BSEs, BSDEs, and fixed points

Kihun Nam

Second Young Researchers Meeting on BSDEs, Numerics, and Finance

July 8, 2014

Joint work with Patrick Cheridito

Outline I

- 3 Krasnoselskii FPT and Compact Sets in \mathbb{L}^2
- 4 Applications of Krasnoselskii FPT

5 Reference

Introduction

Backward Stochastic Differential Equation

Let $(W, \mathbb{F}^W := (\mathcal{F}^W_t)_{t \in [0,T]}, \mathbb{P})$ be a *n*-dim. Brownian motion. The most classical form of backward stochastic differential equation (BSDE) is

$$
Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s.
$$
 (BSDE)

Output

Introduction

Backward Stochastic Differential Equation

Let $(W, \mathbb{F}^W := (\mathcal{F}^W_t)_{t \in [0,T]}, \mathbb{P})$ be a *n*-dim. Brownian motion. The most classical form of backward stochastic differential equation (BSDE) is

$$
Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s.
$$
 (BSDE)

Remark

BSDE can be generalized to backward stochastic equation (BSE): For a driver $F:\mathbb{S}^p\times \mathbb{M}^p_0\to \mathbb{S}^p_0$, we want to find $(Y,M)\in \mathbb{S}^p\times \mathbb{M}^p_0$ such that

$$
Y_t + F_t(Y, M) + M_t = \xi + F_T(Y, M) + M_T
$$
 (BSE)

Brief History

Liang, Lyons, and Qian (2011): BSDE without martingale representation theorem \Rightarrow Banach FPT on the space of stochastic process.

Most of the results based on

- **1** Banach FPT on a space of stochastic processes
- ² Girsanov transform

Schauder-type FPT?

Brief History

Liang, Lyons, and Qian (2011): BSDE without martingale representation theorem \Rightarrow Banach FPT on the space of stochastic process.

Most of the results based on

- **1** Banach FPT on a space of stochastic processes
- ² Girsanov transform

Schauder-type FPT? Compactness Issue

Key Idea

Key Idea: FPT on \mathbb{L}^2

$$
dY_t = -f(t, Y_t, Z_t)dt + Z_t dW_t; \quad Y_T = \xi
$$

- **1** Martingale representation
- ² Forward SDE
- 3 $Y_{0} = \mathbb{E}_{0}V$ and $\int_0^T Z_s dW_s = V - \mathbb{E}_0 V$
- ⁴ BSDE becomes random variable mapping (RVM) $V = \xi + \int_0^T f(t, Y_s^V, Z_s) ds$
- ⁵ Use FPT for *V* : Banach-type, Schauder-type

Key Idea

BSDE of $(Y, Z) <$ $-- >$ Fixed point V of RVM $V = \xi + \int_0^T f(s, Y_s^V, Z_s) ds$

BSDE to RVM: Obvious. RVM to BSDE: Assume that *V* satisfies RVM. Then,

$$
Y_0 = Y_t^V + \int_0^t f(s, Y_s^V, Z_s) ds - \int_0^t Z_s dW_s
$$

$$
\int_0^T Z_s dW_s = V - \mathbb{E}_0 V = \xi + \int_0^T f(s, Y_s^V, Z_s) ds - Y_0
$$

$$
= \xi + \int_0^T f(s, Y_s^V, Z_s) d - Y_t^V - \int_0^t f(s, Y_s^V, Z_s) ds + \int_0^t Z_s dW_s
$$

$$
Y_t^V = \xi + \int_t^T f(s, Y_s^V, Z_s) ds - \int_t^T Z_s dW_s
$$

 (Y^V, Z) is a solution of BSDE.

Fixed Point Theorems

Theorem (Banach FPT)

For $p > 1$, let $G : \mathbb{L}^p \to \mathbb{L}^p$ be a contraction mapping. Then there exists a *unique fixed point of G.*

Theorem (Krasnoselskii FPT in Smart (1974))

Assume that $C \subset \mathbb{L}^2(\mathcal{F})$ *is a closed convex nonempty set. Assume that* $G^1, G^2: \mathcal{C} \to \mathbb{L}^2(\mathcal{F})$ *satisfy the following conditions*

•
$$
G^1(v) + G^2(v') \in \mathcal{C}
$$
 for all $v, v' \in \mathcal{C}$.

*G*¹ *is a contraction.*

• $G²$ *is continuous and* $G²(C)$ *is contained in a compact set. Then,* G^1+G^2 *has a fixed point in C.*

Applying Our Lemma

- Lipschitz \Rightarrow Use Banach FPT:
	- Generalizes the results by Pardoux and Peng (1990) and Buckdahn et al. (2009) . \triangleright
- Lipschitz+compact \Rightarrow Use Krasnoselskii FPT

Applying Our Lemma

- Lipschitz \Rightarrow Use Banach FPT:
	- Generalizes the results by Pardoux and Peng (1990) and Buckdahn et al. (2009) . \triangleright
- Lipschitz+compact \Rightarrow Use Krasnoselskii FPT

Compact set in L^2 ?

Krasnoselskii FPT and Compact Sets in \mathbb{L}^2

We assume the following conditions on our probability space.

- $\bullet \Omega := L^2([0,T];\mathbb{R}^n)$ be the Hilbert space of functions from $[0,T]$ to \mathbb{R}^n endowed with the inner product $\langle x, y \rangle := \int_0^T x_t \cdot y_t dt$ for $x, y \in \Omega$. We let $(e_k)_{k=1,2,\cdots}$ to be a complete orthonormal basis of Ω .
- Borel algebra $\mathcal F$ and nondegenerate Gaussian measure $\mathbb P = N_O$ on Ω where we define Q by $Q e_k = \lambda_k e_k.$ We assume $\lambda_k > 0$ and $\sum_{k} \lambda_k < \infty$.

A *n*-dimensional Brownian motion *W* is well-defined by white noise mapping (\triangleright) . We can define a Sobolev space $\mathbb{W}^{1,2}$ and use the following lemma in Da Prato (2006) holds.

Lemma (Compact Embedding Theorem in Da Prato (2006))

 $\mathbb{W}^{1,2}$ *is compactly embedded to* \mathbb{L}^2 . $\left(\mathbb{W}^{1,2}\subset\subset\mathbb{L}^2\right)$

 $\mathcal{C}(\iff)$ For any $C\in\mathbb{R}_+$, $\left\{V\in\mathbb{W}^{1,2}:\|V\|_{\mathbb{W}^{1,2}}\leq C\right\}$ is compact.

Lipschitz Random Variable

Definition

We call a random variable φ is *L*-Lipschitz in ω if

$$
|\varphi(\omega) - \varphi(\omega')| \le L\sqrt{\langle \omega - \omega', \omega - \omega' \rangle}
$$

for all $\omega, \omega' \in \Omega$.

Lemma

If φ *is a L*-Lipschitz random variable, then φ *is in* $\mathbb{W}^{1,2}$ *with* $\mathbb{E} \langle \mathbf{D}\varphi, \mathbf{D}\varphi \rangle \leq L^2$.

Corollary

The set of L-Lipschitz random variables with mean zero is relatively compact in \mathbb{L}^2 .

These lemmas are proved in Da Prato (2006).

Example

Assume the Brownian motion is one dimensional. Let $h:\mathbb{R}^n\to\mathbb{R}^d$ be a Lipschitz function and assume that a random variable *X* is of form of

$$
X = h(W_{t_1}, W_{t_2} - W_{t_1}, \cdots, W_{t_n} - W_{t_{n-1}})
$$

for $0 = t_0 \le t_1 \le t_2 \le \cdots \le t_n \le T$. If the orthonormal basis is

$$
e_k := \frac{1}{t_k - t_{k-1}} 1_{(t_{k-1}, t_k]}
$$

for $k = 1, 2, \cdots, n$,

$$
(W_{t_k} - W_{t_{k-1}})(\omega) = \left\langle \omega, Q^{-1/2} 1_{(t_{k-1}, t_k]} \right\rangle = \left\langle \omega, \lambda_k^{-1/2} 1_{(t_{k-1}, t_k]} \right\rangle.
$$

Since $\lambda_k > 0$, $(W_{t_k} - W_{t_{k-1}})$ are Lipschitz for $k = 1, 2, \dots, n$. Therefore, *X* is Lipschitz random variable.

Applications of Krasnoselskii FPT

We assume that f_1 and f are Lipschitz and that f_2 and f are compact and continuous. The cases $3 - 4$ require the Lipschitz constant of f_1 to be small enough while cases $5 - 6$ do not have such condition. We remark the followings.

- \bullet The cases $3 5$ are path-dependent BSEs or BSDEs.
- In the case 5, the uniqueness is shown because f is Lipschitz as well.
- \bullet In the case 6, we use iteration scheme by localizing f_1 only.

Krasnoselskii FPT: Case 6

Let $\mathbb{F} = \mathbb{F}^W$ and assume the following conditions.

•
$$
g_1 : \Omega \times [0, T] \times \mathbb{L}^2(\mathcal{F}_T) \to \mathbb{R}^d
$$
 satisfies

$$
||g_1(s,v) - g_1(s,v')||_2 \leq C ||v - v'||_2,
$$

 $g_2 : (\omega, s, Z_s) \in \Omega \times [0, T] \times \mathbb{L}^2(\mathcal{F}_s) \mapsto g_2(\omega, s, Z_s) \in \mathbb{R}^d$ is uniformly *L*-Lipschitz in ω for all (s, Z_s) , and for all $u, v \in \mathbb{H}^2$,

$$
\left\| \int_0^T |g_2(s, u_s) - g_2(s, v_s)| ds \right\|_2 \le \rho(\|u\|_{\mathbb{H}^2} + \|v\|_{\mathbb{H}^2}) \|u - v\|_{\mathbb{H}^2}
$$

for some increasing function $\rho : \mathbb{R}_+ \to \mathbb{R}_+$.

Then, there is a solution (Y, Z) to the following BSDE.

$$
Y_t = \xi + \int_t^T (g_1(s, Z_s) + g_2(s, Z_s)) ds - \int_t^T Z_s dW_s.
$$

Examples using Krasnoselskii FPT: Case 6

Let $\mathbb{F} = \mathbb{F}^W$ and assume the following conditions.

- $h : (\omega, s, u, v) \in \Omega \times [0, T] \times \mathbb{R}^{d \times n} \times \mathbb{R}^{d \times n} \mapsto h(\omega, s, u, v) \in \mathbb{R}^d$ is uniformly Lipschitz in (u, v) with coefficient *C*, $h(\cdot, u, v)$ is predictable for any (u, v) , and $h(\cdot, 0, 0) \in \mathbb{H}^{2}$.
- \bullet Let $G: \Omega \times [0, T] \times \mathbb{R}^m \to \mathbb{R}^d$ and $g: \Omega \times [0, T] \times \mathbb{R}^{d \times n} \to \mathbb{R}^m$ where

 $|q(s, a) - q(s, b)| \leq C(1 + |a| + |b|)|a - b|$ $|G(s, x) - G(s, y)| \leq C|x - y|$, and $|G(s, 0)|, |g(s, 0)|$ $\leq C$

for all $a, b \in \mathbb{R}^{d \times n}$, $x, y \in \mathbb{R}^m$. In addition, we assume that $G(s, x)$ is uniformly *L*-Lipschitz in ω for any given $(s, x) \in [0, T] \times \mathbb{R}^m$ and that $g(\cdot, x)$ and $G(\cdot, x)$ are predictable for any given $x \in \mathbb{R}^m$.

Then, there exists a solution to the following BSDE

$$
Y_t = \xi + \int_t^T \left(\mathbb{E}' h(s, Z_s, Z'_s) + G(s, \mathbb{E} g(s, Z_s)) \right) ds - \int_t^T Z_s dW_s
$$

where

$$
\mathbb{E}'h(s,Z_s,Z'_s)(\omega):=\int_{\Omega}h(\omega,s,Z_s(\omega),Z_s(\omega'))\mathbb{P}(d\omega')
$$

 \triangleleft

Reference

References I

- J.-M. Bismut. Conjugate convex functions in optimal stochastic control. Journal of Mathematical Analysis and Applications, 44: 384–404, 1973.
- P. Briand and Y. Hu. BSDE with quadratic growth and unbounded terminal value. Probability Theory and Related Fields, 136 (4):604–618, 2006.
- P. Briand and Y. Hu. Quadratic BSDEs with convex generators and unbounded terminal conditions. Probability Theory and Related Fields, 141(3-4):543–567, 2008.
- R. Buckdahn, J. Li, and S. Peng. Mean-field backward stochastic differential equations and related partial differential equations. Stochastic Processes and their Applications, 119(10):3133–3154, 2009.
- G. Da Prato. An introduction to infinite-dimensional analysis. Universitext. Springer-Verlag, Berlin, 2006.
- F. Delbaen, Y. Hu, and A. Richou. On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 47(2):559–574, 2011.
- N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equations in finance. Mathematical Finance. An International Journal of Mathematics, Statistics and Financial Economics, 7(1):1–71, 1997.
- C. Frei and G. Dos Reis. A financial market with interacting investors: does an equilibrium exist? Mathematics and Financial Economics, 4(3):161–182, 2011.
- S. Hamadène. Multidimensional backward stochastic differential equations with uniformly continuous coefficients. Bernoulli, 9 (3):517–534, 2003.
- M. Kobylanski. Backward stochastic differential equations and partial differential equations with quadratic growth. The Annals of Probability, 28(2):558–602, 2000.
- G. Liang, A. Lionnet, and Z. Qian. On Girsanov's transform for backward stochastic differential equations. arXiv.org, 2010.
- G. Liang, T. Lyons, and Z. Qian. Backward stochastic dynamics on a filtered probability space. The Annals of Probability, 39 (4):1422–1448, 2011.
- E. Pardoux and S. Peng. Adapted solution of a backward stochastic differential equation. Systems & Control Letters, $14(1)$: 55–61, 1990.
- D. R. Smart. Fixed point theorems. Cambridge University Press, London-New York, 1974.
- R. Tevzadze. Solvability of backward stochastic differential equations with quadratic growth. Stochastic Processes and their Applications, 118(3):503–515, 2008.