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Introduction
Given a forward process

Xt,x = x+

∫ ·
t
bs
(
Xt,x
s

)
ds+

∫ ·
t
σs
(
Xt,x
s

)
dWs.

We are interested in the minimal solution of the constrained BSDE

Yt,x ≥ g
(
Xt,x
T

)
+

∫ T

·
fs
(
Xt,x
s ,Yt,xs ,Zt,xs

)
ds−

∫ T

·
Zt,xs dWs

with
Zt,xσ−1

(
Xt,x

)
∈ K dt⊗ dP-a.e.

with K convex set of support function δ(u) := sup{k>u ; k ∈ K}.
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Yt,x ≥ g
(
Xt,x
T

)
+

∫ T

·
fs
(
Xt,x
s ,Yt,xs ,Zt,xs

)
ds−

∫ T

·
Zt,xs dWs

with
Zt,xσ−1

(
Xt,x

)
∈ K dt⊗ dP-a.e.

with K convex set of support function δ(u) := sup{k>u ; k ∈ K}.

More precisely, we are interested in the regularity of

(t, x) ∈ [0, T ]× Rd 7−→ Yt,xt .
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Ψ
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T
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}
to

inf
{
y : ∃ ”ν ∈ K” s.t. E

[
Ψ
(
Xt,x,ν,α
T , Y t,x,y,ν,α

T

)]
≥ p ∀ α

}
.

I Difficulty to establish DPP ;

I In Bouchard, M. & Nutz, done by covering ⊕ continuity ;

I This does not allow to consider the Super-Replication :

v(t, x) := inf
{
y : ∃ ”ν ∈ K” s.t. Y t,x,y,ν,α

T ≥ g
(
Xt,x,ν,α
T

)
∀ α
}

where Ψ(x, y) := 1{y≥g(x)} and p = 1.



Motivation
Super–Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

1. Constructing a smooth super-solution w ”not so far” from v ;



Motivation
Super–Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

1. Constructing a smooth super-solution w ”not so far” from v ;

2. Construct an almost optimal control based on w and verification type
arguments ;



Motivation
Super–Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

1. Constructing a smooth super-solution w ”not so far” from v ;

2. Construct an almost optimal control based on w and verification type
arguments ;

3. Deduce the DPP for v using this Markovian Control.



Motivation
Super–Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

1. Constructing a smooth super-solution w ”not so far” from v ;

2. Construct an almost optimal control based on w and verification type
arguments ;

3. Deduce the DPP for v using this Markovian Control.

The point (1) need to have continuity for an object of this type

(t, x) 7−→ sup
α
Yt,x,αt .
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Regularity for Solution of PPDE

I Singular Control Problem :

vε(t, ω, x) := sup
L

E
[
U
(
Xt,ω,x,L,ε
T

)]
with

Xt,ω,x,L,ε = x+

∫ ·
t
bt,ωs (Xs) ds+

∫ ·
t
σt,ωs (Xs) dWs +

∫ ·
t
f(ε)dLs;

I Family of non-dominated measure indexed by L which is
not-bounded ;

I BUT ”PPDE of quasi-variational” type ;

I No-Trade Region : the optimal control L ≡ 0 ;

I Need for regularity of (t, ω, x) 7−→ vε(t, ω, x) ;

I Done by showing that Yt,ω,x,ε = vε(t, ω, x).
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Dual Formulation (ζ := (t, x))
Equivalent families of Measure

For each predictable bounded process ν we introduce

dPt,x,ν

dP
= e−

1
2

∫ T
τ |σ

−1(Xt,x
s )νs|2ds+

∫ T
τ σ−1(Xt,x

s )νsdWs

W t,x,ν := W −
∫ τ∨·

τ
σ−1(Xt,x

s )νsds

so that

Xt,x = x+

∫ ·
t

[
b
(
Xt,x
s

)
+ νs

]
ds+

∫ ·
t
σ
(
Xt,x
s

)
dW t,x,ν

s .



Dual Formulation
The family of standard BSDEs

Let (Ȳ t,x,ν , Z̄t,x,ν) be the unique S2(Pt,x,ν)×H2(Pt,x,ν)-solution of

Ȳ ζ,ν = g
(
Xζ
T

)
+

∫ T

·

[
f
(
Xζ
s , Ȳ

ζ,ν
s , Z̄ζ,νs

)
− δ(νs)

]
ds−

∫ T

·
Z̄ζ,νs dW ζ,ν

s .

Then

Yt,xθ := ess sup
ν∈U

Ȳ t,x,ν
θ

= ess sup
ν∈U

EPt,x,ν
θ

[
g
(
Xt,x
T

)
+

∫ T

θ

(
fs
(
Xt,x
s , Ȳ t,x,ν

s , Z̄t,x,νs

)
− δ(νs)

)
ds

]
is the minimal solution of the previous constrained BSDE.
(see Cvitanic, Karatzas and Soner for the case of a convex driver)



Dual Formulation
Y is the minimal solution of the constrained BSDE

We have

Ȳ ζ,ν = g
(
Xζ
T

)
+

∫ T

·

[
f
(
Xζ
s , Ȳ

ζ,ν
s , Z̄ζ,νs

)
− δ(νs) + Z̄ζ,νs σ−1(Xt,x

s )νs

]
ds

−
∫ T

·
Z̄ζ,νs dWs

and the following characterization of K :

z ∈ K =⇒ min{δ(u)− z · u, u ∈ Rd, |u| = 1} ≥ 0. (3.1)

1. The minimality comes from standard comparison and by (3.1) :

f(X, y, z) + zσ−1(X)ν − δ(ν) ≤ f(X, y, z) whenever z ∈ K.

2. Y solution of the constrained BSDE comes from non-linear
Doob-Meyer decomposition, the fact that ν lives in a cone, δ
positively-homogeneous and (3.1).
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Main difficulties when considering
∣∣∣Y t,xt − Y t′,x′t′

∣∣∣

Yt,xt = ess sup
ν∈U

EPt,x,ν
t

[
g
(
Xt,x
T

)
+

∫ T

t

(
fs
(
Xt,x
s , Ȳ t,x,ν

s , Z̄t,x,νs

)
− δ(νs)

)
ds

]
.

I Different probabilities, conditional expectations (Strong Formulation) ;

I Each ν is bounded, but all ν’s are not uniformly bounded (face-lift).



Table of content

Introduction

Motivation

Dual Formulation and Minimal Solution

Main Difficulties

The Strong Formulation

The Face–Lift

Our Results



Strong Formulation
The deterministic case

We have
ess sup
ν∈U

Ȳ ζ,ν
θ = ess sup

ν∈U
Ŷ ζ,ν
θ (5.1)

with

Ȳ ζ,ν = g
(
Xζ
T

)
+

∫ T

·

[
f
(
Xζ
s , Ȳ

ζ,ν
s , Z̄ζ,νs

)
− δ(νs)

]
ds−

∫ T

·
Z̄ζ,νs dW ζ,ν

s ,

Ŷ ζ,ν = g
(
X̂ζ,ν
T

)
+

∫ T

·

[
fs

(
X̂ζ,ν
s , Ŷ ζ,ν

s , Ẑζ,νs

)
− δ(νs)

]
ds−

∫ T

·
Ẑζ,νs dWs.

and

Xζ = x+

∫ ·
t

[
b
(
Xζ
s

)
+ νs

]
ds+

∫ ·
t
σ
(
Xζ
s

)
dW ζ,ν

s ,

X̂ζ,ν = x+

∫ ·
t

[
b
(
X̂ζ,ν
s

)
+ νs

]
ds+

∫ ·
t
σ
(
X̂ζ,ν
s

)
dWs.
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Ŷ ζ,ν
θ (5.3)

In this case, even the definition of the strong formulation is not that clear

1. We added a delay on the dependence in ω ;



Strong Formulation
When the coefficients depend on ω

We have
ess sup
ν∈U
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Strong Formulation
When the coefficients depend on ω

We have
ess sup
ν∈U

Ȳ ζ,ν
θ = ess sup

ν∈U
Ŷ ζ,ν
θ (5.3)

In this case, even the definition of the strong formulation is not that clear

1. We added a delay on the dependence in ω ;

2. The supremums in (5.1) may be taken among piecewise constant ν,
⇒ Need for uniform continuity ;

3. Then for each ν ∈ Upc, find ν̄ ∈ Upc such that

Ȳ ζ,ν
τ = Ŷ ζ,ν̄

τ .
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The Face-Lift
Definition of the Face–Lift

Let
ĝ(x) := sup

y
{g(x+ y)− δ(y)}.

1. One wants to hedge a digicall of strike K ;

2. Under the delta constraint that ∆ ∈ [0, 1].

In this case :

δ : u ∈ R 7−→

{
u if u ≥ 0 ;

0 if u ≤ 0 .

And then :

ĝ : x ∈ R+ 7−→


0 if x ∈ [0,K − 1] ;

x+ (1−K) if x ∈ [K − 1,K] ;

1 if x ≥ K .



The Face-Lift
Super-Replication price of digiCall with ∆ ∈ [0, 1] :

ess sup
ν

EPζ,ν
[
g
(
Xζ
T

)
−
∫ T

τ
δ(νs)ds

]
.



The Face-Lift
is the Super-Replication price of a callSpread with no constraints :

ess sup
ν

EPζ,ν
[
g
(
Xζ
T

)
−
∫ T

τ
δ(νs)ds

]
= EQ

[
ĝ
(
Xζ
T

)]
.
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In the constrained BSDE case

We have
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(
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∫ T

·

[
f
(
X̂ζ,ν
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)
− δ(νs)

]
ds
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In fact, one has the face-lift
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u∈L∞

{
Yt,x+u
t − δ(u)

}
.
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The Face-Lift
In the constrained BSDE case

We have

Yζθ = ess sup
ν∈U

E
[
ĝ
(
X̂ζ,ν
T

)
+

∫ T

·

[
f
(
X̂ζ,ν
s , Ỹ ζ,ν

s , Z̃ζ,νs

)
− δ(νs)

]
ds

]
Said differently

v(t, x) = v̂(t, x) := sup
y
{v(t, x+ y)− δ(y)}.

The face-lift has the nice property that

ˆ̂g(x) := sup
y
{ĝ(x+ y)− δ(y)} = ĝ(x).

The δ(ν) will kill the ν in X̂ζ,ν
T .
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The Stability Result

Finally we have∣∣∣Yt,xt − Et
[
Yt
′,x′

t′

]∣∣∣ ≤ C (∣∣t′ − t∣∣1/2 +
∣∣x− x′∣∣)

and we split this stability into

1. Stability in space ;

2. Stability in time.



Stability in Space

I Easy with standard estimates when ĝ is Lipschitz–continuous :∣∣∣Yt,xt − Yt,x′t

∣∣∣ ≤ ess sup
ν∈U

∣∣∣Ȳ t,x,ν
t − Ȳ t,x′,ν

t

∣∣∣ .
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[
Yt,xθ

]
.

I Taking ν = 0 gives one inequality ;

I For the other one, we have to ”kill” ν on [t, t′].

I This is done by face-lifting :

Yθ,X̄
t,x
θ −

∫ θ

t
δ (νsds) ≤ Yθ,X̄

t,x
θ − δ

(∫ θ

t
νsds

)
≤ Yθ,X̄

t,x
θ −

∫ θ
t νsds

since δ(
∫ θ
t νsds) ≤

∫ θ
t δ(νsds) and

∫ θ
t νsds ∈ U .
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Yt,xt = ess sup
ν∈U

E t,x,νt,θ

[
Yt,xθ

]
.

I Taking ν = 0 gives one inequality ;

I For the other one, we have to ”kill” ν on [t, t′].

I This is done by face-lifting :

Yθ,X̄
t,x
θ −

∫ θ

t
δ (νsds) ≤ Yθ,X̄

t,x
θ − δ

(∫ θ

t
νsds

)
≤ Yθ,X̄

t,x
θ −

∫ θ
t νsds

since δ(
∫ θ
t νsds) ≤

∫ θ
t δ(νsds) and

∫ θ
t νsds ∈ U .



Continuity at the Terminal Time

I The previous reasoning applies on [0, T ) ;
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I The previous reasoning applies on [0, T ) ;

I Then Y is continuous on [0, T ) ;



Continuity at the Terminal Time

I The previous reasoning applies on [0, T ) ;

I Then Y is continuous on [0, T ) ;

I Finally the stability in time implies

YζT− = ĝ
(
Xζ
T

)
.



Continuity at the Terminal Time

I The previous reasoning applies on [0, T ) ;

I Then Y is continuous on [0, T ) ;

I Finally the stability in time implies

YζT− = ĝ
(
Xζ
T

)
.

I And then
Yt,x1[0,T ) + ĝ(Xt,x

T )1{T}.
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