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FBSDEs

Let (W;)¢>0 be m-dimensional Brownian motion.

X
Yi

Assumption (HXO0):

X+ [o u(Xs)ds + [o o(Xs)dWs
g(Xr) + [T (Y, Z)ds — [ Z.aw,

lg(x) = gW)I* < Lix = yI*,
() < LA+ [y[") o) < L(1+|x[7), r+12=2q,

Lo — oI < Lilx -y,

(x =y, ) = ply)) +©
Assumption (HYO0):

[f(y.2) < L+ Lyly|" + Llzl], m=1,
<y/_y?f(t7X7y/7Z)_ f(tax7yvz)> S Ly|y/_)/|2-
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Motivation

Biology model for electrical distribution in the heart (here in 1-d)

{ —0su — %02Au = cu—ud
u(T,) = &)
and u > 0 for any t € [0, T] - A FitzZHugh-Nagumo type PDE.

Often reaction diffusion PDEs have the form

{ —Owu—30°Au = cu—u*", neN
u(T,) = g(*)

Hence monotone condition only holds on the positive domain.

Lukasz Szpruch (University of Edinburgh) Tamed schemes BSDEs, Numerics and Finance 3/32



FBSDEs - Approximations

Forward process: 1st idea - use explicit Euler scheme with h= T /N and
Awqr = w((k +1) h) — w(k h)

Xir1 = Xi + (X)) h 4 o(Xe) Awi g1,  Xo = x
Backward process: Consider Yy := g(Xy), Zy :=0, and fori=N—-1,...,0,

Y; = E; {Y,-Jrl + f(Y,'+17Zi+1)h}7

N
I

where E;[-] := E[-|F].
@ In this talk we only deal with time-discretization error

@ in practical simulations of backward part, even Lipschitz case causes trouble
(big Lipschitz constant, big terminal condition)
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A motivating example for backward part

Let £ € Fy and € € LP for p > 2.

1 1
Y, :g—/ Y_}ds—/ ZsdW,, te€0,1]
t t
For the explicit scheme we have

Yi= E[Yi-l-l - Y:ilhl}-ll = E[Yi-‘rl(l - hylil)l}—l]ﬂ i=0,...,N—-1,

>2V/N  then Y,-Z22N_i\/N for i=0,...,N.
[3 .

Consequently
lim E[|Y™Y)|] = +o0,
N— oo 2
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Possible fix - Tamed schemes

Consider Yy := %, Zy:=0,andfori=N-1,...,0,
f(Yiq1, Zi
Y= Ei[Yi+1+ (Yis1, Zisa) },
1+|f(»/,‘+1,2;+1)|h0‘2t
AW,
Zi = Ei[%yﬁl},

@ Tamed scheme converges with rate= Euler rate A min {a1, az}.
@ Simple and Robust

@ No knowledge of a priori estimates is needed.

In the context of SDEs see work by Kloeden, Jentzen, Hutzenhaler.

Lukasz Szpruch (University of Edinburgh) Tamed schemes BSDEs, Numerics and Finance 6 /32



But how to tame? Examples for SDEs

FA(x) = Thx(F(x)) or F(x) = f(Thx(x)).
For example:
@ state dependent taming: Tj.(x) = x/(1 + |x|h%)

» simple black box implementation
> not obvious access to large deviation estimates

o state independent taming : Tp«(x) = (—h* < xy < h®, ..., —h® < x4 < h%)

> level at which we truncate is model dependent
> easy access to large deviation estiamtes

We also could tame Tj «(f(x)h). Key observation being that

Thx(x) = x+ R(x), R(x)= O(h") as. orin LP
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Key Questions

o Convergence (What happens when h — 0)
e Stability (Qualitative properties when h > 0)
@ "Structure” preservation (positivity, domain preservation)
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SDEs

o 5 = = DAy
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Khasminskii Theorem

dx(t) = p(x(t))dt + o(x(t))dw(t), u:RY —=RY o:RT - RIX™

Let D be an open subset of RY. If there exists a C?-function V : D — R such
that

d
g( ) il + 5 Zz(axa )(X”'S(X)UJS(X)

ij=1s=1

= w(x)+ = Z V' (x)(05(x), 0s(x)) < pV(x) for p € R.

Then the solution is V-stable

E[V(x(t))] < e”E[V(x(0))] for t > 0.
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V-stability

Consequences of the V-stability property:
@ Moments bound: If we further assume that there exists / > 1, such that
l|x||" < V(x) then inequality V-stability implies that
supecqo, 1 Elllx(1)||'] < o0 (provided E[V(x(0))] < o ).
o Stability: If we further assume that p < 0 then V-stability implies that
E[V(x(t))] < e *E[V(x(0))] for 0 < ao < p (to see it apply 1td’s formula to
the function e®*V/(x)).
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To clarify the idea consider scalar SDE
dx(t) = p(x(t))dt + o(x(t)dw(t)
and assume that
2xu(x) + lo(X)]? < p(1 + |x]?) Vx €R.
Khasminskii theorem gives that for all t > 0
E[V(x(t))] < e E[V(x(0))],

with Lyapunov function V/(x) =1+ |x|2.
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By squaring both sides of the explicit Euler scheme

Xir1 = X + u(Xi)h + o (Xi) Awieqr,

we get

Eil| Xir1 ] = [Xel? 4+ (2Xenu(Xi)) + [o(Xie)[P) b+ [1(Xi) P h,
were Ey[-] := E[|Fy].

@ V-stability cannot be recovered due to |u(Xk)|>h? (in non-Lipschitz case).

o Consequently for Euler scheme with super-linearly growing coefficients, it can
be shown that if X ¢ (—Lp, Ly), for sufficiently big Ly > 0, then {X,},~«
growths double exponentially fast.

@ Hence even if P(Xx ¢ (—Lp, Lp)) is exponentially small, explosion happens.
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Tamed schemes

A general tamed Euler approximation is given by
Xir1 = X+ 0" (Xi)h + 0" (Xi) AWy,

where i — prand o — o, as h =0 1.

IPrecise definition of theses limits may vary by applications.
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By squaring both sides of tamed Euler scheme
Ex[IXira[] = [Xkl? + (2Xen(Xi) + [0 (Xi) ) b+ |1 (Xi) P2,
were E,[-] := E[-|Fx], Now we are seeking taming such that for § > 0
(+) P (Ph< FV(x) ¥x € R.
and
(%) 2xp"(x) + 0" (x)]? < pV(x) Vx €R.
so that for any k, N € N, k < N,

Ex[V(Xiy1)] = V(Xk) + (p+ ) V(Xk)h
— E[V(Xy)] < ePTINE[V(X,)].

Lukasz Szpruch (University of Edinburgh) Tamed schemes BSDEs, Numerics and Finance 15 / 32



Main Stability Theorem

We denote by Cj(R", [1,00)) space of Lyapunov functions such that
VO, e R) S cv|V(X)=1/P for i =1,2,.
Theorem

Let u" :RY - R?, 0" : R - R¥™™, pc R and V € CH(RY,[1,00)), n,p >3, be a
function such that

(x)  Luw 0V (x) < pV(x).

Moreover, we consider tamed Euler scheme and assume that there exist constants
Cu, Co > 0 such that

| )

< e, \/(X)l/p7

2 [

[2(Rm,RY)

where Bo < 1/2 and f1 < 1/2—1/min{n,4}. Then there exists a constant
p = pcu, cs) such that

E[V(X(t))] < " PME[V(X)] V> 0.
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Convergence of Tamed Euler scheme

Assumption (Strong monotone)

For any constant p > 2, there exists a constant L > 0 such that

(x =y, 1(x) = u(y)) + o= [lo(x) — s ()I2 < Lx = y|?.

Theorem

Under one-sided Lipschitz and strong monotone conditions, for arbitrary T > 0
and p > 2, there exists ¢ > 0 such that we have

_ Pl < - pP/2
IEOSnZkaéT|th x(t)|P| < chP/e.
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BSDEs

joint work with: G.d. Reis ( Edinburgh), A. Lionnet (Oxford)
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Assumption (HXO0): Terminal condition is Lipschitz
Assumption (HYO0):

f,2) < L+ Lyy|" + Lz, m=>1,
<.yl_.y7f(t7x7ylaz)_f(tax7y7z)> SLy|y/_Y|2

Assumptions HY0,:

1f(y,2) = iy, 2)| < LA+ |y|™  + Iy I" Dy =y, m>1

We analyse following error:

N—1 1
o v2 7 _ 7.2 2
ERR,(Y,Z) = (’_zraﬁfN]E[IYt,- Yil?] + Z;Eﬂzr,- Zi| ]h) ;
where
_ 1 tit1 =
Zy; = —]E[/ st5|]:tf:|, 0<i<N-1, and 2, =Zr.
tiy1 — ti t
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Tamed Terminal Condition
Consider Yy := Ty, (g(XN)), Zy:=0,and fori=N-1,...,0,
Vii= Bi[Yia + F(Yiar, Zia) ),
AWti+1
h

Z; = Ei{ <Yi+1+f(yi+l,zi+1)h)}7

where the levels L, satisfy e (L2 + ¢, T) < A=Y/ (m=1) \ith

L2 L2
2 2 X
a= 2(Ly +12dL; + 2Ly) and o= max{—Lg, _Lg }

For h < h*, where h* satisfies @7, T < (h*)~Y/(m=1)/3 and h* < 1/(32dL2) we
can take

Lp=
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Theorem

Let (HX0), (HYOioc) hold and h < h*. Assume that the order +y of the
approximation {X;}i=o.... n of X is at least 1/2. Then for the tamed explicit
scheme there exists a constant c such that

N—1 1
ERR,(Y,Z) := (._maxNIE“Yt, — Y + Y E[IZ, - zP] h>2 <c h2.
i=0

i=0,...,
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Sketch of the proof

We decompose the local error into two parts. Given i € {0, -+, N — 1} we write

Yo, = Yi= (Yt,- - Y;,(Ytl.H,Z,.H)) + (Yi,(Yt,.H,Z,.H) - Yi,(Yi+1aZi+1)>7

one-step disretization error stability of the scheme

and similarly for Z

Z, 7 = (Z, - Zi,(vm,zm)) + (Zi,(YtI.H,ZI.H) - Zi,(ml,Ziﬂ)) :

one-step discretization error stability of the scheme

Lukasz Szpruch (University of Edinburgh) Tamed schemes BSDEs, Numerics and Finance 22 /32



Sketch of the proof

Definition (Scheme stability)

We say that the numerical scheme {(Y;, Z;)}i=o.... .n is stable if for some p >0
there exists a constant ¢ > 0 such that

]E[|Yi,(Yti+1,Zi+1) - Y,(Y;H, /+1)| ] + pE” (Yt+1,Zt+1) - Z,(Y/+1, Ziy1) | ]h
< (1+ ch) (B[l Vi = Yia P+ ZE0Z., — Zialh) +E[H],

where H; € L1(F;) and moreover {H;}i=o,... ,n—1 satisfies

RS(H) = gmax ZeCO ME[H;] — 0, as h— 0.
- fr

The quantity RS(H) is called the stability remainder.
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Sketch of the proof

Lemma (Fundamental Lemma)

Assume that the numerical scheme {(Y;, Z;)}i=o,... n is stable. Denoting the
one-step discretization errors for i = 0,--- ;N — 1 by

r(Y) = EllYy ~ Yigv, 2,/
r(2) = El|Z, ~ Zygy, 5, yPH]
there exists a constant C = C(p, T, ¢) such that
(ERR.(Y,Z))
2 > 2 - 7i(Y) S
< C{ElYi = YalPl+E[1Zey = ZuPla+ Y (T2 +7(2)) | + (L + HRS(H).
i=0
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Sketch of the proof - Tamed scheme

We consider FBSDE

T T
Yi = Tu,(g(X7)) + / F(Y3 Zy)du— / ZydWa, [0, T].
t t

The difference between this BSDE and original can be estimated using

Lemma

Let & be a random variable in L9 for some q > 2, and L > 0. Then we have

Elle - Tu(e)P) < 4E[je)(7)"

@ + Comparison Theorem
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Sketch of the proof- Stability for tamed scheme

Lemma

Assume (HX0), (HY0) and that h < 1/(32dL2). If for a given i € {0,...,N — 1}
one has |Y; 1| < h=*/(2m=2) then one also has

1 1
Yil2 + SI1Zih < (L+ cuh) By || Vi + 1 Zisalh]

Lemma
Let (HX0) and (HY0) hold. For any i € {0,--- ,N — 1},

1 )
|Y,|2—|— E'Zl|2 + _E |:Z|Z|2 :| < ecl(Nfl)hEi[|YN|2]

This implies in particular that |Y;| < h=1/(2m=2),

6FaPh = L2(h+ Y] ™ Db 4 Vi P h) Yisal? < 3210V 2

‘ tit1
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Figure: Convergence of e(NN) for the tamed explicit scheme and various values of the
multiplying factor, computed for N € {5/ :i=7,---,18}, in log-log scale. This used
also K =4, M = 10%, and 10 simulations for each point.
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Definition (Tamed Euler scheme)
Define (Y, Z\) := (én,0) and for 0 </ < N — 1:

YF =E; [YR1+fh( /+1vZR)h]
28 = B, [HEVE )

@ Preserves Positivity
@ Satisfy Comparison Theorem
@ Converges without " complicated” truncations.
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Stability of the scheme

Assumption (HYO-T) Let D CRX f":[0, T] x RY x D x Rk*? — Rk is a
continuous function such that for some L, L,,L, > 0 for all z,z" and all y,y" € D,

£y, 2)| < L+ Ly|y|" + L[|z|l, m>1,

(y' =y, "y, 2) = f'(y,2)) < L, |y — y|> + H(y',y. 2, h),

'y, 2) = £y, 2)] < L1+ y|™ + 1y ™ Y)ly — ¥ + Ay y, 2, h)
Recall f(y,z) ~ f(y,z) + R(y, z). Example:

fly)  _ (y)_f(Y)lf(y)lh”‘
L+ [f(y)|h* L+ [f(y)lhe

In 1-d case :

<y/—y’fh(y/’z)—fh(y’z)> < Ly|y/_}/|2
[F"(y,z) = FA(y" 2)| < Lyh ™y — /|
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Comparison and Positivity in 1-D in Y

Corollary (Comparison theorem)
Assume that f1:" satisfies (HY0). If for all 0 < i < N —1
YN YR and  £N(YR,ZP) > £20(YF, Z7).
Then for any i = 0,--- , N we have that
LG

In particular, if £ > 0 and fiz’h(O, 0) >0 forall0<i<N-—1thenY; >0 for
any 1 < i < N, in other words is positivity preserving.

@ See similar result for gBSDE by J.F Chassagneux and A Richou.
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Message to take home

> Standard explicit schemes have very limited scope of applications.

> Suitably tamed explicit schemes can offer very good stability results, cover
very wide class of SDEs and BSDEs, cheap to simulate
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