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Introduction Stochastic LQ optimal control

Starting point — Stochastic LQ optimal control

o State equation with Linear form:

z(0)=¢ e R”
d .
do = (Az + Bu)dt + Y (Ciz + Dyu) AW/
=1

o Cost functional with Quadratic form:
T
J(u) = E|Hz(T) — h|* + E/ 1Qz(t) — q(t)|* + |Ru(t) — r(t)[* dt
0

o Objective:
J(u) — min!
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Introduction Stochastic LQ optimal control

Typical examples — Mean-variance hedging

o X: the wealth process

©

Hedging a terminal cash-flow H:

J=E(X(T) - H)?*

©

Hedging a dynamical flow H(t):

J= E/T(X(t) — H(t))*dt
0

©

Other Markowitz-type problems ...
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Introduction Stochastic LQ optimal control

Value function

o Definition:
V(t,€) = essinf J(u;t,€&) = essinf E[- - -| F]

(t,€): the starting position

o Typical form — a quadratic form:
V(t,€) =& P(H)§ + € p(t) +po(t)

o A classical approach is to characterize the coefficients

P(t), p(t) and po(?)
by Differential Equations
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Introduction Stochastic LQ optimal control

Our focus — Second-order coefficient

o Coefficient of second-order term, P(t)
o Assumptions and Simplifications:

o all coefficients are bounded
o the dimension of Wiener process = 1
o “pure” quadratic cost:

T
J(u) = IE{/O [u" Ru+ 2" Qx| (t) dt+z(T)THx(T)},

o In this case

V(t,6) = €T P(t)¢
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Introduction Formulation Riccati equations

Markovian case — HJB equation

o Deterministic coefficients

o HJB equation:
0=V/+ igf{%traee(C’ﬁ + Du)TVélé(CE + Du)
(A + Bu)V + €7 Q¢ + ¢ Re
with terminal condition

V(T,€) = ¢THE
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Introduction Formulation Riccati equations

Equation of P(t) — Riccati equation

o Substituted by
V(t,€) = €T P(t)¢
o Completing the square =
o the “best” u — optimal feedback control:

u=—(R+D"PD)"YB"P+D"PC)¢

o coercivity condition:
R+D'PD >0
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Introduction Formulation Riccati equations

Equation of P(t) — Riccati equation (ctd.)

o The formulation of Riccati equation of P(t):
0=P+A"P+PA+CTPC+Q
—(PB+C'"PD)(R+D'"PD)"Y(B"P+ D" PC)
P(T)=H
R+D'PD >0
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Introduction Formulation Riccati equations

Non-Markovian case — Maximum principle

Random coefficients

©

©

In this case V(+,-) is a random field
Classical DPP does NOT work
Using MP = the optimal pair (z*, u*) s.t.

©

©

2*(0) =¢, y(T)=Ha*(T)

dz* = (Az* + Bu*)dt + (Cz* + Du*) dW
dy=—(ATy +CT 24 Qz*)dt + zdW
R+ B'y+D"2=0
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Introduction Formulation Riccati equations

Formal computations

©

A key fact:
V(0,€) = ¢"y(0) = 2*(0) Ty(0)

y(-) is linear with respect to z*(+)

©

o It is reasonable to assume

where )
dP(t) = P(t)dt + P(t) dW;

©

The value function is give by P:

V(0,8) = £"P(0)¢

Kai Du (D-MATH) Riccati equations July 7, 2014 11 / 35



Introduction Formulation Riccati equations

Formal computations (ctd.)

Ito form:

©

dP(t) = P(t)dt + P(t)dW,, P(T)=H
o Compare equations of P(t)x*(¢) and y(t) =

P+(ATP+PA+CTPC+CTP+PC+Q)
= (PB+CTPD+ PD)(R+D'"PD) Y (B"P+D"PC+ D'P)

©

(P, P) satisfies a matrix-valued BSDE

In particular, deterministic coefficients = P(t) = 0
= Markovian case

©
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Introduction Formulation Riccati equations

Formal computations (ctd.)

o Let us derive (formally) the optmal feedback control
o Ito’s formula to z(t) T P(t)z(t) =

T
J(u) = IE/O [u(t) —T()zt)]" (R + D" PD) Y [u(t) — T'(t)z(t)] dt

I'=—(R+D'PD)"Y(B"TP+D"PC+D"P)

= optimal control

= coercivity condition:
R+D'"PD>0
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Introduction Formulation Riccati equations

Stochastic Riccati equation (SRE)

o Complete formulation of SRE (Bismut ’76):

P(T)=H
dP(t) = P(t) dt+P(t) AW,
P+A'P+PA+C PC+C P+ PC+Q

= (PB+C'PD+PD)(R+D"PD)"Y(B"P+D"PC+D'P)
R+D'PD >0

o Under Markovian condition, the red terms do NOT appear, and

P=P
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Introduction Formulation Riccati equations

Wellposedness and Solvability

Relation
Solability of SRE: Wellposedness of LQ:
o e
PcL® and P e L? V(0,8) > —©

o Markovian case:
V(0,6) = €T P(0)¢

o non-Markovian case:
V(0,8) > ¢"P(0)¢
“=" holds if the optimal feedback control

u* =Tx* € L?
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Solvability of SREs Definite case

Classical setting — Q. H >0, R >0

o “Definite” SRE — [Won68|, [Bis76], [Pen92|, [Tan03]
°0Q,H>0,R>»0=

R+D'PD>0

o Markovian case
— Well Solved by Bellman’s Quasilinearization method
cf. Wonham (’68), Peng (’92)

o non-Markovian case
— LQ problem is well-posed, cf. Bismut (’76)
— Solvability of SRE was an open problem, cf. Bismut (’76)
— Solved by Tang (’03) by “stochastic-flow approach”
— Quasilinearization method seems not to work
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Solvability of SREs Definite case
Bellman’s Quasilinearization Method
Markovian Case.

o An iteration approach — based on the control motivation

o Rewriting equation as
P+A"P+PA4+CTPC+Q+U(P)"RU(P)=0
where

UP)=—-(R+D'"PD)"Y(B"P+D'"PC)
A=A+ BU(P)
C =C+ DU(P)

note: P — old one, P — new one
o Key fact: 0 < P <P
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Solvability of SREs Definite case

Bellman’s Quasilinearization Method (ctd.)

Non-Markovian Case.
o Rewriting equation as dP(t) = P(t) dt + P(t) dW,,

P+ATP+PA+CTPC+C P+ PC+Q+U(P) RU(P) =0
where

U(P)=—(R+D'"PD)"Y(B"P+D"PC+D'"P)
A=A+ BU(P)
C =C+ DU(P)

o Trouble. P € L? unbounded = U(P) unbounded
= BSDE with unbounded coefficients (unknown solvability)
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Solvability of SREs Indefinite case

Indefinite SRE — R is indefinite

©

In most finance models, R =0
o In some pollution models, R < 0 — cf. [CLZ98]

LQ problem does NOT always well-posed when R < 0
— recalling the cost functional

©

T
J(u) =E {/O [u" Ru+ 2" Qa](t) dt + x(T)THa:(T)}

©

Intuitively, the constraint
R+D'PD >0

in SRE requires R not to be “too negative”
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Solvability of SREs Indefinite case

Example (Chen, et al. (’98))
Minimize

1
J= E/ [2(t)% 4 r(t)u(t)?] dt + z(1)
0

subject to
dz(t) = u(t)dW;, x(0)=0

A simple calculation yields

J= E/l[r(t) + (2= Ou(t)? dt
0

obviously, when r(t) < —2 the problem is ill-posed; in other words, r(t)

cannot be “too negative”

2
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Solvability of SREs Indefinite case

Solvability condition — Singular case R =0

o for Markovian case

Theorem (Chen, et al. (’98))
If R=0 and
@ Q>0and H>0
@D'D>0

Then SRE admits a unique solution

o for non-Markovian case

Theorem (Tang (’03), D. (’14))

Under the same condition, SRE admits a solution
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Solvability of SREs Indefinite case

Solvability condition — Indefinite R
Markovian case

Theorem (Rami & Zhou [RZ00])
If the linear matriz inequality (LMI) admits a solution:

0<P+ATP+PA+CTPC+Q

— (PB+C'"PD)(R+D'"PD)"Y(B"P+ D'"PC)
P(T) < H

R+D'PD>0

Then SRE admits a unique (continuous) solution

— Unfortunately this is NOT always true
— Solvability of LMI yields Wellposedness of L.Q problem
but NOT always implies Solvability of SRE
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Solvability of SREs Indefinite case

Example (D. ’14)
Consider the following ODE over the time interval [0, 2]:

where
R(t)=(1- t)2X[0,1)(t) + X2 (t) >0

Clearly, P = 0 is a solution to the corresponding LMI.
However, from the point of view of LQ problem, the solution (if exists)

must equal
0, 0<t<1
P(t)_{ B-t)7h 1<t<2

which is discontinuous!
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Solvability of SREs Indefinite case

Solvability condition — Indefinite R (ctd.)

non-Markovian case

Definition (D. ’14)

A bounded matrix process F is called a subsolution to SRE, if
dF(t) = F(t) dt +F(t) dW,
F(T)<H
F+A"TF+FA+CTFC+CTF+FC+0Q

> (FB+CTFD+FD)(R+D'FD)"YB"F+D'FC+D'F)
R+D'FD >0

— A stochastic counterpart of LMI
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Solvability of SREs Main results

Main Results

Theorem (D. ’14)
If there is a constant € > 0 such that

o SRE (R — ¢) has a bounded subsolution F
Then SRE (R) admits a bounded solution P and

P(t) = F(t)

in this case,

V(0,8) = £"P(0)¢
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Solvability of SREs Main results

Corollary (D. ’14)

Let D'D >0, and o : (0,T] — [0,1). Let ¢ > 0 satisfy the following

ODE:
¢+ M T (@)p+2(Q) =0, o(T)=A(H),

where A\ (M) = inf,{the minimal eigenvalue of matriz M(w)},

1
T() = AT+ A+CC - B+ C'D)
-(D'D)"MB+C'D)".
Then, SRE (R) admits a bounded solution if

R> —apD'D
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Solvability of SREs Main results
An example

Consider the following equation
P(t) = ri(;)zt)’ r+P(t) >0, P(1)=1. (1)
Take v : (0,1] — [0, 1). By the previous result, if
L
r > —ro(t) = —alt)p(t) = —alt) exp ( [ = ds>,
(1) admits a solution. Let us choose «(-) such that r¢ is a constant, i.e.,

da,, . a(t)
V=TT

By some arguement one can show that the lowest rq satisfying
1= ro — In To — 1

approximately, rg &~ 0.15859
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Solvability of SREs Outline of the proof

Main idea of the proof

o Solving the matrix-valued FBSDE with unknown (X,Y, Z,U):

dX = (AX 4+ BU)dt + (CX + DU) dW
AV = —(ATY +CTZ 4+ QX)dt + ZdW
0=RU+B'Y+D'Z,

X(0) =1, Y(T)=HX(T)

o Verifying X! = {X(¢)~%; t € [0,T]} is a continuous process
o Verifying the following processes solve the SRE

P=YX!
P=zZX'-yX Y C+DUX™
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Solvability of SREs Outline of the proof

Step #1

Lemma

If SRE (R — €I) admits a subsolution F', then FBSDE admits a unique

solution and

X'FX<X'y

o Approach #1. The assumption = LQ problem is solvable
+ Maximum principle = the result

o Approach #2. by the Method of Continuation, cf. [PW99]
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Solvability of SREs Outline of the proof

Step #2

o Stopping technique:

Tm = Inf{t : det(X(t)) < 1/m} AT
7:=1inf{t: det(X(¢)) <O} AT
clearly 7,,, T 7
o Consider the SRE on [[0,7))

o X (t)~! exits and is continuous on [[0, 7))
o P =YX~ solves SRE on [[0,7))

o Equation of X can be written as (on [[0,7)))
dX = [A+ BI(P)|X dt + [C + DI(P)| X dW, X(0) = I,
where
I'(P)=—(R+D'"PD)"Y(B"P+D"PC+D'P)

Kai Du (D-MATH) Riccati equations July 7, 2014 31 / 35



Solvability of SREs Outline of the proof

Step #2 — Two Lemmas

Lemma (Tang ’03, D. ’14)
P, I(P) € L*(0,7)

Lemma (Gal’chuk 79, Tang ’03)
Let A, C be R"*"-valued adapted processes such that

/ (|A(t)y + yé(t)|2> dt < oo as.
0
Then, the following SDE
dX = AX dt + CX dW,, X(0) = I, € R™*"

has a unique strong solution. Moreover, X+ = {X (t)~'; t > 0} ewists
and s a continuous process.
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Solvability of SREs Outline of the proof

Steps 2 & 3

o By the method of zero-expansion, one has
X(7)7! exists almost surely

= 7=Tas. = X(t)7! exits a.s. for each ¢t € [0, 7]
o Itd’s formula to P(t) = Y (£) X (t)~*
o DONE!
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Solvability of SREs Outline of the proof
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Solvability of SREs Outline of the proof

Thank youl!
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