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Classical Risk Model

@ the insurance company has an initial surplus x > 0
@ X:(x) is a surplus at time t > 0 provided that the initial surplus
equals x
Premium arrivals
@ the insurance company receives premiums with constant intensity
c>0
Claim arrivals
o the claim sizes form a sequence (Y;);>1 of nonnegative i.i.d. random
variables with c.d.f. F(y)=P[Y; < y] and finite expectations yu; 7; is
the time when the jth claim arrives
e the number of claims on the time interval [0, t] is a Poisson process
(N¢)t>0 with constant intensity A > 0; the random variables Y;,
i > 1, and the process (N¢)¢>0 are independent
o the total claims on [0, t] equal M Vi; we set %, Y, =0 if
N:=0
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Classical Risk Model

The surplus of the insurance company at time t equals

Ni
Xt(x):x—i—ct—ZY,-, t>0. (1)
i=1

We assume that the net profit condition holds, i.e.

c > Ap.

The insurance company uses the expected value principle for premium
calculation, i.e.

c=Au(1+6),
where 6 > 0 is a safety loading.
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Optimal Control Problems

e optimal control by investments: C. Hipp, M. Plum (2000);
C. Hipp, M. Plum (2003); C. S. Liu, H. Yang (2004); P. Azcue,
N. Muler (2009)

e optimal control by reinsurance: H. Schmidli (2001); C. Hipp,
M. Vogt (2003)

o optimal control by investments and reinsurance: H. Schmidli
(2002); M. I. Taksar, C. Markussen (2003); S. D. Promislow,
V. R. Young (2005); C. Hipp, M. Taksar (2010)
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Franchise and Deductible

Definitions

@ A franchise is a provision in the insurance policy whereby the insurer
does not pay unless damage exceeds the franchise amount.

@ A deductible is a provision in the insurance policy whereby the
insurer pays any amounts of damage that exceed the deductible
amount.

Example 1

The franchise/deductible amount is 10.
o Case 1: the claim size is 5
o If the franchise is used, then the insurance company pays nothing.
o If the deductible is used, then the insurance company pays nothing.
@ Case 2: the claim size is 100

o If the franchise is used, then the insurance company pays 100.
o If the deductible is used, then the insurance company pays
100 — 10 = 90.
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Franchise and uctible

Motivation

@ a franchise and a deductible are applied when the insured's losses are
relatively small to deter a large number of trivial claims

@ a deductible encourages the insured to take more care of the insured
property

Olena Ragulina (Kyiv) Optimal Control 7 - 9 July, 2014 7/31



Optimal Control by the Franchise Amount

Additional assumptions

@ the insurance company adjusts the franchise amount d; at every time
t > 0 on the basis of the information available before time t, i.e.
every admissible strategy (d¢)¢>0 ((d:) for brevity) of the franchise
amount choice is a predictable process w.r.t. the natural filtration
generated by (N¢)e>0 and (Y;)i>1

o 0 < d; < dpax, Where dyax is the maximum allowed franchise amount
such that 0 < F(dmax) < 1; in particular, if d; = 0, then the franchise
is not used at time t

@ the safety loading 6 > 0 is constant
The premium intensity at time t depends on the franchise amount at this
time and it is given by

“+oo

c(dt):)\(1+¢9)/ ydF(y).

d:
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Optimal Control by the Franchise Amount

Let Xt(dt)(x) be the surplus of the insurance company at time t provided
its initial surplus is x and the strategy (d;) is used. Then

t Ne
XD (x) = x+ / c(d)ds =3 Yiliysay, t20. (2)
0 i=1

The ruin time under the admissible strategy (d;) is defined as

74 (x) = inf{t > 0: X{*)(x) < 0},

The corresponding infinite-horizon survival probability is given by

gp(df)(x) = P[T(df)(x) = oo}
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Optimal Control by the Franchise Amount

Our aim is to maximize the survival probability over all admissible
strategies (d;), i.e. to find

0" (x) = sup ¥ (x),
(dt)

and show that there exists an optimal strategy (d;) such that
©*(x) = @9 (x) for all x > 0.

The optimal strategy will be a function of the initial surplus only.
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Hamilton-Jacobi-Bellman Equation

Proposition 1

Let the surplus process (X( t)( ))t>0 follow (2) under the above

assumptions. If o*(x) is differentiable on R, then it satisfies the
Hamilton-Jacobi-Bellman equation

sup ((1+9) /joode(y) (¢ (%)’

dE[O: dmax]

dVx
HFD-) W+ [ ¢le-) dF(y>) _o,

which is equivalent to

(3)

o (1= F(d)e*(x) = [ *(x - y) dF(y)
(¢769) _de[éﬂfmaﬂ( (14 0) [y dF(y) > )

v
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Hamilton-Jacobi-Bellman Equation

Note that if there exists one solution to (3) or (4), then there exist
infinitely many solutions to these equations which differ with a
multiplicative constant.
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Existence Theorem

If the random variables Y;, i > 1, have a p.d.f. f(y), then there exists the
solution G(x) to (4) with G(0) = 6/(1 + ), which is nondecreasing and
continuously differentiable on R, and /(1 + 0) < limy_ 4+ G(x) < 1.

The solution G(x) to (4) that satisfies the conditions of Theorem 1 can be

found as the limit of the sequence of functions (G,,(x)) on R, where

n>0
Go(x) = {9 (x) is the survival probability provided that d; = 0 for all
t >0, and

G\(x)= inf (

(1= F(d))Gr1(x) = [V Gpor(x — y) dF(y)
d€0, dmax] 7

(1+0) [, ydF(y)
Go(0) = 0/(1+6), n>1.
(5)
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Verification Theorem

Theorem 2

Let the surplus process (Xt(dt)(x))t>0 follow (2) and G(x) be the solution
to (4) that satisfies the conditions of Theorem 1. Then for any x > 0 and
arbitrary admissible strategy (d;), we have

t G(x)
P S e 60

(6)

and equality in (6) is attained under the strategy (d) = (d: (x{ )(x))).
where (df(x)) minimizes the right-hand side of (4), i.e.

() = ) (x) = —“mxjjc(x).
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Verification Theorem

In Theorem 2 we used any solution to (4) that satisfies the conditions of
Theorem 1. However, Theorem 2 also implies uniqueness of such a
solution. The corresponding strategy (d;) may not be unique in the
general case.
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Exponentially Distributed Claim Sizes

Theorem 3

Let the surplus process (Xt(dt)(x))t>0 follow (2), the claim sizes be
exponentially distributed with mean p, and dyax = p. Then the strategy
(d:) with dy = 0 for all t > 0 is not optimal.

| \

Remark 3

Theorem 3 implies that we can always increase the survival probability
adjusting the franchise amount if the claim sizes are exponentially
distributed.
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Exponentially Distributed Claim Sizes

Example 2

If the claim sizes are exponentially distributed with mean p = 10,
dmax = 1, and 6 = 0.1, then

0 (x) ~ 1 —0.9090909¢ /110 = x>0,

X 0.111048767 eX/22 if x < 8.93258,
p*(x) =

1 —0.90382792¢*/110 if x > 8.93258,

0 if x> 8.93258.

. 10 if x <8.93258,
di (x) = {
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Constant Franchise Amount

Theorem 4

Let the surplus process (Xt(dt)(x))t>0 follow (2) with d; = d where d > 0

is constant, and the claim sizes be exponentially distributed with mean .

Then ¢(9)(x) = gpfi)l(x) for all x € [nd,(n+1)d), n>0, where

AV(x) = Cael, o (x) = (G1+ Ao x) €7+ Gope /M,

n—1
d .
P (x) = (Cn+1,1 + ) Anri X'“) e/
i=0
n—2 )
+ (Cn+1,2 -+ Z Bl x’+1> e X/ p>2.
i=0
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Constant Franchise Amount

(Theoremd4

Here

7= (1+0)(n+d),
C171 =S 9/(1 —i—(g),

=i

SR e

0 yutdiy+u) 4 )
Ci1=-—— (14 T TR o=d/y
! 1+9< MO ’

Oyp d
Coor=— /1
22T T 0 F )R

and other coefficients can be found by recurrent formulas.
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Constant Franchise Amount

Let conditions of Theorem 4 hold.
o Ifd >0and x € |0, min{@m(l + ﬁ) dH, then the
correspoding survival probability is less than the classical one.

o If d e (0, w and x is large enough, then the

correspoding survival probability is greater than the classical one.
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Optimal Control by the Deductible Amount

Additional assumptions

e the insurance company adjusts the deductible amount d; at every
time t > 0 on the basis of the information available before time t, i.e.
every admissible strategy (d:)t>0 ((d:) for brevity) of the deductible
amount choice is a predictable process w.r.t. the natural filtration
generated by (N¢)ro and (Y;)iz1

@ 0 < d; < dyax, Where Elma_x is the maximum allowed Eieductible
amount such that 0 < F(dmax) < 1; in particular, if d; = 0, then the
deductible is not used at time t

@ the safety loading 6 > 0 is constant
The premium intensity at time t depends on the deductible amount at this
time and it is given by
+0o0

c(@) = (1 +6) / (v — &) dF(y).

d
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Optimal Control by the Deductible Amount

Let Xt(dt)(x) be the surplus of the insurance company at time t provided
its initial surplus is x and the strategy (d;) is used. Then

Nt

Xlgat)(x) =x+ /tc(c_/s) ds — Z(Y, —d.)*. (7
0

i=1

~—

The ruin time under the admissible strategy (d;) is defined as

@) (x) = inf{t > 0: X{*)(x) < 0}.

The corresponding infinite-horizon survival probability is given by
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Optimal Control by the Deductible Amount

Our aim is to maximize the survival probability over all admissible
strategies (d;), i.e. to find

0" (x) = sup (%) (x),
(@)

and show that there exists an optimal strategy (d?) such that
©*(x) = ¢4 (x) for all x > 0.
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Hamilton-Jacobi-Bellman Equation

Proposition 2

Let the surplus process (Xt(at)(x))t>0 follow (7) under the above

assumptions. If o*(x) is differentiable on R, then it satisfies the
Hamilton-Jacobi-Bellman equation

+oo _ ,
s (@40) [- Dar0) (+700)
d€|0, dmax] d
x+d (8)

+ (F(d) — 1) ¢*(x) +[ o*(x+d —y)dF(y)> =0,

d

which is equivalent to

x+d

o (1—F(d)e*(x) — [37° o*(x+d — y)dF(y)
(#7() _36[0,§max]< (1+6) (—;roo(y—c_l)dF(y) )

(9)
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Existence Theorem

Theorem 6

If the random variables Y;, i > 1, have a p.d.f. f(y), then there exists the
solution G(x) to (9) with G(0) = /(1 + 6), which is nondecreasing and
continuously differentiable on R, and /(1 + 6) < limy_ 400 G(x) < 1.

The solution G(x) to (9) that satisfies the conditions of Theorem 6 can be

found as the limit of the sequence of functions (G,(x)) on R, where

n>0
Go(x) = ¢{9(x) is the survival probability provided that d; = 0 for all

t >0, and

o) inf (AT F@)G100— [ Groalx+ 3= y) dF(y)
n de[0, dmax] (]_ +(9) a+oo(y _ a) dF(y) ,

Gr(0) =6/(1+6), n>1.
(10)
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Verification Theorem

Theorem 7

Let the surplus process (Xt(at)(x))t>0 follow (7) and G(x) be the solution
to (9) that satisfies the conditions of Theorem 6. Then for any x > 0 and
arbitrary admissible strategy (d;), we have

A G(x)
pl)(x) < T G0

(11)

and equality in (11) is attained under the strategy (d;) = (c_I;‘ (Xffj?)(x))),
where (d(x)) minimizes the right-hand side of (9), i.e.

70 = ¢ = limxj(;)G(x)'
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Exponentially Distributed Claim Sizes

Theorem 8

Let the surplus process (Xt(at)(x)) follow (7) and the claim sizes be

>0 Y
exponentially distributed. Then ¢*(x) = (%)(x) for every admissible
strategy (d;), i.e. every admissible strategy is optimal.

Remark 4

Theorem 8 implies that we cannot increase the survival probability
adjusting the deductible amount for the exponentially distributed claim
sizes.
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Thank you very much for your attention!

Olena Ragulina (Kyiv) Optimal Control 7 - 9 July, 2014 31/31



	Preliminaries
	Optimal Control by the Franchise Amount
	Optimal Control by the Deductible Amount

