

Supersolutions of BSDEs: Minimality, Constraints, Duality

CHRISTOPH MAINBERGER

Technical University Berlin

based on joint works with GREGOR HEYNE, MICHAEL KUPPER and LUDOVIC TANGPI

Second Young Researchers Meeting on BSDEs, Numerics and Finance

Bordeaux, France July 09, 2014

Outline

Minimal Supersolutions of BSDEs

Supersolutions of BSDEs under Constraints

Duality under Constraints

Minimal Supersolutions of BSDEs

Motivation

Superhedging

Contingent claim ξ , for instance a call option $\xi = (S_T - K)^+$

Goal: Find a (super-)hedging strategy for ξ .

Supersolutions of BSDEs

Motivation

 $Y_0 + \int_0^T$ 0 *ZudSu* ≥ ξ trading gains

- Y_0 = superhedging price of ξ
- $Z =$ superhedging strategy

Motivation

- *Yt*= superhedging price of ξ at *t*
- *Z*= superhedging strategy

Definition

Brownian filtered probability space $(\Omega, (\mathcal{F}_t), P, W)$

Definition

A *value process Y* together with a *control process Z* is supersolution of the Backward Stochastic Differential Equation with *generator g* and *terminal condition* ξ if

$$
\begin{cases}\nY_s - \int_s^t g_u(Y_u, Z_u) du + \int_s^t Z_u dW_u \ge Y_t, & s \le t \\
Y_T \ge \xi\n\end{cases} (*)
$$

generator: values in $[0, \infty]$, jointly lower semicontinuous terminal condition: F*^T* -measurable.

value process: adapted and càdlàg \rightsquigarrow S

control process: progressive, $\int_0^T Z_u^2 du < \infty$ and $\int Z dW$ supermartingale \rightsquigarrow $\mathcal L$

Definition

Brownian filtered probability space (Ω, (F*^t*), *P*, *W*)

Definition

A *value process Y* together with a *control process Z* is supersolution of the Backward Stochastic Differential Equation with *generator g* and *terminal condition* ξ if

$$
\begin{cases}\nY_s - \int_s^t g_u(Y_u, Z_u) du + \int_s^t Z_u dW_u \ge Y_t, & s \le t \\
Y_T \ge \xi\n\end{cases} (*)
$$

generator: values in $[0, \infty]$, jointly lower semicontinuous terminal condition: F*^T* -measurable.

value process: adapted and càdlàg \rightsquigarrow S control process: progressive, $\int_0^T Z_u^2 du < \infty$ and $\int Z dW$ supermartingale \rightsquigarrow $\mathcal L$

 $\mathcal{A} = \{ (Y, Z) \in \mathcal{S} \times \mathcal{L} : (Y, Z) \text{ fulfills } (*) \}$

Minimality, principal aim

Supersolutions are not unique! \rightsquigarrow find the minimal one:

A supersolution (*Y min* , *Z min*) ∈ A is called a Minimal Supersolution if $Y_t^{min} \leq Y_t$, $t \in [0, T]$, for any other supersolution $(Y, Z) \in \mathcal{A}$.

-
-

Minimality, principal aim

Supersolutions are not unique! \rightsquigarrow find the minimal one:

A supersolution (*Y min* , *Z min*) ∈ A is called a Minimal Supersolution if $Y_t^{min} \leq Y_t$, $t \in [0, T]$, for any other supersolution $(Y, Z) \in \mathcal{A}$.

Theorem (D.,H.,K., 2013, AoP)

Assume that $\xi^-\in L^1$ *and* $\mathcal{A}\neq\emptyset$ *. If the <code>generator</code>* g *is*

- *convex in z*
- *monotone in y*

then a unique minimal supersolution exists.

Minimality, principal aim

Supersolutions are not unique! \rightsquigarrow find the minimal one:

A supersolution (*Y min* , *Z min*) ∈ A is called a Minimal Supersolution if $Y_t^{min} \leq Y_t$, $t \in [0, T]$, for any other supersolution $(Y, Z) \in \mathcal{A}$.

Theorem (D.,H.,K., 2013, AoP)

Assume that $\xi^-\in L^1$ *and* $\mathcal{A}\neq\emptyset$ *. If the <code>generator</code>* g *is*

- *convex in z*
- *monotone in y*

then a unique minimal supersolution exists.

Proof of the theorem below strongly relies on compactness results.

 \rightarrow convexity is indispensable!

Minimality, principal aim

Supersolutions are not unique! \rightsquigarrow find the minimal one:

A supersolution (*Y min* , *Z min*) ∈ A is called a Minimal Supersolution if $Y_t^{min} \leq Y_t$, $t \in [0, T]$, for any other supersolution $(Y, Z) \in \mathcal{A}$.

Theorem (D.,H.,K., 2013, AoP)

Assume that $\xi^-\in L^1$ *and* $\mathcal{A}\neq\emptyset$ *. If the <code>generator</code>* g *is*

- *convex in z*
- *monotone in y*

then a unique minimal supersolution exists.

Proof of the theorem below strongly relies on compactness results.

 \rightarrow convexity is indispensable!

Aim:

Obtain existence and uniqueness of minimal supersolution under weakest possible assumptions on *g*. In particular:

drop the convexity!

Minimal Supersolutions

Assumptions on the generator

A generator is a measurable function $g:\Omega\times[0,\,T]\times\mathbb{R}\times\mathbb{R}^d\to[0,+\infty]$ such that

(LSC) $(y, z) \mapsto g(\omega, t, y, z)$ is lower semicontinuous for all (ω, t) .

 $g(y, 0) = 0$ for all y.

Main theorem

A natural candidate for the value process of a minimal supersolution:

$$
\hat{\mathcal{E}}_t = \text{ess inf}\left\{Y_t : (Y, Z) \in \mathcal{A}\right\}, \quad t \in [0, T].
$$

Question: Does there exist a càdlàg modification $\mathcal E$ of $\hat{\mathcal E}$ and a control process $Z \in \mathcal L$ such that (\mathcal{E}, Z) is a supersolution ?

$$
\mathcal{E}_t := \hat{\mathcal{E}}_t^+ = \lim_{s \downarrow t, s \in \mathbb{Q}} \hat{\mathcal{E}}_s
$$

Main theorem

A natural candidate for the value process of a minimal supersolution:

$$
\hat{\mathcal{E}}_t = \text{ess inf}\left\{Y_t : (Y, Z) \in \mathcal{A}\right\}, \quad t \in [0, T].
$$

Question: Does there exist a càdlàg modification $\mathcal E$ of $\hat{\mathcal E}$ and a control process $Z \in \mathcal L$ such that (\mathcal{E}, Z) is a supersolution ?

Theorem

Assume *g* satisfies (LSC) and (NOR). Suppose $\xi^-\in L^1$ and $\mathcal{A}\neq\emptyset.$ Then

$$
\mathcal{E}_t := \hat{\mathcal{E}}_t^+ = \lim_{s \downarrow t, s \in \mathbb{Q}} \hat{\mathcal{E}}_s
$$

is the value process of the unique minimal supersolution, that is, there exists a unique control process *Z* such that $(\mathcal{E}, Z) \in \mathcal{A}$.

Idea of the proof

Step 1: Uniform Approximation

• Suppose we find a sequence $((Y^n, Z^n)) \subset A$ such that

 $\lim_{n\to\infty} \|\mathcal{E} - Y^n\|_{\mathcal{R}^\infty} = 0$.

• A result by [BARLOW, PROTTER] yields

$$
\lim_{n\to\infty}\left\|\int Z^n dW-M\right\|_{\mathcal{H}^1}=0\,,
$$

where $\mathcal{E} = \mathcal{E}_0 + M - A$.

• By martingale representation we know that $M = \int ZdW$. Verification of (\mathcal{E}, Z) belonging to A follows from (LSC).

Supersolutions of BSDEs Idea of the proof

Step 2: A preorder on A and Zorn's Lemma

• For two supersolutions (Y^1, Z^1) and (Y^2, Z^2) in A we define the preorder \preceq by

$$
(Y^1, Z^1) \preceq (Y^2, Z^2) \iff \begin{cases} & \tau_1 \leq \tau_2 \\ & (Y^1, Z^1)1_{[0, \tau_1[} = (Y^2, Z^2)1_{[0, \tau_1[} \end{cases})
$$

for the stopping time $\tau_i = \inf \{ t \geq 0 : Y_t^i > \mathcal{E}_t + \varepsilon \}.$

Supersolutions of BSDEs Idea of the proof

Step 2: A preorder on A and Zorn's Lemma

• For two supersolutions (Y^1, Z^1) and (Y^2, Z^2) in A we define the preorder \preceq by

$$
(Y^1, Z^1) \preceq (Y^2, Z^2) \iff \begin{cases} & \tau_1 \leq \tau_2 \\ & (Y^1, Z^1)1_{[0, \tau_1]} = (Y^2, Z^2)1_{[0, \tau_1]} \end{cases}
$$

for the stopping time $\tau_i = \inf \{ t \geq 0 : Y_t^i > \mathcal{E}_t + \varepsilon \}.$

■ For $((Y^i, Z^i))_{i \in I}$ a totally ordered chain we consider

 $\tau^* := \operatorname{ess} \operatorname{sup} \tau_i$. *i*∈*I*

• By monotonicity we find (τ_k) such that $\tau^* = \lim_k \tau_k$.

Idea of the proof: Step 3: A candidate upper bound (*Y*, *Z*)

Crucial part: construct upper bound $(\overline{Y}, \overline{Z})$ for the chain $((Y^i, Z^i))_{i \in I}$

Idea of the proof: Step 3: A candidate upper bound $(\overline{Y}, \overline{Z})$

Paste corresponding supersolutions (Y^k , Z^k) at times τ_k up to τ^*

Idea of the proof: Step 3: A candidate upper bound $(\overline{Y}, \overline{Z})$

Paste corresponding supersolutions (Y^k, Z^k) at times τ_k up to τ^*

Idea of the proof: Step 3: A candidate upper bound $(\overline{Y}, \overline{Z})$

Paste corresponding supersolutions (Y^k, Z^k) at times τ_k up to τ^*

Supersolutions of BSDEs

Idea of the proof

Jump down to $\mathcal{E}_{\tau^*} + \frac{\varepsilon}{2}$

Idea of the proof

(NOR) allows for $Z = 0$ on short time interval $[\tau^*, \sigma]$ without leaving ε -nbh of $\mathcal E$

Supersolutions of BSDEs

Idea of the proof

At time σ , there is $(\widetilde{Y}, \widetilde{Z}) \in \mathcal{A}$ lying below; Concatenate with it on $[\sigma, T]$

Supersolutions of BSDEs

Idea of the proof

We have constructed a supersolution $(\overline{Y}, \overline{Z}) \in \mathcal{A}$

Supersolutions of BSDEs

Idea of the proof

 $(\overline{Y},\overline{Z})$ is an upper bound since it stays longer in ε -neighborhood than τ^*

Supersolutions of BSDEs Idea of the proof

Final step: Zorn yields a maximal element (*Y ^M* , *Z ^M*).

• Verifying $\overline{Z} \in \mathcal{L}$ and that $(\overline{Y}, \overline{Z})$ satisfies $(*)$ yields that $(\overline{Y}, \overline{Z}) \in \mathcal{A}$ and we have thus constructed an upper bound. Zorn's lemma ensures the existence of a maximal element (Y^M , Z^M) with respect to \preceq .

$$
\left\|{\cal E}-Y^M\right\|_{\mathcal{R}^\infty}\leq\varepsilon\,,
$$

Supersolutions of BSDEs Idea of the proof

Final step: Zorn yields a maximal element (*Y ^M* , *Z ^M*).

• Verifying $\overline{Z} \in \mathcal{L}$ and that $(\overline{Y}, \overline{Z})$ satisfies $(*)$ yields that $(\overline{Y}, \overline{Z}) \in \mathcal{A}$ and we have thus constructed an upper bound. Zorn's lemma ensures the existence of a maximal element (Y^M , Z^M) with respect to \preceq .

• Finally, prove that the corresponding stopping time τ^M satisfies $\tau^M = T$ to conclude that

$$
\left\|\mathcal{E}-Y^M\right\|_{\mathcal{R}^\infty}\leq\varepsilon,
$$

which finishes the proof.

Motivation

Being a priori only progressive, controls $Z \in \mathcal{L}$ exhibit in general no path regularities. More structure \rightsquigarrow constrain admissible controls to the specific set

$$
\Theta:=\left\{Z\in\mathcal{L}\,:\,Z=z+\int\Delta du+\int\varGamma dW\right\}
$$

$$
\begin{cases}\nY_s - \int_s^t g(Y_u, Z_u, \Delta_u, \Gamma_u) du + \int_s^t Z_u dW_u \ge Y_t, & 0 \le s \le t \le T \\
Y_T \ge \xi\n\end{cases}
$$

$$
\mathcal{A} := \{ (Y, Z) \in \mathcal{S} \times \Theta : (Y, Z) \text{ fulfills } (*) \}
$$

Supersolutions of BSDEs under Constraints **Motivation**

Being a priori only progressive, controls $Z \in \mathcal{L}$ exhibit in general no path regularities.

More structure \rightsquigarrow constrain admissible controls to the specific set

$$
\Theta := \left\{ Z \in \mathcal{L} \,:\, Z = z + \int \Delta du + \int \Gamma dW \right\}
$$

$$
\begin{cases}\nY_s - \int_s^t g(Y_u, Z_u, \Delta_u, \Gamma_u) du + \int_s^t Z_u dW_u \ge Y_t, & 0 \le s \le t \le T \\
Y_T \ge \xi\n\end{cases} (*)
$$

Set of constrained supersolutions with generator *g* and terminal condition ξ:

$$
\mathcal{A} := \{ (Y, Z) \in \mathcal{S} \times \Theta : (Y, Z) \text{ fulfills } (*) \}
$$

Supersolutions of BSDEs under Constraints **Motivation**

Being a priori only progressive, controls $Z \in \mathcal{L}$ exhibit in general no path regularities.

More structure \rightsquigarrow constrain admissible controls to the specific set

$$
\Theta := \left\{ Z \in \mathcal{L} \,:\, Z = z + \int \Delta du + \int \Gamma dW \right\}
$$

$$
\begin{cases}\nY_s - \int_s^t g(Y_u, Z_u, \Delta_u, \Gamma_u) du + \int_s^t Z_u dW_u \ge Y_t, & 0 \le s \le t \le T \\
Y_T \ge \xi\n\end{cases} (*)
$$

Set of constrained supersolutions with generator *g* and terminal condition ξ:

$$
\mathcal{A} := \{ (Y, Z) \in \mathcal{S} \times \Theta : (Y, Z) \text{ fulfills } (*) \}
$$

Incorporated: Gamma Constraints, short-selling,...

Generator, Notion of minimality

1 Introducing constraints comes at a cost. Generators need to satisfy

(CON) $(y, z, \delta, \gamma) \mapsto g(y, z, \delta, \gamma)$ is jointly convex

$$
\text{(DGC)} \quad g(y,z,\delta,\gamma) \geq c_1 + c_2 \left(|\delta|^2 + |\gamma|^2 \right) \text{ for } c_1 \in \mathbb{R}, c_2 > 0.
$$

Generator, Notion of minimality

1 Introducing constraints comes at a cost. Generators need to satisfy

(CON) $(y, z, \delta, \gamma) \mapsto g(y, z, \delta, \gamma)$ is jointly convex

$$
\text{(DGC)} \quad g(y,z,\delta,\gamma) \geq c_1 + c_2 \left(|\delta|^2 + |\gamma|^2 \right) \text{ for } c_1 \in \mathbb{R}, c_2 > 0.
$$

2 Furthermore, we introduce a specific notion of minimality.

Definition Fix a time $t \in [0, T]$. A supersolution (Y^{min}, Z^{min}) is said to be minimal at time *t* if it holds *Y*^{*min*} $\leq Y_t$ for all $(Y, Z) \in \mathcal{A}$ satisfying $Z_{[0,t]} = Z_{[0,t]}^{min}$.

Generator, Notion of minimality

1 Introducing constraints comes at a cost. Generators need to satisfy

(CON) $(y, z, \delta, \gamma) \mapsto g(y, z, \delta, \gamma)$ is jointly convex

$$
\text{(DGC)} \quad g(y,z,\delta,\gamma) \geq c_1 + c_2 \left(|\delta|^2 + |\gamma|^2 \right) \text{ for } c_1 \in \mathbb{R}, c_2 > 0.
$$

2 Furthermore, we introduce a specific notion of minimality.

Definition Fix a time $t \in [0, T]$. A supersolution (Y^{min}, Z^{min}) is said to be minimal at time *t* if it holds *Y*^{*min*} $\leq Y_t$ for all $(Y, Z) \in \mathcal{A}$ satisfying $Z_{[0,t]} = Z_{[0,t]}^{min}$.

Justification: pasting arbitrary supersolutions violates the constraints!

Pasting without constraints

Illustration: Pasting without constraints

Pasting without constraints

Illustration: Pasting without constraints

Supersolutions of BSDEs under Constraints

Pasting with constraints

Illustration: Pasting with constraints

Pasting with constraints

Existence of supersolution minimal at time *t*

At $t \in [0, T]$ \rightsquigarrow candidate for the value process of a minimal supersolution given $Z^*_{[0, t]}$:

$$
\mathcal{E}_t\left(Z^*_{[0,t]}\right) = \text{ess}\inf\left\{Y_t:(Y,Z)\in \mathcal{A} \quad \text{fulfilling } Z_{[0,t]} = Z^*_{[0,t]}\right\}\,.
$$

$$
\left\{(Y,Z)\in\mathcal{A}\,:\,Y_t=\mathcal{E}_t\left(Z^*_{[0,t]}\right)\quad\text{and}\quad Z_{[0,t]}=Z^*_{[0,t]}\right\}
$$

Existence of supersolution minimal at time *t*

At $t \in [0, T]$ \rightsquigarrow candidate for the value process of a minimal supersolution given $Z^*_{[0, t]}$:

$$
\mathcal{E}_t\left(Z^*_{[0,t]}\right) = \text{ess}\inf\left\{Y_t:(Y,Z)\in \mathcal{A} \quad \text{fulfilling } Z_{[0,t]} = Z^*_{[0,t]}\right\}\,.
$$

Theorem

Assume a positive lsc generator *g* fulfils (CON) and (DGC). Suppose ξ[−] ∈ *L* ¹ and $\mathcal{A} \neq \emptyset.$ Then for each attainable control $\mathcal{Z}_{[0,\,t]}^*$ the set

$$
\left\{(Y,Z)\in\mathcal{A}\,:\,Y_t=\mathcal{E}_t\left(Z^*_{[0,t]}\right)\quad\text{and}\quad Z_{[0,t]}=Z^*_{[0,t]}\right\}
$$

is non-empty.

Idea of the proof

-
-
-
-
-

Idea of the proof

- Choose minimizing sequence $((Y^n, Z^n))$ such that $Y_0^n \downarrow \mathcal{E}_0^g$.
-
-
-
-

Idea of the proof

- Choose minimizing sequence $((Y^n, Z^n))$ such that $Y_0^n \downarrow \mathcal{E}_0^g$.
- Compactness arguments yield $((\tilde{Y}^n, \tilde{Z}^n))$ satisfying $\int Z^n dW \to \int Z dW$ in \mathcal{H}^2 , compare [DS] and [DHK].
-
-
-

Idea of the proof

- Choose minimizing sequence $((Y^n, Z^n))$ such that $Y_0^n \downarrow \mathcal{E}_0^g$.
- Compactness arguments yield $((\tilde{Y}^n, \tilde{Z}^n))$ satisfying $\int Z^n dW \to \int Z dW$ in \mathcal{H}^2 , compare [DS] and [DHK].
- $Z \in \Theta$ and $((\tilde{Y}^n, \tilde{Z}^n)) \subset \mathcal{A}(\xi, g)$ by means of (DGC) and (CON).

Idea of the proof

- Choose minimizing sequence $((Y^n, Z^n))$ such that $Y_0^n \downarrow \mathcal{E}_0^g$.
- Compactness arguments yield $((\tilde{Y}^n, \tilde{Z}^n))$ satisfying $\int Z^n dW \to \int Z dW$ in \mathcal{H}^2 , compare [DS] and [DHK].
- $Z \in \Theta$ and $((\tilde{Y}^n, \tilde{Z}^n)) \subset \mathcal{A}(\xi, g)$ by means of (DGC) and (CON).
- (\tilde{A}^n) , the FV-parts in the Doob-Meyer decomposition of (\tilde{Y}^n) converge to \tilde{A} by a version of Helly's theorem.
-

Idea of the proof

- Choose minimizing sequence $((Y^n, Z^n))$ such that $Y_0^n \downarrow \mathcal{E}_0^g$.
- Compactness arguments yield $((\tilde{Y}^n, \tilde{Z}^n))$ satisfying $\int Z^n dW \to \int Z dW$ in \mathcal{H}^2 , compare [DS] and [DHK].
- $Z \in \Theta$ and $((\tilde{Y}^n, \tilde{Z}^n)) \subset \mathcal{A}(\xi, g)$ by means of (DGC) and (CON).
- (\tilde{A}^n) , the FV-parts in the Doob-Meyer decomposition of (\tilde{Y}^n) converge to \tilde{A} by a version of Helly's theorem.
- For $Y := \mathcal{E}_0^g + \int Z dW \lim_{s \downarrow} \tilde{A}_s$, verify $(Y, Z) \in \mathcal{A}$.

Existence of supersolution minimal at finitely many times

The preceding result may be extended to finitely many times.

$$
\{(Y,Z)\in\mathcal{A} \,:\, Y_{t_i}=\mathcal{E}_{t_i}\left(Z_{[0,t_i]}\right) \quad \text{for all } i=1,\ldots,n\}
$$

Existence of supersolution minimal at finitely many times

The preceding result may be extended to finitely many times.

Theorem

Assume a positive lsc generator *g* fulfils (CON) and (DGC). Suppose ξ[−] ∈ *L* ¹ and $A \neq \emptyset$. Then for each finite subset $\{t_1, \ldots, t_n\}$ of [0, *T*] the set

$$
\{(Y,Z)\in\mathcal{A}:\ Y_{t_i}=\mathcal{E}_{t_i}\left(Z_{[0,t_i]}\right)\quad\text{for all }i=1,\ldots,n\}
$$

is non-empty.

Duality under Constraints

Duality under Constraints Nonlinear operator $\mathcal{E}_0(\cdot, z)$

Of particular interest are the properties of the nonlinear operator $\xi \mapsto \mathcal{E}_0(\xi) = \mathcal{E}_0(\xi, z)$

-
-
-
-

Duality under Constraints Nonlinear operator $\mathcal{E}_0(\cdot, z)$

Of particular interest are the properties of the nonlinear operator $\xi \mapsto \mathcal{E}_0(\xi) = \mathcal{E}_0(\xi, z)$

- Monotone convergence: $(\xi^n) \uparrow \xi$ implies $\mathcal{E}_0(\xi) = \lim_n \mathcal{E}_0(\xi^n)$.
- Fatou's lemma: \mathcal{E}_0 (lim inf_n ξ^n) \leq lim inf_n $\mathcal{E}_0(\xi^n)$.
- σ(*L* 1 , *L*∞)-lower semicontinuity

convexity

$$
\mathcal{E}_0(\xi) = \sup_{\substack{q|g\\ g \in L^\infty}} \{ E_{\Omega}[\xi] - \mathcal{E}_0^*(Q) \} \quad \text{where} \quad \mathcal{E}_0^*(Q) = \sup_{\xi \in L^1} \{ E_{\Omega}[\xi] - \mathcal{E}_0(\xi) \} .
$$

Duality under Constraints Nonlinear operator $\mathcal{E}_0(\cdot, z)$

Of particular interest are the properties of the nonlinear operator $\xi \mapsto \mathcal{E}_0(\xi) = \mathcal{E}_0(\xi, z)$

- Monotone convergence: $(\xi^n) \uparrow \xi$ implies $\mathcal{E}_0(\xi) = \lim_n \mathcal{E}_0(\xi^n)$.
- Fatou's lemma: \mathcal{E}_0 (lim inf_n ξ^n) \leq lim inf_n $\mathcal{E}_0(\xi^n)$.
- σ(*L* 1 , *L*∞)-lower semicontinuity

convexity

Let us consider generators independent of *y*, that is $q(y, z, \delta, \gamma) = q(z, \delta, \gamma)$. \rightarrow the last two points above give way to convex duality of the form

$$
\mathcal{E}_0(\xi) = \sup_{\substack{d|Q\\d\in \mathcal{L}^\infty}} \left\{ E_Q[\xi] - \mathcal{E}_0^*(Q) \right\} \qquad \text{where} \qquad \mathcal{E}_0^*(Q) = \sup_{\xi \in \mathcal{L}^1} \left\{ E_Q[\xi] - \mathcal{E}_0(\xi) \right\} \, .
$$

Duality under Constraints

Dual representation

1 Of which structure is $\mathcal{E}_0^*(Q)$ and is it always attained?

Theorem

For $Q \sim P$ with $\frac{dQ}{dP} = \exp(\int q dW - \frac{1}{2} \int |q|^2 du)$, the dual operator $\mathcal{E}_0^*(Q)$ is given by

$$
\mathcal{E}_0^*(Q) = \sup_{(\Delta,\Gamma)} \left\{ E_Q \left[\int_0^T -g_u(Z_u,\Delta_u,\Gamma_u) + q_u \left(\int_0^u (\Delta_s + q_s \Gamma_s) ds \right) du \right] \right\}
$$

There exist (Δ^Q, Γ^Q) attaining $\mathcal{E}_0^*(Q)$, they are unique if the convexity of *g* is strict.

$$
\Delta_u^Q = -\frac{1}{2} \int_0^u q_s ds + c_1 \qquad \qquad \Gamma_u^Q = -\frac{1}{2} q_u \left(\int_0^u q_s ds + c_2 \right)
$$

Duality under Constraints

Dual representation

1 Of which structure is $\mathcal{E}_0^*(Q)$ and is it always attained?

Theorem

For $Q \sim P$ with $\frac{dQ}{dP} = \exp(\int q dW - \frac{1}{2} \int |q|^2 du)$, the dual operator $\mathcal{E}_0^*(Q)$ is given by

$$
\mathcal{E}_0^*(Q) = \sup_{(\Delta,\Gamma)} \left\{ E_Q \left[\int_0^T -g_u(Z_u,\Delta_u,\Gamma_u) + q_u \left(\int_0^u (\Delta_s + q_s \Gamma_s) ds \right) du \right] \right\}
$$

There exist (Δ^Q, Γ^Q) attaining $\mathcal{E}_0^*(Q)$, they are unique if the convexity of *g* is strict.

2 How may we compute $\mathcal{E}_0^*(Q)$? Consider $g(\delta, \gamma) = |\delta|^2 + |\gamma|^2$.

Theorem

For a given *Q* ∼ *P*, the processes (∆*Q*, Γ *^Q*) attaining E ∗ 0 (*Q*) are given by

$$
\Delta_u^Q = -\frac{1}{2} \int_0^u q_s ds + c_1 \qquad \qquad \Gamma_u^Q = -\frac{1}{2} q_u \left(\int_0^u q_s ds + c_2 \right)
$$

for some constants $c_1, c_2 \in \mathbb{R}$.

Duality under Constraints Duality ↔ Solutions of constrained BSDEs

Existence of solutions of BSDEs under constraints \rightsquigarrow connected to optimal measure \hat{Q}

$$
\mathcal{E}_0(\xi) = \sup_{\substack{d\Omega\\d\Omega}} \{E_0[\xi] - \mathcal{E}_0^*(Q)\} = E_{\hat{Q}}[\xi] - \mathcal{E}_0^*(\hat{Q}).
$$

Duality under Constraints Duality ↔ Solutions of constrained BSDEs

Existence of solutions of BSDEs under constraints \sim connected to optimal measure \hat{Q}

Theorem

Assume that

$$
\mathcal{E}_0(\xi) = \sup_{\frac{dQ}{dP} \in L^\infty} \left\{ E_Q[\xi] - \mathcal{E}_0^*(Q) \right\} = E_{\hat{Q}}[\xi] - \mathcal{E}_0^*(\hat{Q}).
$$

Then there exists a solution of the constrained BSDE with terminal condition ξ and generator *g*.

 \sim Extends results of [DELBAEN ET AL.] and [DRAPEAU ET AL.] to the constrained case.

Summary

References

- M. Barlow and P. Protter. *On Convergence of Semimartingales*. Séminaire de Probabilités XXIV, Lect. Notes Math. 1426, pages 188–193, 1990.
- F. Delbaen and W. Schachermayer. *A Compactness Principle for Bounded Sequences of Martingales with Applications*. Proceed. of the Sem. of Stoch. Anal., Random Fields and Appl., Progr. in Prob., 133–173, 1996.
- S. Drapeau, G. Heyne and M. Kupper. *Minimal Supersolutions of Convex BSDEs*. Annals of Probability, 2014.
- G. Heyne, M. Kupper and C. M.. *Minimal Supersolutions of BSDEs with Lower Semicontinuous Generators*. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2014.
- G. Heyne, M. Kupper, C. M. and L. Tangpi. *Minimal Supersolutions of Convex BSDEs under Constraints*. Submitted, 2013.

Thank you