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FBSDEs

Let (Wt)t≥0 be m-dimensional Brownian motion.

{
Xt = x +

∫ t

0
µ(Xs)ds +

∫ t

0
σ(Xs)dWs

Yt = g(XT ) +
∫ T

t
f (Ys ,Zs)ds −

∫ T

t
ZsdWs

Assumption (HX0):

‖g(x)− g(y)‖2 ≤ L ‖x − y‖2
,

|µ(x)| ≤ L(1 + |y |r ) |σ(x)| ≤ L(1 + |x |q), r + 1 ≥ 2q,

〈x − y , µ(x)− µ(y)〉+
p − 1

2
‖σ(x)− σ(y)‖2 ≤ L ‖x − y‖2

.

Assumption (HY0):

|f (y , z)| ≤ L + Ly |y |m + Lz‖z‖, m ≥ 1,

〈y ′ − y , f (t, x , y ′, z)− f (t, x , y , z)〉 ≤ Ly |y ′ − y |2.
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Motivation

Biology model for electrical distribution in the heart (here in 1-d){
−∂tu − 1

2σ
2∆u = cu − u3

u (T , ·) = g(·)

and u ≥ 0 for any t ∈ [0,T ] - A FitzHugh-Nagumo type PDE.

Often reaction diffusion PDEs have the form{
−∂tu − 1

2σ
2∆u = cu − u2n, n ∈ N

u (T , ·) = g(·)

Hence monotone condition only holds on the positive domain.
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FBSDEs - Approximations

Forward process: 1st idea - use explicit Euler scheme with h = T/N and
∆wk+1 = w((k + 1) h)− w(k h)

Xk+1 = Xk + µ(Xk)h + σ(Xk)∆wk+1, X0 = x

Backward process: Consider YN := g(XN), ZN := 0, and for i = N − 1, . . . , 0,

Yi := Ei

[
Yi+1 + f

(
Yi+1,Zi+1

)
h
]
,

Zi := Ei

[∆Wti+1

h
Yi+1

]
,

where Ei [·] := E[·|Fi ].

In this talk we only deal with time-discretization error

in practical simulations of backward part, even Lipschitz case causes trouble
(big Lipschitz constant, big terminal condition)
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A motivating example for backward part

Let ξ ∈ F1 and ξ ∈ Lp for p ≥ 2.

Yt = ξ −
∫ 1

t

Y 3
s ds −

∫ 1

t

ZsdWs , t ∈ [0, 1]

For the explicit scheme we have

Yi = E[Yi+1 − Y 3
i+1h|Fi ] = E[Yi+1(1− hY 2

i+1)|Fi ], i = 0, . . . ,N − 1,

|ξ| ≥ 2
√

N then |Yi | ≥ 22N−i√
N for i = 0, . . . ,N.

Consequently

lim
N→∞

E[ |Y (N)
1
2

| ] = +∞,
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Possible fix - Tamed schemes

Consider YN := g(XN )
1+|g(XN )|hα1

, ZN := 0, and for i = N − 1, . . . , 0,

Yi := Ei

[
Yi+1 +

f
(
Yi+1,Zi+1

)
1 + |f

(
Yi+1,Zi+1

)
|hα2t

h
]
,

Zi := Ei

[∆Wti+1

h
Yi+1

]
,

Tamed scheme converges with rate= Euler rate ∧min {α1, α2}.
Simple and Robust

No knowledge of a priori estimates is needed.

In the context of SDEs see work by Kloeden, Jentzen, Hutzenhaler.
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But how to tame? Examples for SDEs

f h(x) = Th,x(f (x)) or f h(x) = f (Th,x(x)).

For example:

state dependent taming: Th,x(x) = x/(1 + |x |hα)
I simple black box implementation
I not obvious access to large deviation estimates

state independent taming : Th,x(x) = (−hα < x1 < hα, . . . ,−hα < xd < hα)

I level at which we truncate is model dependent
I easy access to large deviation estiamtes

We also could tame Th,x(f (x)h). Key observation being that

Th,x(x) ≈ x + R(x), R(x) = O(hα) a.s. or in Lp
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Key Questions

Convergence (What happens when h→ 0)

Stability (Qualitative properties when h > 0)

”Structure” preservation (positivity, domain preservation)
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SDEs
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Khasminskii Theorem

dx(t) = µ(x(t))dt + σ(x(t))dw(t), µ : Rd → Rd σ : Rd → Rd×m

Let D be an open subset of Rd . If there exists a C 2-function V : D → R+ such
that

Lµ,σV (x) :=
d∑

i=1

(∂V

∂xi

)
(x)µi (x) +

1

2

d∑
i,j=1

m∑
s=1

( ∂2V

∂xi∂xj

)
(x)σi,s(x)σj,s(x)

= V
′
(x)µ(x) +

1

2

m∑
s=1

V
′′

(x)(σs(x), σs(x)) ≤ ρV (x) for ρ ∈ R.

Then the solution is V-stable

E[V (x(t))] ≤ eρtE[V (x(0))] for t ≥ 0.
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V-stability

Consequences of the V-stability property:

Moments bound: If we further assume that there exists l ≥ 1, such that
‖x‖l ≤ V (x) then inequality V-stability implies that

supt∈[0,T ] E[‖x(t)‖l ] <∞ (provided E[V (x(0))] ≤ ∞ ).

Stability: If we further assume that ρ < 0 then V-stability implies that
E[V (x(t))] ≤ e−αtE[V (x(0))] for 0 < α < ρ (to see it apply Itô’s formula to
the function eαtV (x)).
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To clarify the idea consider scalar SDE

dx(t) = µ(x(t))dt + σ(x(t)dw(t)

and assume that

2xµ(x) + |σ(x)|2 ≤ ρ(1 + |x |2) ∀x ∈ R.

Khasminskii theorem gives that for all t > 0

E[V (x(t))] ≤ eρtE[V (x(0))],

with Lyapunov function V (x) = 1 + |x |2.
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By squaring both sides of the explicit Euler scheme

Xk+1 = Xk + µ(Xk)h + σ(Xk)∆wk+1,

we get

Ek [|Xk+1|2] = |Xk |2 +
(
2Xkµ(Xk) + |σ(Xk)|2

)
h + |µ(Xk)|2h2,

were Ek [·] := E[·|Fk ].

V-stability cannot be recovered due to |µ(Xk)|2h2 (in non-Lipschitz case).

Consequently for Euler scheme with super-linearly growing coefficients, it can
be shown that if Xk /∈ (−Lh, Lh), for sufficiently big Lh > 0, then {Xr}r>k

growths double exponentially fast.

Hence even if P(Xk /∈ (−Lh, Lh)) is exponentially small, explosion happens.
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Tamed schemes

A general tamed Euler approximation is given by

Xk+1 = Xk + µh(Xk)h + σh(Xk)∆wk+1,

where µh → µ and σh → σ, as h→ 0 1.

1Precise definition of theses limits may vary by applications.
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By squaring both sides of tamed Euler scheme

Ek [|Xk+1|2] = |Xk |2 +
(
2Xkµ

h(Xk) + |σh(Xk)|2
)
h + |µh(Xk)|2h2,

were Ek [·] := E[·|Fk ], Now we are seeking taming such that for ρ̃ > 0

(∗) |µh(x)|2h ≤ ρ̃V (x) ∀x ∈ R.

and

(∗∗) 2xµh(x) + |σh(x)|2 ≤ ρV (x) ∀x ∈ R.

so that for any k,N ∈ N, k < N,

Ek [V (Xk+1)] = V (Xk) + (ρ+ ρ̃)V (Xk)h

=⇒ E[V (XN)] ≤ e(ρ+ρ̃)NhE[V (X0)].
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Main Stability Theorem

We denote by Cnp (Rn, [1,∞)) space of Lyapunov functions such that∥∥V (i)(x)
∥∥
L(i)(Rd ,R)

≤ cV |V (x)|1−i/p for i = 1, 2, . . . p.

Theorem

Let µh : Rd → Rd , σh : Rd → Rd×m, ρ ∈ R and V ∈ Cnp (Rd , [1,∞)), n, p ≥ 3, be a
function such that

(∗∗) Lµh,σhV (x) ≤ ρV (x).

Moreover, we consider tamed Euler scheme and assume that there exist constants
cµ, cσ > 0 such that

(∗)
∥∥∥µh(x)

∥∥∥
L2(Rd )

hβ0 ≤ cµV (x)1/p and
∥∥∥σh(x)

∥∥∥
L2(Rm,Rd )

hβ1 ≤ cσV (x)1/p,

where β0 ≤ 1/2 and β1 ≤ 1/2− 1/min {n, 4}. Then there exists a constant
ρ̃ := ρ̃(cµ, cσ) such that

E
[
V (X (tk))

]
≤ e(ρ+ρ̃)khE[V (X0)] ∀k ≥ 0.
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Convergence of Tamed Euler scheme

Assumption (Strong monotone)

For any constant p ≥ 2, there exists a constant L > 0 such that

〈x − y , µ(x)− µ(y)〉+
p − 1

2
‖σ(x)− σ(y)‖2 ≤ L ‖x − y‖2

.

Theorem
Under one-sided Lipschitz and strong monotone conditions, for arbitrary T > 0
and p > 2, there exists c > 0 such that we have

E
[

max
0≤tk≤T

|Xtk − x(tk)|p
]
≤ c hp/2.
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BSDEs
joint work with: G.d. Reis ( Edinburgh), A. Lionnet (Oxford)
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Assumption (HX0): Terminal condition is Lipschitz
Assumption (HY0):

|f (y , z)| ≤ L + Ly |y |m + Lz‖z‖, m ≥ 1,

〈y ′ − y , f (t, x , y ′, z)− f (t, x , y , z)〉 ≤ Ly |y ′ − y |2.

Assumptions HY0loc :

|f (y , z)− f (y ′, z)| ≤ Ly (1 + |y |m−1 + |y ′|m−1)|y − y ′|, m ≥ 1.

We analyse following error:

ERRπ(Y ,Z ) :=
(

max
i=0,...,N

E
[
|Yti − Yi |2

]
+

N−1∑
i=0

E
[
|Z̄ti − Zi |2

]
h
) 1

2

,

where

Z̄ti =
1

ti+1 − ti
E
[ ∫ ti+1

ti

Zsds
∣∣Fti

]
, 0 ≤ i ≤ N − 1, and Z̄tN = ZT .
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Tamed Terminal Condition

Consider YN := TLh

(
g(XN)

)
, ZN := 0, and for i = N − 1, . . . , 0,

Yi := Ei

[
Yi+1 + f

(
Yi+1,Zi+1

)
h
]
,

Zi := Ei

[∆Wti+1

h

(
Yi+1 + f

(
Yi+1,Zi+1

)
h
)]
,

where the levels Lh satisfy ec1T
(
L2
h + c2T

)
≤ h−1/(m−1), with

c1 = 2
(
Ly + 12dL2

z + 2L2
y

)
and c2 = max

{ L2

4dL2
z

,
L2
x

4dL2
z

}
.

For h ≤ h∗, where h∗ satisfies ec1T c2T ≤ (h∗)−1/(m−1)/3 and h∗ ≤ 1/(32dL2
z) we

can take

Lh =
1√
3

e−
1
2 c1T

(1

h

) 1
2(m−1)

.
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Theorem

Let (HX0), (HY0loc) hold and h ≤ h∗. Assume that the order γ of the
approximation {Xi}i=0,··· ,N of X is at least 1/2. Then for the tamed explicit
scheme there exists a constant c such that

ERRπ(Y ,Z ) :=
(

max
i=0,...,N

E
[
|Yti − Yi |2

]
+

N−1∑
i=0

E
[
|Z̄ti − Zi |2

]
h
) 1

2 ≤ c h1/2.
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Sketch of the proof

We decompose the local error into two parts. Given i ∈ {0, · · · ,N − 1} we write

Yti − Yi =
(

Yti − Yi,(Yti+1
,Z̄ti+1

)

)
︸ ︷︷ ︸
one-step disretization error

+
(

Yi,(Yti+1
,Z̄ti+1

) − Yi,(Yi+1,Zi+1)

)
︸ ︷︷ ︸

stability of the scheme

,

and similarly for Z

Z̄ti − Zi =
(

Z̄ti − Zi,(Yti+1
,Z̄ti+1

)

)
︸ ︷︷ ︸
one-step discretization error

+
(

Zi,(Yti+1
,Z̄ti+1

) − Zi,(Yi+1,Zi+1)

)
︸ ︷︷ ︸

stability of the scheme

.
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Sketch of the proof

Definition (Scheme stability)

We say that the numerical scheme {(Yi ,Zi )}i=0,··· ,N is stable if for some ρ > 0
there exists a constant c > 0 such that

E[|Yi,(Yti+1
,Z̄ti+1

) − Yi,(Yi+1,Zi+1)|2] + ρE[|Zi,(Yti+1
,Z̄ti+1

) − Zi,(Yi+1,Zi+1)|2]h

≤ (1 + ch)
(
E[|Yti+1 − Yi+1|2] +

ρ

4
E[|Z̄ti+1 − Zi+1|2]h

)
+ E[Hi ],

where Hi ∈ L1(Fi ) and moreover {Hi}i=0,··· ,N−1 satisfies

RS(H) := max
i=0,...,N−1

N−1∑
j=i

ec(j−i)hE[Hj ] −→ 0, as h→ 0.

The quantity RS(H) is called the stability remainder.
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Sketch of the proof

Lemma (Fundamental Lemma)

Assume that the numerical scheme {(Yi ,Zi )}i=0,··· ,N is stable. Denoting the
one-step discretization errors for i = 0, · · · ,N − 1 by{

τi (Y ) := E[|Yti − Yi,(Yti+1
,Z̄ti+1

)|2]

τi (Z ) := E[|Z̄ti − Zi,(Yti+1
,Z̄ti+1

)|2h],

there exists a constant C = C (ρ,T , c) such that(
ERRπ(Y ,Z )

)2

≤ C
{
E[ |YtN − YN |2] + E[|Z̄tN − ZN |2]h +

N−1∑
i=0

(τi (Y )

h
+ τi (Z )

)}
+ (1 + h)RS(H).
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Sketch of the proof - Tamed scheme

We consider FBSDE

Y ′t = TLh

(
g(XT )

)
+

∫ T

t

f
(
Y ′u,Z

′
u

)
du −

∫ T

t

Z ′udWu, t ∈ [0,T ].

The difference between this BSDE and original can be estimated using

Lemma
Let ξ be a random variable in Lq for some q > 2, and L > 0. Then we have

E[ |ξ − TL(ξ)|2] ≤ 4E[ |ξ|q]
(1

L

)q−2

+ Comparison Theorem
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Sketch of the proof- Stability for tamed scheme

Lemma

Assume (HX0), (HY0) and that h ≤ 1/(32dL2
z). If for a given i ∈ {0, . . . ,N − 1}

one has |Yi+1| ≤ h−1/(2m−2) , then one also has

|Yi |2 +
1

d
|Zi |2h ≤ (1 + c1h)Ei

[
|Yi+1|2 +

1

4d
|Zi+1|2h

]
Lemma

Let (HX0) and (HY0) hold. For any i ∈ {0, · · · ,N − 1},

|Yi |2 +
1

4d
|Zi |2h +

3

4d
Ei

[ N−1∑
j=i

|Zj |2h

]
≤ ec1(N−i)hEi

[
|YN |2

]
This implies in particular that |Yi | ≤ h−1/(2m−2).

|δfi+1|2h = L2
y

(
h + |Y ′ti+1

|2(m−1)h + |Yi+1|2(m−1)h
)
|Y ′ti+1

− Yi+1|2 ≤ 3L2
y |δYi+1|2.
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f (y) = −y 3, X -GBM, g(x) = x
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Figure: Convergence of e(N) for the tamed explicit scheme and various values of the
multiplying factor, computed for N ∈ {5i : i = 7, · · · , 18}, in log-log scale. This used
also K = 4, M = 105, and 10 simulations for each point.
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Definition (Tamed Euler scheme)

Define (Y N
N ,Z

N
N ) := (ξN , 0) and for 0 ≤ i ≤ N − 1:

Y R
i := Ei

[
Y R
i+1 + f h

i (Y R
i+1,Z

R
i )h

]
,

ZR
i := Ei

[
HR

i Y R
i+1

]
.

Preserves Positivity

Satisfy Comparison Theorem

Converges without ”complicated” truncations.
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Stability of the scheme

Assumption (HY0-T) Let D ⊆ Rk f h : [0,T ]× Rd × D × Rk×d → Rk is a
continuous function such that for some L, Ly , Lz > 0 for all z , z ′ and all y , y ′ ∈ D ,

|f h(y , z)| ≤ L + Ly |y |m + Lz‖z‖, m ≥ 1,〈
y ′ − y , f h(y ′, z)− f h(y , z)

〉
≤ Ly |y ′ − y |2 + H(y ′, y , z , h),

|f h(y , z)− f h(y ′, z)| ≤ Ly (1 + |y |m−1 + |y ′|m−1)|y − y ′|+ Ĥ(y ′, y , z , h)

Recall f h(y , z) ≈ f (y , z) + R(y , z). Example:

f (y)

1 + |f (y)|hα
= f (y)− f (y)|f (y)|hα

1 + |f (y)|hα

In 1-d case : 〈
y ′ − y , f h(y ′, z)− f h(y , z)

〉
≤ Ly |y ′ − y |2

|f h(y , z)− f h(y ′, z)| ≤ Lyh−α|y − y ′|
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Comparison and Positivity in 1-D in Y

Corollary (Comparison theorem)

Assume that f 1,h satisfies (HY0). If for all 0 ≤ i ≤ N − 1

Y 1
N ≥ Y 2

N and f 1,h
i (Y 2

i ,Z
2
i ) ≥ f 2,h

i (Y 2
i ,Z

2
i ).

Then for any i = 0, · · · ,N we have that

Y 1
i ≥ Y 2

i .

In particular, if ξ2
N ≥ 0 and f 2,h

i (0, 0) ≥ 0 for all 0 ≤ i ≤ N − 1 then Yi ≥ 0 for
any 1 ≤ i ≤ N, in other words is positivity preserving.

See similar result for qBSDE by J.F Chassagneux and A Richou.
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Message to take home

. Standard explicit schemes have very limited scope of applications.

. Suitably tamed explicit schemes can offer very good stability results, cover
very wide class of SDEs and BSDEs, cheap to simulate

Lukasz Szpruch (University of Edinburgh) Tamed schemes BSDEs, Numerics and Finance 31 / 32


