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Introduction to Optimal Switching

Optimal switching is the problem of determining an optimal
sequence of stopping times for a switching system.

Main ingredients.

Profit/cost functional: running payoff + switching cost;
Switching system: ODE, PDE, SDE, BSDE;
Stopping times: accessible, totally inaccessible.

Financial applications.

Firm’s investment, real options, trend following trading.
The player (the manager of a power plant) can enter or exit an
economic activity, deciding when to produce electricity (if the profit
generated from operation is high), and when to close the power
station (if the profit generated from operation is low) in an optimal
way.
Optimal switching is dubbed the starting and stopping problem, the
reversible investment problem.
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Literature Review: Incomprehensive

How to model the underlying switching system?

ODE. Dolcetta and Evans (1984).
PDE. Stojanovic and Yong (1989).
SDE. Impulse control and quasi-variational inequality: Bensoussan
and Lions (1984), Tang and Yong (1993).
The structure of switching regions: Brekke and Oksendal (1994),
Duckworth and Zervos (2001), Ly Vath and Pham (2007), Pham et
al (2009), Bayraktar and Egami (2010).
BSDE. Characterization by multidimensional oblique reflected BSDE:
Hamadène and Jeanblanc (2007), Hu and Tang (2010), Hamadène
and Zhang (2010), Chassagneux et al (2013).

Financial applications.

Firm’s investment: Dixit (1989), Brekke and Oksendal (1994),
Duckworth and Zervos (2001).
Real options: Hamadène and Jeanblanc (2007), Carmona and
Ludkovski (2008), Porchet et al (2009).
Trend following trading: Dai et al (2010).
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Motivation

Most of existing results on optimal switching consider accessible
switching times (stopping times w.r.t. BM filtration).

We consider the player is allowed to switch at a sequence of Poisson
arrival times (totally inaccessible) instead of any stopping times.

The Poisson process can be regarded as an exogenous constraint on
the player’s ability to switch, reflecting the liquidity effect.
The Poisson process can also be seen as an information constraint.
The player is only able to observe the switching system at Poisson
arrival times.
Optimal switching at Poisson arrival times can also be seen as a
randomized version of a discrete optimal switching problem.

In optimal stopping time setting: Dupuis and Wang (2002)
American options, Liang et al (2012) dynamic bank run problems.
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Some Notations

Let W be a BM with filtration F = {Ft}t≥0.

For any fixed time t ≥ 0, let {Tn}n≥0 be the arrival times of a

Poisson process (Ns)s≥t with intensity λ and filtration {H(t,λ)
s }s≥t .

The Brownian motion and the Poisson process are independent.

Given the parameter set (t, λ), let G(t,λ)
s = Fs ∨H(t,λ)

s so that

G(t,λ)
t = Ft , and G(t,λ) = {G(t,λ)

s }s≥t .

Given the Poisson arrival time Tn, define pre-Tn σ-field:

G(t,λ)
Tn

=



A ∈

∨

s≥t

G(t,λ)
s : A ∩ {Tn ≤ s} ∈ G(t,λ)

s for s ≥ t.





for n ≥ 0, and denote G̃(t,λ) = {G(t,λ)
Tn

}n≥0.
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The Switching System: Infinite Horizon BSDE System

The switching system: For 0 ≤ t ≤ T < ∞ and 1 ≤ i ≤ d ,

{
Y i

t = Y i
T +

∫ T

t
f i
s (Ys ,Zs) + λ max

{
0,MY i

s − Y i
s

}
ds − ∫ T

t
Z i

sdWs ,

limT↑∞ E
[
e2aT |YT |2

]
= 0.

(1)

The driver fs = (f 1
s · · · , f d

s )∗ and the parameter a are the given
data, and the impulse term MY i

t is defined as

MY i
t = max

j 6=i

{
Y j

t − g ij
t

}
.

A solution to (1) is a pair of F-progressively measurable processes
(Y ,Z ).

Gechun Liang Optimal Switching at Poisson Random Intervention Times



The Corresponding Oblique Reflected BSDE

The corresponding oblique reflected BSDE: For 0 ≤ t ≤ T < ∞ and
1 ≤ i ≤ d ,





Y i
t = Y i

T +
∫ T

t
f i
s (Ys ,Zs)ds +

∫ T

t
dK i

s −
∫ T

t
Z i

sdWs ,

Y i
t ≥MY i

t , with
∫ T

0
(Y i

s −MY i
s )dK i

s = 0,

limT↑∞ E
[
e2aT |YT |2

]
= 0.

(2)

A solution to (2) is a triple of F-progressively measurable processes
(Y ,Z ,K ).

(1) is called the penalized equation of (2). The solution of (1) will
converge to the solution of (2) when λ ↑ ∞ under certain condition.

Gechun Liang Optimal Switching at Poisson Random Intervention Times



Assumptions on the Switching System

The driver fs(y , z) is monotone in y and Lipschitz continuous in z :

(y − ȳ)∗(fs(y , z)− fs(ȳ , z)) ≤ −a1|y − ȳ |2,
|fs(y , z)− fs(y , z̄)| ≤ a2||z − z̄ ||,

and it has linear growth in both components (y , z).

The parameter a satisfies the structure condition (Darling and
Pardoux (1997)):

a = −a1 +
δ

2
a2
2 + (

d + 3

2
)λ

for δ > 1 such that

E

[∫ ∞

0

|fs(0, 0)|2e2asds

]
< ∞.

If a ≥ 0, small class of fs(0, 0) and Y goes to zero exponentially
fast; If a < 0, large class of fs(0, 0), and Y does not necessarily go
to zero.
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Assumptions on the Switching System Cont.

The switching cost g ij is a bounded F-progressively measurable
process valued in R, and satisfies

g ii
t = 0;

inft≥0 g ij
t + g ji

t ≥ C > 0 for i 6= j ;
inft≥0 g ij

t + g jl
t − g il

t ≥ C > 0 for i 6= j 6= l .

Under the above assumptions, the switching system admits a unique
solution pair (Y ,Z ).

However, the oblique reflected BSDE (2) not necessarily admits a
solution.
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The Optimal Switching Model

Given d switching regimes, a player starts in regime i at any fixed
time t ≥ 0, and makes her switching decisions sequentially at a
sequence of Poisson arrival times {Tn}n≥0.

The switching decision at any time s ≥ t is

us = α01{t}(s) +
∑

k≥0

αk1(Tk ,Tk+1](s), (3)

where (αk)k≥0 ∈ G(t,λ)
Tk

, valued in {1, · · · , d}.

Ki (t, λ) =
{
G(t,λ)-progressively measurable process (us)s≥t :

u has the form (3) with α0 = i} .

For any r ≤ a, y
i,(t,λ)
t is the value of the optimal switching problem

ess sup
u∈Ki (t,λ)

E




∫ ∞

t

er(s−t)[f us
s (Ys ,Zs)− rY i

s ]ds −
∑

k≥1

er(Tk−t)g
αk−1,αk

Tk
|G(t,λ)

t


 .

(4)
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The Optimal Switching Model Cont.

If a ≥ 0, then by choosing r = 0, we obtain an optimal switching
problem without discounting:

y
i,(t,λ)
t = ess sup

u∈Ki (t,s)

E




∫ ∞

t

f us
s (Ys ,Zs)ds −

∑

k≥1

g
αk−1,αk

Tk
|G(t,λ)

t


 .

If a < 0, then discounting by rate r ≤ a in the optimal switching
problem (4) is necessary.
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Optimal Switching Representation

Theorem

Let (Y ,Z ) be the unique solution to the infinite horizon BSDE system
(1). Then the value of the optimal switching problem (4) is given by

y
i,(t,λ)
t = Y i

t , a.s. for t ≥ 0,

and the optimal switching strategy is τ∗0 = t and α∗0 = i ,

τ∗k+1 = inf
{

TN > τ∗k : Y
α∗k
TN

≤MY
α∗k
TN

}

where
α∗k+1 = arg max

j 6=α∗k

{
Y j

τ∗k+1
− g

α∗k ,j
τ∗k+1

}

for k ≥ 0. Hence, the optimal switching strategy at any time s ≥ t is

u∗s = i1{t}(s) +
∑

k≥0

α∗k1(τ∗k ,τ∗k+1]
(s).
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The Structure of Switching Regions
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Markovian Assumptions

Assume there are two regimes, and 1-dim BM.

The driver fs(y , z) has the form: fs(y , z) = h(Xs)− a1y , where

dXs = bXsds + σXsdWs ,

h = (h1, h2)∗ is nonnegative and Lipschitz continuous, and
a1 > max{b, 0} is large enough so that for a = −a1 + 2.5λ,

E

[∫ ∞

0

|h(Xs)|2e2asds

]
< ∞.

The switching cost g ij is a constant, and satisfies (1) g ii = 0; and
(2) g ij + g ji > 0 for i 6= j .
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The Optimal Switching Problem

There exist measurable functions v = (v1, v2) such that Yt = v(Xt).

Choosing r = −a1, we know that v i (X0) = v i (x) is the value of the
optimal switching problem

v i (x) = sup
u∈Ki (0,λ)

E




∫ ∞

0

e−a1shus (Xs)ds −
∑

k≥1

e−a1Tk gαk−1,αk


 .

Moreover, the optimal switching strategy is τ∗0 = 0 and α∗0 = i ,

τ∗k+1 = inf
{

TN > τ∗k : vα∗k (XTN
) ≤ vα∗k+1(XTN

)− gα∗k ,α∗k+1

}

where α∗k+1 = 3− α∗k .

The switching regions: For i = 1, 2 and j = 3− i ,

S i = {x ∈ (0,∞) : v i (x) ≤ v j(x)− g ij}.
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The Structure of Switching Regions

.

Theorem

Suppose that F (x) = h2(x)− h1(x) ≥ 0, strictly increasing on (0,∞),
and moreover, the switching cost g12 > 0. Then we have the following
five cases for the switching regions S1 and S2:

1 If a1g
12 ≥ F (∞) and a1g

21 ≥ 0, then, S1 = φ,S2 = φ;

2 If a1g
12 ≥ F (∞) and −F (∞) < a1g

21 < 0, then,
S1 = φ,S2 = (0, x2], where x2 ∈ (0,∞);

3 If a1g
12 ≥ F (∞) and a1g

21 ≤ −F (∞), then, S1 = φ,S2 = (0,∞);

4 If a1g
12 < F (∞) and a1g

21 ≥ 0, then, S1 = [x1,∞),S2 = φ, where
x1 ∈ (0,∞).

5 If a1g
12 < F (∞) and −F (∞) < a1g

21 < 0, then,
S1 = [x1,∞),S2 = (0, x2], where x1, x2 ∈ (0,∞).
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The Structure of Switching Regions
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The Structure of Switching Regions
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The Structure of Switching Regions
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The Proof of Optimal Switching Representation
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Reformulation of the Switching System

Observe (Y ,Z ) solve (1), if and only if (U i
t ,V

i
t ) = (ertY i

t , e
rtZ i

t ) for
t ≥ 0, 1 ≤ i ≤ d and r ≤ a solve the following infinite horizon
BSDE system:

{
U i

t = U i
T +

∫ T

t
f̃ i
s (Us ,Vs) + λ max

{
0,M̃U i

t − U i
t

}
ds − ∫ T

t
V i

s dWs ,

limT↑∞ E
[
e2(a−r)T |UT |2

]
= 0.

(5)

The driver f̃s = (f̃ 1
s , · · · , f̃ d

s )∗ is given by

f̃ i
s (y , z) = ers f i

s (e−rsy , e−rsz)− ry i

for (y , z) ∈ Rd × Rd×n, and the impulse term M̃U i
t is defined as

M̃U i
t = max

j 6=i

{
U j

t − ertg ij
t

}
.
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Reformulation of the Optimal Switching Model

Observe the solution Y i
t to (1) is the value of the optimal switching

problem (4) with the optimal switching strategy u∗, if and only if
the solution U i

t = ertY i
t to (5) is the value of the following optimal

switching problem (without discounting):

erty
i,(t,λ)
t = ess sup

u∈Ki (t,λ)

E




∫ ∞

t

f̃ us
s (Us ,Vs)ds −

∑

k≥1

erTk g
αk−1,αk

Tk
|G(t,λ)

t


 .

(6)

The optimal switching strategy is τ∗0 = t and α∗0 = i ,

τ∗k+1 = inf
{

TN > τ∗k : U
α∗k
TN
≤ M̃U

α∗k
TN

}

where
α∗k+1 = arg max

j 6=α∗k

{
U j

τ∗k+1
− erτ∗k+1g

α∗k ,j
τ∗k+1

}
.
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Optimal Stopping Representation

Lemma

Let (U,V ) be the unique solution to the infinite horizon BSDE system
(5). For n ≥ 0 and 1 ≤ i ≤ d, consider the following auxiliary optimal
stopping problem:

ỹ
i,(t,λ)
Tn

= ess sup
τ∈RTn+1

(t,λ)

E

[∫ τ

Tn

f̃ i
s (Us ,Vs)ds + M̃U i

τ |G(t,λ)
Tn

]
, (7)

where the control set RTn+1(t, λ) is defined as

RTn+1(t, λ) =
{
G(t,λ)-stopping time τ for τ(ω) = Tk(ω) where k ≥ n + 1

}
.

Then its value is given by ỹ
i,(t,λ)
Tn

= U i
Tn

, a.s. for n ≥ 0, and in particular,

ỹ
i,(t,λ)
t = U i

t , a.s. for t ≥ 0. The optimal stopping time is given by

τ∗Tn+1
= inf

{
Tk ≥ Tn+1 : U i

Tk
≤ M̃U i

Tk

}
.
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The Proof of Optimal Switching Representation

Take any switching strategy u ∈ Ki (t, λ) with the form:

us = i1{t}(s) +
∑

k≥0

αk1(Tk ,Tk+1](s).

Consider the optimal stopping time problem (7) starting from
T0 = t, stopping at the first Poisson arrival time T1, and switching
to α1:

ỹ
i,(t,λ)
t ≥ E

[∫ T1

t

f̃ i
s (Us ,Vs)ds + Uα1

T1
− erT1g i,α1

T1
|G(t,λ)

t

]
. (8)

The value of the optimal stopping time problem (7) starting from T1

is given by ỹ
α1,(t,λ)
T1

= Uα1

T1
. Consider such an optimal stopping time

problem stopping at the Poisson arrival time T2, and switching to
α2:

Uα1

T1
= ỹ

α1,(t,λ)
T1

≥ E

[∫ T2

T1

f̃ α1
s (Us ,Vs)ds + Uα2

T2
− erT2gα1,α2

T2
|G(t,λ)

T1

]
.

(9)
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The Proof of Optimal Switching Representation Cont.

Plugging (9) into (8), we obtain that ỹ
i,(t,λ)
t ≥

E

[∫ T1

t

f̃ i
s (Us ,Vs)ds +

∫ T2

T1

f̃ α1
s (Us ,Vs)ds − erT1g i,α1

T1
− erT2gα1,α2

T2
+ Uα2

T2
|G(t,λ)

t

]
.

Repeat the above procedure M times:

ỹ
i,(t,λ)
t ≥ E

[∫ TM+1

t

f̃ us
s (Us ,Vs)ds −

M+1∑

k=1

erTk g
αk−1,αk

Tk
+ UαM+1

TM+1
|G(t,λ)

t

]
.

Recall that the solution UT converges to zero in L2 as r ≤ a:

lim
T↑∞

E[|UT |2] ≤ lim
T↑∞

E[e2(a−r)T |UT |2] = lim
T↑∞

E[e2aT |YT |2] = 0.

Hence, letting M ↑ ∞, we get

ỹ
i (t,λ)
t ≥ E




∫ ∞

t

f̃ us
s (Us ,Vs)ds −

∑

k≥1

erTk g
αk−1,αk

Tk
|G(t,λ)

t


 .
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The Proof of Optimal Switching Representation Cont.

Taking the supremum over u ∈ Ki (t, λ),

ỹ
i (t,λ)
t ≥ sup

u∈Ki (t,λ)

E




∫ ∞

t

f̃ us
s (Us ,Vs)ds −

∑

k≥1

erTk g
αk−1,αk

Tk
|G(t,λ)

t


 .

Since U i
t = ỹ

i (t,λ)
t , we obtain that

U i
t ≥ erty

i (t,λ)
t .

The reverse inequality is obtained by considering the optimal
switching strategy u = u∗.
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Reformulation of the Auxiliary Optimal Stopping Problem

An equivalent formulation of the optimal stopping time problem (7):

ỹ
i,(t,λ)
Tn

= ess sup
N∈Nn+1(t,λ)

E

[∫ TN

Tn

f̃ i
s (Us ,Vs)ds + M̃U i

TN
|G(t,λ)

Tn

]
, (10)

where the control set NTn+1(t, λ) is defined as

Nn+1(t, λ) =
{
G̃(t,λ)-stopping time N for N ≥ n + 1

}
.

(10) is a discrete optimal stopping problem, as the player is allowed
to stop at a sequence of integers n + 1, n + 2, · · · .

The optimal stopping time is then some integer-valued random
variable N∗n+1:

N∗n+1 = inf
{
k ≥ n + 1 : U i

Tk
≤ M̃U i

Tk

}
.
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The Proof of Optimal Stopping Representation

The first observation: the solution to the infinite horizon BSDE
system (5) on the Poisson arrival time Tn can be calculated
recursively as follows:

U i
Tn

= E

[∫ Tn+1

Tn

f̃ i
s (Us ,Vs)ds + max{M̃U i

Tn+1
,U i

Tn+1
}|G(t,λ)

Tn

]
.

The second observation: If we define Û i = max
{M̃U i ,U i

}
, then Û i

satisfies the following recursive equation:

Û i
Tn

= max

{
M̃U i

Tn
,E

[∫ Tn+1

Tn

f̃ i
s (Us ,Vs)ds + Û i

Tn+1
|G(t,λ)

Tn

]}
.

From the snell envelop theory,

Û i
Tn

= ess sup
N∈Nn(t,λ)

E

[∫ TN

Tn

f̃ i
s (Us ,Vs)ds + M̃U i

TN
|G(t,λ)

Tn

]
.

Gechun Liang Optimal Switching at Poisson Random Intervention Times



The Proof of Optimal Stopping Representation Cont.

From the first observation:

U i
Tn

= E

[∫ Tn+1

Tn

f̃ i
s (Us ,Vs)ds + Û i

Tn+1
|G(t,λ)

Tn

]
. (11)

From the second observation: for any N ∈ Nn+1(t, λ),

Û i
Tn+1

≥ E

[∫ TN

Tn+1

f̃ i
s (Us ,Vs)ds + M̃U i

TN
|G(t,λ)

Tn+1

]
. (12)

Plugging (12) into (11), we obtain that

U i
Tn
≥ E

[∫ Tn+1

Tn

f̃ i
s (Us ,Vs)ds +

∫ TN

Tn+1

f̃ i
s (Us ,Vs)ds + M̃U i

TN
|G(t,λ)

Tn

]
.

Taking the supremum over N ∈ Nn+1(t, λ) gives us U i
Tn
≥ ỹ

i,(t,λ)
Tn

.

The reverse inequality is obtained by considering the optimal
stopping time N = N∗n+1.
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Some Future Works

Relating to piecewise-deterministic Markov process: Davis (1984).

Relating to randomized stopping time technique: Krylov (1980),
Buckdahn and Engelbert (1984).

More applications, such as

Optimal switching of rough differential equation,
Optimal investment switching,
Numerical solution to (oblique) reflected BSDE,
· · · .
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