− 1

)
ϕ∗(x) +

∫ x+d̄

d̄
ϕ∗(x + d̄ − y)dF (y)

)
= 0,

(8)

which is equivalent to

(
ϕ∗(x)

)′
= inf

d̄∈[0, d̄max]

((
1− F (d̄)

)
ϕ∗(x)−

∫ x+d̄
d̄ ϕ∗(x + d̄ − y)dF (y)

(1 + θ)
∫ +∞
d̄ (y − d̄) dF (y)

)
.

(9)

Olena Ragulina (Kyiv) Optimal Control 7 - 9 July, 2014 24 / 31



Existence Theorem

Theorem 6

If the random variables Yi , i ≥ 1, have a p.d.f. f (y), then there exists the
solution G (x) to (9) with G (0) = θ/(1 + θ), which is nondecreasing and
continuously differentiable on R+, and θ/(1 + θ) ≤ limx→+∞ G (x) ≤ 1.

The solution G (x) to (9) that satisfies the conditions of Theorem 6 can be
found as the limit of the sequence of functions

(
Gn(x)

)
n≥0

on R+, where

G0(x) = ϕ(0)(x) is the survival probability provided that dt = 0 for all
t ≥ 0, and

G ′n(x) = inf
d̄∈[0, d̄max]

((
1− F (d̄)

)
Gn−1(x)−

∫ x+d̄
d Gn−1(x + d̄ − y) dF (y)

(1 + θ)
∫ +∞
d̄ (y − d̄)dF (y)

)
,

Gn(0) = θ/(1 + θ), n ≥ 1.

(10)
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Verification Theorem

Theorem 7

Let the surplus process
(
X

(d̄t)
t (x)

)
t≥0

follow (7) and G (x) be the solution

to (9) that satisfies the conditions of Theorem 6. Then for any x ≥ 0 and
arbitrary admissible strategy (d̄t), we have

ϕ(d̄t)(x) ≤ G (x)

limx→+∞ G (x)
, (11)

and equality in (11) is attained under the strategy (d̄∗t ) =
(
d̄∗t
(
X

(d̄∗
t )

t− (x)
))

,

where
(
d̄∗t (x)

)
minimizes the right-hand side of (9), i.e.

ϕ∗(x) = ϕ(d̄∗
t )(x) =

G (x)

limx→+∞ G (x)
.
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Exponentially Distributed Claim Sizes

Theorem 8

Let the surplus process
(
X

(d̄t)
t (x)

)
t≥0

follow (7) and the claim sizes be

exponentially distributed. Then ϕ∗(x) = ϕ(d̄t)(x) for every admissible
strategy (d̄t), i.e. every admissible strategy is optimal.

Remark 4

Theorem 8 implies that we cannot increase the survival probability
adjusting the deductible amount for the exponentially distributed claim
sizes.
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Thank you very much for your attention!
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