Regularity of Constrained BSDEs 2nd Young Researchers Meeting on BSDEs, Numerics and Finance

Ludovic Moreau

ETH, Zürich – <u>ludovic.moreau@math.ethz.ch</u>

Joint work with Bruno Bouchard and Romuald Elie

July, 07th 2014

Table of content

Introduction

Motivation

Dual Formulation and Minimal Solution

Main Difficulties

The Strong Formulation

The Face-Lift

Our Results

Table of content

Introduction

Motivation

Dual Formulation and Minimal Solution

Main Difficulties

The Strong Formulation

The Face–Lift

Our Results

Introduction

Given a forward process

$$X^{t,x} = x + \int_t^{\cdot} b_s \left(X_s^{t,x} \right) ds + \int_t^{\cdot} \sigma_s \left(X_s^{t,x} \right) dW_s.$$

We are interested in the minimal solution of the constrained BSDE

$$\mathcal{Y}^{t,x} \ge g\left(X_T^{t,x}\right) + \int_{\cdot}^T f_s\left(X_s^{t,x}, \mathcal{Y}_s^{t,x}, \mathcal{Z}_s^{t,x}\right) ds - \int_{\cdot}^T \mathcal{Z}_s^{t,x} dW_s$$

with

$$\mathcal{Z}^{t,x}\sigma^{-1}\left(X^{t,x}
ight)\in K \quad dt\otimes d\mathbb{P}$$
-a.e.

with K convex set of support function $\delta(u) := \sup\{k^{\top}u ; k \in K\}$.

Introduction

Given a forward process

$$X^{t,x} = x + \int_t^{\cdot} b_s \left(X_s^{t,x} \right) ds + \int_t^{\cdot} \sigma_s \left(X_s^{t,x} \right) dW_s.$$

We are interested in the minimal solution of the constrained BSDE

$$\mathcal{Y}^{t,x} \ge g\left(X_T^{t,x}\right) + \int_{\cdot}^T f_s\left(X_s^{t,x}, \mathcal{Y}_s^{t,x}, \mathcal{Z}_s^{t,x}\right) ds - \int_{\cdot}^T \mathcal{Z}_s^{t,x} dW_s$$

with

$$\mathcal{Z}^{t,x}\sigma^{-1}\left(X^{t,x}
ight)\in K \quad dt\otimes d\mathbb{P}$$
-a.e.

with K convex set of support function $\delta(u) := \sup\{k^{\top}u ; k \in K\}.$

More precisely, we are interested in the regularity of

$$(t,x) \in [0,T] \times \mathbb{R}^d \longmapsto \mathcal{Y}_t^{t,x}.$$

Table of content

Introduction

Motivation

Dual Formulation and Minimal Solution

Main Difficulties

The Strong Formulation

The Face-Lift

Our Results

Super-Replication in Differential Games (Bouchard and Nutz);

- Super-Replication in Differential Games (Bouchard and Nutz);
- Numerical Schemes;

- Super-Replication in Differential Games (Bouchard and Nutz);
- Numerical Schemes;
- A priori regularity for PPDEs.

Super-Replication in Differential Games (1)

We want to extend

$$v(t, x, p) := \inf \left\{ y : \exists \nu \text{ s.t. } \mathbb{E} \left[\Psi \left(X_T^{t, x, \nu, \alpha}, Y_T^{t, x, y, \nu, \alpha} \right) \right] \ge p \forall \alpha \right\}$$

to

$$\inf \left\{y: \ \exists \ "\nu \in K" \ \text{s.t.} \ \mathbb{E}\left[\Psi\left(X_T^{t,x,\nu,\alpha},Y_T^{t,x,y,\nu,\alpha}\right)\right] \geq p \ \forall \ \alpha \right\}.$$

Super-Replication in Differential Games (1)

We want to extend

$$v(t, x, p) := \inf \left\{ y : \exists \nu \text{ s.t. } \mathbb{E} \left[\Psi \left(X_T^{t, x, \nu, \alpha}, Y_T^{t, x, y, \nu, \alpha} \right) \right] \ge p \forall \alpha \right\}$$

to

$$\inf \left\{ y: \ \exists \ "\nu \in K" \ \text{s.t.} \ \mathbb{E}\left[\Psi\left(X^{t,x,\nu,\alpha}_T,Y^{t,x,y,\nu,\alpha}_T\right) \right] \geq p \ \forall \ \alpha \right\}.$$

Difficulty to establish DPP;

Super-Replication in Differential Games (1)

We want to extend

$$v(t, x, p) := \inf \left\{ y : \exists \nu \text{ s.t. } \mathbb{E} \left[\Psi \left(X_T^{t, x, \nu, \alpha}, Y_T^{t, x, y, \nu, \alpha} \right) \right] \ge p \forall \alpha \right\}$$

to

$$\inf \left\{ y: \ \exists \ "\nu \in K" \ \text{s.t.} \ \mathbb{E}\left[\Psi\left(X_T^{t,x,\nu,\alpha},Y_T^{t,x,y,\nu,\alpha}\right) \right] \geq p \ \forall \ \alpha \right\}.$$

- Difficulty to establish DPP;
- In Bouchard, M. & Nutz, done by covering \oplus continuity;

Super-Replication in Differential Games (1)

We want to extend

$$v(t, x, p) := \inf \left\{ y : \exists \nu \text{ s.t. } \mathbb{E} \left[\Psi \left(X_T^{t, x, \nu, \alpha}, Y_T^{t, x, y, \nu, \alpha} \right) \right] \ge p \forall \alpha \right\}$$

to

$$\inf \left\{ y: \ \exists \ "\nu \in K" \ \text{s.t.} \ \mathbb{E}\left[\Psi\left(X_T^{t,x,\nu,\alpha},Y_T^{t,x,y,\nu,\alpha}\right) \right] \geq p \ \forall \ \alpha \right\}.$$

- Difficulty to establish DPP;
- ▶ In Bouchard, M. & Nutz, done by covering ⊕ continuity;
- This does not allow to consider the Super-Replication :

$$v(t,x) := \inf \left\{ y: \exists "\nu \in K" \text{ s.t. } Y_T^{t,x,y,\nu,\alpha} \ge g\left(X_T^{t,x,\nu,\alpha}\right) \ \forall \ \alpha \right\}$$

where $\Psi(x,y) := \mathbf{1}_{\{y \ge g(x)\}}$ and p = 1.

Super-Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

1. Constructing a smooth super-solution w "not so far" from v;

Super-Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

- 1. Constructing a smooth super-solution w "not so far" from v;
- 2. Construct an almost optimal control based on \boldsymbol{w} and verification type arguments ;

Super-Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

- 1. Constructing a smooth super-solution w "not so far" from v;
- 2. Construct an almost optimal control based on \boldsymbol{w} and verification type arguments ;
- 3. Deduce the DPP for v using this Markovian Control.

Super-Replication in Differential Games (2)

In Bouchard & Nutz, they establish the DPP in the SR case by

- 1. Constructing a smooth super-solution w "not so far" from v;
- 2. Construct an almost optimal control based on \boldsymbol{w} and verification type arguments ;
- 3. Deduce the DPP for v using this Markovian Control.

The point $\left(1\right)$ need to have continuity for an object of this type

$$(t,x) \longmapsto \sup_{\alpha} \mathcal{Y}_t^{t,x,\alpha}$$

Regularity for Solution of PPDE

Singular Control Problem :

$$v^{\varepsilon}(t,\omega,x) := \sup_{L} \mathbb{E} \left[U \left(X_{T}^{t,\omega,x,L,\varepsilon} \right) \right]$$

$$X^{t,\omega,x,L,\varepsilon} = x + \int_t^{\cdot} b_s^{t,\omega} \left(X_s \right) ds + \int_t^{\cdot} \sigma_s^{t,\omega} \left(X_s \right) dW_s + \int_t^{\cdot} f(\varepsilon) dL_s;$$

Regularity for Solution of PPDE

Singular Control Problem :

$$v^{\varepsilon}(t,\omega,x) := \sup_{L} \mathbb{E} \left[U \left(X_{T}^{t,\omega,x,L,\varepsilon} \right) \right]$$

with

$$X^{t,\omega,x,L,\varepsilon} = x + \int_t^{\cdot} b_s^{t,\omega} \left(X_s \right) ds + \int_t^{\cdot} \sigma_s^{t,\omega} \left(X_s \right) dW_s + \int_t^{\cdot} f(\varepsilon) dL_s;$$

 Family of non-dominated measure indexed by L which is not-bounded;

Regularity for Solution of PPDE

Singular Control Problem :

$$v^{\varepsilon}(t,\omega,x) := \sup_{L} \mathbb{E} \left[U \left(X_{T}^{t,\omega,x,L,\varepsilon} \right) \right]$$

$$X^{t,\omega,x,L,\varepsilon} = x + \int_t^{\cdot} b_s^{t,\omega} \left(X_s \right) ds + \int_t^{\cdot} \sigma_s^{t,\omega} \left(X_s \right) dW_s + \int_t^{\cdot} f(\varepsilon) dL_s;$$

- Family of non-dominated measure indexed by L which is not-bounded;
- BUT "PPDE of quasi-variational" type;

Regularity for Solution of PPDE

Singular Control Problem :

$$v^{\varepsilon}(t,\omega,x) := \sup_{L} \mathbb{E} \left[U \left(X_{T}^{t,\omega,x,L,\varepsilon} \right) \right]$$

$$X^{t,\omega,x,L,\varepsilon} = x + \int_t^{\cdot} b_s^{t,\omega} \left(X_s \right) ds + \int_t^{\cdot} \sigma_s^{t,\omega} \left(X_s \right) dW_s + \int_t^{\cdot} f(\varepsilon) dL_s;$$

- Family of non-dominated measure indexed by L which is not-bounded;
- BUT "PPDE of quasi-variational" type;
- No-Trade Region : the optimal control $L \equiv 0$;

Regularity for Solution of PPDE

Singular Control Problem :

$$v^{\varepsilon}(t,\omega,x) := \sup_{L} \mathbb{E} \left[U \left(X_{T}^{t,\omega,x,L,\varepsilon} \right) \right]$$

$$X^{t,\omega,x,L,\varepsilon} = x + \int_t^{\cdot} b_s^{t,\omega} \left(X_s \right) ds + \int_t^{\cdot} \sigma_s^{t,\omega} \left(X_s \right) dW_s + \int_t^{\cdot} f(\varepsilon) dL_s;$$

- Family of non-dominated measure indexed by L which is not-bounded;
- BUT "PPDE of quasi-variational" type;
- No-Trade Region : the optimal control $L \equiv 0$;
- $\blacktriangleright \ \text{Need for regularity of } (t, \omega, x) \longmapsto v^{\varepsilon}(t, \omega, x) \, ;$

Regularity for Solution of PPDE

Singular Control Problem :

$$v^{\varepsilon}(t,\omega,x) := \sup_{L} \mathbb{E} \left[U \left(X_{T}^{t,\omega,x,L,\varepsilon} \right) \right]$$

$$X^{t,\omega,x,L,\varepsilon} = x + \int_t^{\cdot} b_s^{t,\omega} \left(X_s \right) ds + \int_t^{\cdot} \sigma_s^{t,\omega} \left(X_s \right) dW_s + \int_t^{\cdot} f(\varepsilon) dL_s;$$

- Family of non-dominated measure indexed by L which is not-bounded;
- BUT "PPDE of quasi-variational" type;
- No-Trade Region : the optimal control $L \equiv 0$;
- \blacktriangleright Need for regularity of $(t,\omega,x)\longmapsto v^{\varepsilon}(t,\omega,x)$;
- ▶ Done by showing that $\mathcal{Y}^{t,\omega,x,\varepsilon} = v^{\varepsilon}(t,\omega,x).$

Table of content

Introduction

Motivation

Dual Formulation and Minimal Solution

Main Difficulties

The Strong Formulation

The Face–Lift

Our Results

Dual Formulation $(\zeta := (t, x))$

Equivalent families of Measure

For each predictable bounded process ν we introduce

$$\frac{d\mathbb{P}^{t,x,\nu}}{d\mathbb{P}} = e^{-\frac{1}{2}\int_{\tau}^{T} |\sigma^{-1}(X_s^{t,x})\nu_s|^2 ds + \int_{\tau}^{T} \sigma^{-1}(X_s^{t,x})\nu_s dW_s}}{W^{t,x,\nu} := W - \int_{\tau}^{\tau \vee \cdot} \sigma^{-1}(X_s^{t,x})\nu_s ds}$$

so that

$$X^{t,x} = x + \int_{t}^{\cdot} \left[b\left(X_{s}^{t,x}\right) + \nu_{s} \right] ds + \int_{t}^{\cdot} \sigma\left(X_{s}^{t,x}\right) dW_{s}^{t,x,\nu}$$

Dual Formulation The family of standard BSDEs

Let $(\bar{Y}^{t,x,\nu}, \bar{Z}^{t,x,\nu})$ be the unique $\mathbf{S}^2(\mathbb{P}^{t,x,\nu}) imes \mathbf{H}^2(\mathbb{P}^{t,x,\nu})$ -solution of

$$\bar{Y}^{\zeta,\nu} = g\left(X_T^{\zeta}\right) + \int_{\cdot}^T \left[f\left(X_s^{\zeta}, \bar{Y}_s^{\zeta,\nu}, \bar{Z}_s^{\zeta,\nu}\right) - \delta(\nu_s) \right] ds - \int_{\cdot}^T \bar{Z}_s^{\zeta,\nu} dW_s^{\zeta,\nu} d$$

Then

$$\begin{aligned} \mathcal{Y}_{\theta}^{t,x} &:= \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \bar{Y}_{\theta}^{t,x,\nu} \\ &= \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathbb{E}_{\theta}^{\mathbb{P}^{t,x,\nu}} \left[g\left(X_{T}^{t,x} \right) + \int_{\theta}^{T} \left(f_{s}\left(X_{s}^{t,x}, \bar{Y}_{s}^{t,x,\nu}, \bar{Z}_{s}^{t,x,\nu} \right) - \delta(\nu_{s}) \right) ds \right] \end{aligned}$$

is the minimal solution of the previous constrained BSDE. (see Cvitanic, Karatzas and Soner for the case of a convex driver)

Dual Formulation

 ${\mathcal Y}$ is the minimal solution of the constrained BSDE

We have

$$\bar{Y}^{\zeta,\nu} = g\left(X_T^{\zeta}\right) + \int_{\cdot}^T \left[f\left(X_s^{\zeta}, \bar{Y}_s^{\zeta,\nu}, \bar{Z}_s^{\zeta,\nu}\right) - \delta(\nu_s) + \bar{Z}_s^{\zeta,\nu}\sigma^{-1}(X_s^{t,x})\nu_s \right] ds \\ - \int_{\cdot}^T \bar{Z}_s^{\zeta,\nu} dW_s$$

and the following characterization of \boldsymbol{K} :

$$z \in K \implies \min\{\delta(u) - z \cdot u, u \in \mathbb{R}^d, |u| = 1\} \ge 0.$$
 (3.1)

1. The minimality comes from standard comparison and by (3.1) :

$$f(X, y, z) + z\sigma^{-1}(X)\nu - \delta(\nu) \le f(X, y, z)$$
 whenever $z \in K$.

2. \mathcal{Y} solution of the constrained BSDE comes from non-linear Doob-Meyer decomposition, the fact that ν lives in a cone, δ positively-homogeneous and (3.1).

Table of content

Introduction

Motivation

Dual Formulation and Minimal Solution

Main Difficulties

The Strong Formulation

The Face-Lift

Our Results

Main difficulties when considering $\left| \mathcal{Y}_{t}^{t,x} - \mathcal{Y}_{t'}^{t',x'} \right|$

$$\mathcal{Y}_{t}^{t,x} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathbb{E}_{t}^{\mathbb{P}^{t,x,\nu}} \left[g\left(X_{T}^{t,x}\right) + \int_{t}^{T} \left(f_{s}\left(X_{s}^{t,x}, \bar{Y}_{s}^{t,x,\nu}, \bar{Z}_{s}^{t,x,\nu}\right) - \delta(\nu_{s}) \right) ds \right]$$

- Different probabilities, conditional expectations (Strong Formulation);
- Each ν is bounded, but all ν 's are not uniformly bounded (face-lift).

Table of content

Introduction

Motivation

Dual Formulation and Minimal Solution

Main Difficulties

The Strong Formulation

The Face–Lift

Our Results

The deterministic case

We have

$$\operatorname{ess\,sup}_{\nu \in \mathcal{U}} \bar{Y}_{\theta}^{\zeta,\nu} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \hat{Y}_{\theta}^{\zeta,\nu}$$
(5.1)

with

$$\bar{Y}^{\zeta,\nu} = g\left(X_T^{\zeta}\right) + \int_{\cdot}^T \left[f\left(X_s^{\zeta}, \bar{Y}_s^{\zeta,\nu}, \bar{Z}_s^{\zeta,\nu}\right) - \delta(\nu_s) \right] ds - \int_{\cdot}^T \bar{Z}_s^{\zeta,\nu} dW_s^{\zeta,\nu},$$
$$\hat{Y}^{\zeta,\nu} = g\left(\hat{X}_T^{\zeta,\nu}\right) + \int_{\cdot}^T \left[f_s\left(\hat{X}_s^{\zeta,\nu}, \hat{Y}_s^{\zeta,\nu}, \hat{Z}_s^{\zeta,\nu}\right) - \delta(\nu_s) \right] ds - \int_{\cdot}^T \hat{Z}_s^{\zeta,\nu} dW_s.$$

 $\quad \text{and} \quad$

$$X^{\zeta} = x + \int_{t}^{\cdot} \left[b\left(X_{s}^{\zeta}\right) + \nu_{s} \right] ds + \int_{t}^{\cdot} \sigma\left(X_{s}^{\zeta}\right) dW_{s}^{\zeta,\nu},$$
$$\hat{X}^{\zeta,\nu} = x + \int_{t}^{\cdot} \left[b\left(\hat{X}_{s}^{\zeta,\nu}\right) + \nu_{s} \right] ds + \int_{t}^{\cdot} \sigma\left(\hat{X}_{s}^{\zeta,\nu}\right) dW_{s}.$$

The deterministic case

We have

$$\operatorname{ess\,sup}_{\nu\in\mathcal{U}}\bar{Y}^{\zeta,\nu}_{\theta} = \operatorname{ess\,sup}_{\nu\in\mathcal{U}}\hat{Y}^{\zeta,\nu}_{\theta} \tag{5.1}$$

This is done by :

1. The supremums in (5.1) may be taken among piecewise constant ν ;

The deterministic case

We have

$$\operatorname{ess\,sup}_{\nu\in\mathcal{U}}\bar{Y}^{\zeta,\nu}_{\theta} = \operatorname{ess\,sup}_{\nu\in\mathcal{U}}\hat{Y}^{\zeta,\nu}_{\theta} \tag{5.1}$$

This is done by :

- 1. The supremums in (5.1) may be taken among piecewise constant $\nu\,;$
- 2. Then for each $\nu \in \mathcal{U}_{pc}$, find $\bar{\nu} \in \mathcal{U}_{pc}$ such that

$$\bar{Y}^{\zeta,\nu}_{\tau} = \hat{Y}^{\zeta,\bar{\nu}}_{\tau}.$$

With an Adverse Control

We have

$$\operatorname{ess\,sup}_{(\nu,\alpha)\in\mathcal{U}\times\mathcal{A}}\bar{Y}^{\zeta,\nu,\alpha}_{\theta} = \operatorname{ess\,sup}_{(\nu,\alpha)\in\mathcal{U}\times\mathcal{A}}\hat{Y}^{\zeta,\nu,\alpha}_{\theta}$$
(5.2)

With an Adverse Control

We have

$$\operatorname{ess\,sup}_{(\nu,\alpha)\in\mathcal{U}\times\mathcal{A}}\bar{Y}_{\theta}^{\zeta,\nu,\alpha} = \operatorname{ess\,sup}_{(\nu,\alpha)\in\mathcal{U}\times\mathcal{A}}\hat{Y}_{\theta}^{\zeta,\nu,\alpha}$$
(5.2)

This is done by :

1. The supremums in (5.2) may be taken among piecewise constant ν ;

With an Adverse Control

We have

$$\operatorname{ess\,sup}_{(\nu,\alpha)\in\mathcal{U}\times\mathcal{A}}\bar{Y}_{\theta}^{\zeta,\nu,\alpha} = \operatorname{ess\,sup}_{(\nu,\alpha)\in\mathcal{U}\times\mathcal{A}}\hat{Y}_{\theta}^{\zeta,\nu,\alpha}$$
(5.2)

This is done by :

1. The supremums in (5.2) may be taken among piecewise constant ν ;

2. Then for each $(\nu, \alpha) \in \mathcal{U}_{pc} \times \mathcal{A}$, find $(\bar{\nu}, \bar{\alpha}) \in \mathcal{U}_{pc} \times \mathcal{A}$ such that

$$\bar{Y}^{\zeta,\nu,\alpha}_{\tau} = \hat{Y}^{\zeta,\bar{\nu},\bar{\alpha}}_{\tau}.$$

When the coefficients depend on $\boldsymbol{\omega}$

We have

$$\operatorname{ess\,sup}_{\nu\in\mathcal{U}}\bar{Y}^{\zeta,\nu}_{\theta} = \operatorname{ess\,sup}_{\nu\in\mathcal{U}}\hat{Y}^{\zeta,\nu}_{\theta} \tag{5.3}$$

When the coefficients depend on $\boldsymbol{\omega}$

We have

$$\operatorname{ess\,sup}_{\nu \in \mathcal{U}} \bar{Y}_{\theta}^{\zeta,\nu} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \hat{Y}_{\theta}^{\zeta,\nu} \tag{5.3}$$

In this case, even the definition of the strong formulation is not that clear

1. We added a delay on the dependence in ω ;

When the coefficients depend on $\boldsymbol{\omega}$

We have

$$\operatorname{ess\,sup}_{\nu \in \mathcal{U}} \bar{Y}^{\zeta,\nu}_{\theta} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \hat{Y}^{\zeta,\nu}_{\theta} \tag{5.3}$$

In this case, even the definition of the strong formulation is not that clear

- 1. We added a delay on the dependence in $\omega\,;$
- 2. The supremums in (5.1) may be taken among piecewise constant ν , \Rightarrow Need for uniform continuity;

When the coefficients depend on $\boldsymbol{\omega}$

We have

$$\operatorname{ess\,sup}_{\nu \in \mathcal{U}} \bar{Y}_{\theta}^{\zeta,\nu} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \hat{Y}_{\theta}^{\zeta,\nu}$$
(5.3)

In this case, even the definition of the strong formulation is not that clear

- 1. We added a delay on the dependence in ω ;
- 2. The supremums in (5.1) may be taken among piecewise constant ν , \Rightarrow Need for uniform continuity;
- 3. Then for each $\nu \in \mathcal{U}_{pc}$, find $ar{
 u} \in \mathcal{U}_{pc}$ such that

$$\bar{Y}^{\zeta,\nu}_{\tau} = \hat{Y}^{\zeta,\bar{\nu}}_{\tau}.$$

Table of content

- Introduction
- Motivation
- **Dual Formulation and Minimal Solution**
- Main Difficulties
- The Strong Formulation
- The Face-Lift
- Our Results

Definition of the Face-Lift

$$\hat{g}(x) := \sup_{y} \{g(x+y) - \delta(y)\}.$$

Let

Definition of the Face-Lift

Let

$$\hat{g}(x) := \sup_{y} \{g(x+y) - \delta(y)\}.$$

1. One wants to hedge a digicall of strike K;

Definition of the Face-Lift

$$\hat{g}(x) := \sup_{y} \{ g(x+y) - \delta(y) \}.$$

- 1. One wants to hedge a digicall of strike K;
- 2. Under the delta constraint that $\Delta \in [0,1].$

Definition of the Face-Lift

$$\hat{g}(x) := \sup_{y} \{g(x+y) - \delta(y)\}.$$

1. One wants to hedge a digicall of strike K;

2. Under the delta constraint that $\Delta \in [0, 1]$. In this case :

$$\delta: u \in \mathbb{R} \longmapsto \begin{cases} u & \text{if } u \ge 0 \\ 0 & \text{if } u \le 0 \end{cases}.$$

Definition of the Face-Lift

$$\hat{g}(x) := \sup_{y} \{g(x+y) - \delta(y)\}.$$

1. One wants to hedge a digicall of strike K;

2. Under the delta constraint that $\Delta \in [0,1]$. In this case :

$$\delta: u \in \mathbb{R} \longmapsto \begin{cases} u & \text{if } u \ge 0 ;\\ 0 & \text{if } u \le 0 . \end{cases}$$

And then :

$$\hat{g}: x \in \mathbb{R}_+ \longmapsto \begin{cases} 0 & \text{if } x \in [0, K-1]; \\ x + (1-K) & \text{if } x \in [K-1, K]; \\ 1 & \text{if } x \ge K. \end{cases}$$

Super-Replication price of digiCall with $\Delta \in [0,1]$:

$$\operatorname{ess\,sup}_{\nu} \mathbb{E}^{\mathbb{P}^{\zeta,\nu}} \left[g\left(X_T^{\zeta} \right) - \int_{\tau}^T \delta(\nu_s) ds \right].$$

is the Super-Replication price of a callSpread with no constraints :

$$\operatorname{ess\,sup}_{\nu} \mathbb{E}^{\mathbb{P}^{\zeta,\nu}} \left[g\left(X_T^{\zeta} \right) - \int_{\tau}^T \delta(\nu_s) ds \right] = \mathbb{E}^{\mathbb{Q}} \left[\hat{g}\left(X_T^{\zeta} \right) \right].$$

In the constrained BSDE case

We have

$$\mathcal{Y}_{\theta}^{\zeta} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathbb{E}\left[\hat{g}\left(\hat{X}_{T}^{\zeta,\nu}\right) + \int_{\cdot}^{T} \left[f\left(\hat{X}_{s}^{\zeta,\nu}, \tilde{Y}_{s}^{\zeta,\nu}, \tilde{Z}_{s}^{\zeta,\nu}\right) - \delta(\nu_{s})\right] ds\right]$$

In the constrained BSDE case

We have

$$\mathcal{Y}_{\theta}^{\zeta} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathbb{E}\left[\hat{g}\left(\hat{X}_{T}^{\zeta,\nu}\right) + \int_{\cdot}^{T} \left[f\left(\hat{X}_{s}^{\zeta,\nu}, \tilde{Y}_{s}^{\zeta,\nu}, \tilde{Z}_{s}^{\zeta,\nu}\right) - \delta(\nu_{s})\right] ds\right]$$

In fact, one has the face-lift

$$\mathcal{Y}_t^{t,x} \ge \operatorname{ess\,sup}_{u \in L_\infty} \left\{ \mathcal{Y}_t^{t,x+u} - \delta(u) \right\}$$

In the constrained BSDE case

We have

$$\mathcal{Y}_{\theta}^{\zeta} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathbb{E}\left[\hat{g}\left(\hat{X}_{T}^{\zeta,\nu}\right) + \int_{\cdot}^{T} \left[f\left(\hat{X}_{s}^{\zeta,\nu}, \tilde{Y}_{s}^{\zeta,\nu}, \tilde{Z}_{s}^{\zeta,\nu}\right) - \delta(\nu_{s})\right] ds\right]$$

Said differently

$$v(t,x) = \hat{v}(t,x) := \sup_{y} \{v(t,x+y) - \delta(y)\}.$$

In the constrained BSDE case

We have

$$\mathcal{Y}_{\theta}^{\zeta} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathbb{E}\left[\hat{g}\left(\hat{X}_{T}^{\zeta,\nu}\right) + \int_{\cdot}^{T} \left[f\left(\hat{X}_{s}^{\zeta,\nu}, \tilde{Y}_{s}^{\zeta,\nu}, \tilde{Z}_{s}^{\zeta,\nu}\right) - \delta(\nu_{s})\right] ds\right]$$

Said differently

$$v(t,x) = \hat{v}(t,x) := \sup_{y} \{v(t,x+y) - \delta(y)\}.$$

The face-lift has the nice property that

$$\hat{\hat{g}}(x) := \sup_{y} \{\hat{g}(x+y) - \delta(y)\} = \hat{g}(x).$$

In the constrained BSDE case

We have

$$\mathcal{Y}_{\theta}^{\zeta} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathbb{E} \left[\hat{g} \left(\hat{X}_{T}^{\zeta, \nu} \right) + \int_{\cdot}^{T} \left[f \left(\hat{X}_{s}^{\zeta, \nu}, \tilde{Y}_{s}^{\zeta, \nu}, \tilde{Z}_{s}^{\zeta, \nu} \right) - \delta(\nu_{s}) \right] ds \right]$$

Said differently

$$v(t,x) = \hat{v}(t,x) := \sup_{y} \{v(t,x+y) - \delta(y)\}.$$

The face-lift has the nice property that

$$\hat{\hat{g}}(x) := \sup_{y} \{\hat{g}(x+y) - \delta(y)\} = \hat{g}(x).$$

The $\delta(\nu)$ will kill the ν in $\hat{X}_T^{\zeta,\nu}$.

Table of content

Introduction

Motivation

Dual Formulation and Minimal Solution

Main Difficulties

The Strong Formulation

The Face–Lift

Our Results The Stability Result The Continuity at Final Time

The Stability Result

Finally we have

$$\left|\mathcal{Y}_{t}^{t,x} - \mathbb{E}_{t}\left[\mathcal{Y}_{t'}^{t',x'}\right]\right| \leq C\left(\left|t'-t\right|^{1/2} + \left|x-x'\right|\right)$$

and we split this stability into

- 1. Stability in space;
- 2. Stability in time.

Stability in Space

• Easy with standard estimates when \hat{g} is Lipschitz–continuous :

$$\left|\mathcal{Y}_{t}^{t,x} - \mathcal{Y}_{t}^{t,x'}\right| \leq \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \left|\bar{Y}_{t}^{t,x,\nu} - \bar{Y}_{t}^{t,x',\nu}\right|$$

We split in 2 inequalities

$$\cdots \leq \mathcal{Y}_t^{t,x} - \mathbb{E}_t \left[\mathcal{Y}_{t'}^{t',x'} \right] \leq \cdots$$

and use the DPP

$$\mathcal{Y}_{t}^{t,x} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathcal{E}_{t,\theta}^{t,x,\nu} \left[\mathcal{Y}_{\theta}^{t,x} \right].$$

▶ We split in 2 inequalities

$$-C\left(\left|t'-t\right|^{1/2}+\left|x-x'\right|\right) \le \mathcal{Y}_{t}^{t,x}-\mathbb{E}_{t}\left[\mathcal{Y}_{t'}^{t',x'}\right]$$

and use the DPP

$$\mathcal{Y}_{t}^{t,x} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathcal{E}_{t,\theta}^{t,x,\nu} \left[\mathcal{Y}_{\theta}^{t,x} \right].$$

• Taking $\nu = 0$ gives one inequality;

We split in 2 inequalities

$$\mathcal{Y}_{t}^{t,x} - \mathbb{E}_{t}\left[\mathcal{Y}_{t'}^{t',x'}\right] \leq C\left(\left|t'-t\right|^{1/2} + \left|x-x'\right|\right)$$

and use the DPP

$$\mathcal{Y}_{t}^{t,x} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathcal{E}_{t,\theta}^{t,x,\nu} \left[\mathcal{Y}_{\theta}^{t,x} \right].$$

- Taking $\nu = 0$ gives one inequality;
- For the other one, we have to "kill" ν on [t, t'].

We split in 2 inequalities

$$\mathcal{Y}_{t}^{t,x} - \mathbb{E}_{t}\left[\mathcal{Y}_{t'}^{t',x'}\right] \leq C\left(\left|t'-t\right|^{1/2} + \left|x-x'\right|\right)$$

and use the DPP

$$\mathcal{Y}_{t}^{t,x} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathcal{E}_{t,\theta}^{t,x,\nu} \left[\mathcal{Y}_{\theta}^{t,x} \right].$$

- Taking $\nu = 0$ gives one inequality;
- For the other one, we have to "kill" ν on [t, t'].
- This is done by face-lifting :

$$\mathcal{Y}^{\theta,\bar{X}^{t,x}_{\theta}} - \int_{t}^{\theta} \delta\left(\nu_{s} ds\right) \leq \mathcal{Y}^{\theta,\bar{X}^{t,x}_{\theta}} - \delta\left(\int_{t}^{\theta} \nu_{s} ds\right) \leq \mathcal{Y}^{\theta,\bar{X}^{t,x}_{\theta} - \int_{t}^{\theta} \nu_{s} ds}$$

since $\delta(\int_t^\theta \nu_s ds) \leq \int_t^\theta \delta(\nu_s ds)$ and $\int_t^\theta \nu_s ds \in \mathcal{U}$.

We split in 2 inequalities

$$\mathcal{Y}_{t}^{t,x} - \mathbb{E}_{t}\left[\mathcal{Y}_{t'}^{t',x'}\right] \leq C\left(\left|t'-t\right|^{1/2} + \left|x-x'\right|\right)$$

and use the DPP

$$\mathcal{Y}_{t}^{t,x} = \operatorname{ess\,sup}_{\nu \in \mathcal{U}} \mathcal{E}_{t,\theta}^{t,x,\nu} \left[\mathcal{Y}_{\theta}^{t,x} \right].$$

- Taking $\nu = 0$ gives one inequality;
- For the other one, we have to "kill" ν on [t, t'].
- This is done by face-lifting :

$$\mathcal{Y}^{\theta, \bar{X}^{t, x}_{\theta}} - \int_{t}^{\theta} \delta\left(\nu_{s} ds\right) \leq \mathcal{Y}^{\theta, \bar{X}^{t, x}_{\theta}} - \delta\left(\int_{t}^{\theta} \nu_{s} ds\right) \leq \mathcal{Y}^{\theta, \bar{X}^{t, x}_{\theta} - \int_{t}^{\theta} \nu_{s} ds}$$

since $\delta(\int_t^\theta \nu_s ds) \leq \int_t^\theta \delta(\nu_s ds)$ and $\int_t^\theta \nu_s ds \in \mathcal{U}$.

• The previous reasoning applies on [0,T);

- The previous reasoning applies on [0,T);
- Then $\mathcal Y$ is continuous on [0,T) ;

- The previous reasoning applies on [0,T);
- Then $\mathcal Y$ is continuous on [0,T);
- Finally the stability in time implies

$$\mathcal{Y}_{T-}^{\zeta} = \hat{g}\left(X_T^{\zeta}\right).$$

- The previous reasoning applies on [0,T);
- Then $\mathcal Y$ is continuous on [0,T);
- Finally the stability in time implies

$$\mathcal{Y}_{T-}^{\zeta} = \hat{g}\left(X_T^{\zeta}\right).$$

And then

$$\mathcal{Y}^{t,x}\mathbf{1}_{[0,T)} + \hat{g}(X_T^{t,x})\mathbf{1}_{\{T\}}.$$