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Introduction
Given a forward process

Xt — x+/ bs (X17) d5+/ o5 (X5%) AW,
t t
We are interested in the minimal solution of the constrained BSDE
T i
yt@ Z g <X’%x) +/ fS (X?mv ;S@’Z?z) dS o / Z};’deS

with
Zteg—l (Xt’x) € K dt® dP-a.e.

with K convex set of support function d(u) := sup{k'u; k € K}.

More precisely, we are interested in the regularity of

(t,z) € [0,T] x R — PP
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Motivation
Super—Replication in Differential Games (1)

We want to extend
v(t,z,p) = inf {y : dvst. E [\Il (Xfp’x’”’a,Yjé’x’y’V’aﬂ >pV a}
to
il {y .37y e K’ st E [\If (X;l’v”va, Y;@v%”’“)] >pV a} .

Difficulty to establish DPP;
In Bouchard, M. & Nutz, done by covering & continuity ;

This does not allow to consider the Super-Replication :
v(t,z) := inf {y : 37v € K7 s.t. Y;;’x’y’u’a >yg (X;’z"j’a) v a}

where W (z,y) := 11y>4(z)} and p = 1.



Motivation
Super—Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

1. Constructing a smooth super-solution w "not so far” from v



Motivation
Super—Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

1. Constructing a smooth super-solution w "not so far” from v

2. Construct an almost optimal control based on w and verification type
arguments;



Motivation
Super—Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

1. Constructing a smooth super-solution w "not so far” from v

2. Construct an almost optimal control based on w and verification type
arguments;

3. Deduce the DPP for v using this Markovian Control.



Motivation
Super—Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

1. Constructing a smooth super-solution w "not so far” from v

2. Construct an almost optimal control based on w and verification type
arguments;

3. Deduce the DPP for v using this Markovian Control.

The point (1) need to have continuity for an object of this type

(t,x) — sup Y™,
6
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Motivation
Regularity for Solution of PPDE

Singular Control Problem :
5 tw,x,L,e
v (t,w,x) :=supE {U (XT’ e )]
L

with

Xt,w,:p,L,z—: :x+/ bz;,w( )d5+/ dW +/ f
t

Family of non-dominated measure indexed by L which is
not-bounded ;

BUT "PPDE of quasi-variational” type;
No-Trade Region : the optimal control L = 0;
Need for regularity of (t,w,z) — v°(t,w,x);
Done by showing that V'€ = v¢(t,w, ).
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Dual Formulation (¢ := (¢, x))

Equivalent families of Measure

For each predictable bounded process v we introduce

t,x,v
dP . _1 f \Uﬁl(Xt Z)Vs|2d5+fT 71 t’z)VdeS
dP

whav .= W — / X”” vyds

so that

Xt — g 4 / b (X7 + ] ds + / o (X57) dwhe.
t t



Dual Formulation
The family of standard BSDEs

Let (Yb*¥ Zb*v) be the unique S?(PH®V) x H2(PH™")-solution of

T T
vev =g (x4) +/ |7 (X8, 787, 28%) = o(vs)] ds —/ Z5V dWS.
Then

t,r | tx,v
Yy~ i=esssupY,
velu

T
= ess S;pEH;W’” [g (X%I> +/9 (fo (XE=, Y02V, Z0%7) — 6(vs)) ds}
ve

is the minimal solution of the previous constrained BSDE.
(see Cvitanic, Karatzas and Soner for the case of a convex driver)



Dual Formulation

Y is the minimal solution of the constrained BSDE

We have
—_ T —_ — —_
Yo = g (X%) +/ [f (XSC,YSC’”, ng”) —d(vs) + Zg’”a_l(Xﬁ’I)us] ds
- .
— / Z5" AW,

and the following characterization of K :

ze K = min{d(u)—z-u,uc Ry |ul =1} >0. (3.1)

1. The minimality comes from standard comparison and by (3.1) :
f(X,y,2) + 20 X (X)v —6(v) < f(X,y,2) whenever z¢€ K.

2. Y solution of the constrained BSDE comes from non-linear
Doob-Meyer decomposition, the fact that v lives in a cone, §
positively-homogeneous and (3.1).
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Main difficulties when considering ’yt” — e

T
i = s BF ™ o (X57) + [ (f (K12 00, 250) = 0)) s
14

» Different probabilities, conditional expectations (Strong Formulation) ;

» Each v is bounded, but all v's are not uniformly bounded (face-lift).
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Strong Formulation

The deterministic case

We have

ess sup }7(5’” = esssup }A/GC’V (5.1)
vel vel

with

T T
Yo —g XC +/ XC v ZCV) —5(%)} ds—/ Z5V AW s,
T . . T
yow —g XC’ +/ va va”,zgv”)—a(us)} ds—/ 257 W,
and
:w—i—/ b +us} ds+/ (Xg) AWSY
t t
::v—l—/ b XC’ +us} ds—l—/ U(X§’”> dWs.
t t
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Strong Formulation

The deterministic case

We have

ess sup }7(5’” = esssup }A/GC’V (5.1)
vel vel

This is done by :
1. The supremums in (5.1) may be taken among piecewise constant v ;
2. Then for each v € U, find ¥ € Uy, such that

}_/C,I/ — YCvV.

T T
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Strong Formulation

With an Adverse Control
We have

€ss sup 1794’”"1 = esssup 179(’”’& (5.2)
(va)eUx A (v, ) eUUx A

This is done by :
1. The supremums in (5.2) may be taken among piecewise constant v ;
2. Then for each (v, ) € Up. x A, find (7, &) € Uy, x A such that

YTC7V7a — 1/\/7_471_/7& .
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Strong Formulation

When the coefficients depend on w

We have

ess sup }70(,” = esssup }A/GC’V (5.3)
vel vel

In this case, even the definition of the strong formulation is not that clear

1. We added a delay on the dependence in w;

2. The supremums in (5.1) may be taken among piecewise constant v,
= Need for uniform continuity ;

3. Then for each v € Uy, find ¥ € U, such that
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The Face-Lift

Definition of the Face—Lift
Let

g(z) == sgp{g(fv +y) —4d(y)}-

1. One wants to hedge a digicall of strike K ;
2. Under the delta constraint that A € [0, 1].
In this case :

u if u>0;
d:u€eR— )
0 if ©w<O0.

And then :
0 if ze€l0,K—1];
Jg:xeR— < 2+ (1 - K) if xe[K—-1,K];
1 if 2> K.



The Face-Lift

Super-Replication price of digiCall with A € [0,1] :

¢ T
esssup EF™ [g (X%) —/ 5(Vs)ds] .




The Face-Lift

is the Super-Replication price of a callSpread with no constraints :

g™ [o () - [ stis] =52 s (x5))
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The Face-Lift

In the constrained BSDE case

We have
yg = esiesbl{lpE [g (X%”) + /T [f (ng”,&Cv”,Z?”) - 5(7/3)} ds]

In fact, one has the face-lift

yf’x > esssup {yf’”“ — 5(u)} .

u€ Lo



The Face-Lift

In the constrained BSDE case

We have

yg =esssupE [g (X%”) + /T [f (Xg”,ff”,Zg”) — 5(113)} ds]

veu

Said differently

v(t,z) = 0(t,x) == sgp{v(t,m +y)—d(y)}.
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The Face-Lift

In the constrained BSDE case

We have

A T A ~ ~
yg =esssupE [g (X%’”) —I—/ [f (Xg’”,YSC’”,ZSC’”) — 5(1/3)} ds]
veld .
Said differently
v(t,z) = 0(t,z) :=sup{v(t,x +y) — (y)}.
y

The face-lift has the nice property that

g(x) = sgp{ﬁ(m +y) —d(y)} = §().

The 6(v) will kill the v in X$".
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The Stability Result

Finally we have

1/2

e~ V]| <o (Jt - o + e - <))

and we split this stability into
1. Stability in space;
2. Stability in time.



Stability in Space

» Easy with standard estimates when g is Lipschitz—continuous :

=1 —t /
<esssup |, =Y.
vel

t,x t,x’
’y{ _yt’
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» We split in 2 inequalities
t,x t'
SV B Y] <
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We split in 2 inequalities
V=B |y <0 (jt =o'+ o - o)
and use the DPP

t,x t,x,v t,x
YV, = esssup St’e [ye } .
veu

Taking v = 0 gives one inequality;
For the other one, we have to "kill" v on [¢,].
This is done by face-lifting :
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Stability in Time
We split in 2 inequalities
V=B |y <0 (jt =o'+ o - o)
and use the DPP

t,x t,x,v t,x
YV, = esssup €t’9 [ye } .
veu

Taking v = 0 gives one inequality;
For the other one, we have to "kill" v on [¢,].
This is done by face-lifting :

_ 0 _ 0 = 3
VX" / § (veds) < Y95 — 6 < / I/sd3> < YRGS s
t t

since 5(ft€ vsds) < fte 5(vsds) and fte vsds € U.
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» The previous reasoning applies on [0,7) ;
» Then ) is continuous on [0,T);

> Finally the stability in time implies

Vi =a(x5).
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v

Continuity at the Terminal Time

The previous reasoning applies on [0,7);
Then Y is continuous on [0,7);
Finally the stability in time implies

Vi =a(x5).

And then
yt@l[o’T) + f](X;lx)l{T}
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