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Supersolutions of BSDEs
Motivation

Superhedging

St (ω) = price process of financial asset (stock)

Contingent claim ξ, for instance a call option ξ = (ST − K )+

Goal: Find a (super-)hedging strategy for ξ.
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Supersolutions of BSDEs
Motivation

Y0 +

∫ T

0
ZudSu︸ ︷︷ ︸

trading gains

≥ ξ • Y0= superhedging price of ξ

• Z= superhedging strategy

Christoph Mainberger — Supersolutions of BSDEs: Minimality, Constraints, Duality 5



Minimal Supersolutions of BSDEs Supersolutions of BSDEs under Constraints Duality under Constraints

Supersolutions of BSDEs
Motivation

Yt +

∫ T

t
ZudSu︸ ︷︷ ︸

trading gains

≥ ξ • Yt = superhedging price of ξ at t

• Z= superhedging strategy

Christoph Mainberger — Supersolutions of BSDEs: Minimality, Constraints, Duality 5



Minimal Supersolutions of BSDEs Supersolutions of BSDEs under Constraints Duality under Constraints

Supersolutions of BSDEs
Definition

Brownian filtered probability space (Ω, (Ft ),P,W )

Definition

A value process Y together with a control process Z is supersolution of the Backward
Stochastic Differential Equation with generator g and terminal condition ξ if

Ys −
∫ t

s
gu(Yu ,Zu)du +

∫ t

s
ZudWu ≥ Yt , s ≤ t

YT ≥ ξ

(∗)

generator: values in [0,∞], jointly lower semicontinuous

terminal condition: FT -measurable.

value process: adapted and càdlàg S

control process: progressive,
∫ T

0 Z 2
u du <∞ and

∫
ZdW supermartingale L

A = {(Y ,Z ) ∈ S × L : (Y ,Z ) fulfills (∗)}
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Supersolutions of BSDEs
Minimality, principal aim

Supersolutions are not unique!  find the minimal one:

A supersolution (Y min,Z min) ∈ A is called a Minimal Supersolution

if Y min
t ≤ Yt , t ∈ [0,T ], for any other supersolution (Y ,Z ) ∈ A.

Theorem (D.,H.,K., 2013, AoP)

Assume that ξ− ∈ L1 and A 6= ∅. If the generator g is

• convex in z

• monotone in y

then a unique minimal supersolution exists.

Proof of the theorem below strongly relies on compactness results.
→ convexity is indispensable!

Aim:

Obtain existence and uniqueness of minimal supersolution under weakest possible
assumptions on g. In particular:

drop the convexity!
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Minimal Supersolutions
Assumptions on the generator

A generator is a measurable function g : Ω× [0,T ]× R× Rd → [0,+∞] such that

(LSC) (y , z) 7→ g(ω, t , y , z) is lower semicontinuous for all (ω, t).

(NOR) g (y , 0) = 0 for all y .
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Supersolutions of BSDEs
Main theorem

A natural candidate for the value process of a minimal supersolution:

Êt = ess inf {Yt : (Y ,Z ) ∈ A} , t ∈ [0,T ] .

Question: Does there exist a càdlàg modification E of Ê and a control process Z ∈ L
such that (E,Z ) is a supersolution ?

Theorem

Assume g satisfies (LSC) and (NOR). Suppose ξ− ∈ L1 and A 6= ∅. Then

Et := Ê+
t = lim

s↓t,s∈Q
Ês

is the value process of the unique minimal supersolution, that is, there exists a unique
control process Z such that (E,Z ) ∈ A.
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Supersolutions of BSDEs
Idea of the proof

Step 1: Uniform Approximation

• Suppose we find a sequence ((Y n,Z n)) ⊂ A such that

lim
n→∞

‖E − Y n‖R∞ = 0 .

• A result by [BARLOW,PROTTER] yields

lim
n→∞

∥∥∥∥∫ Z ndW −M
∥∥∥∥
H1

= 0 ,

where E = E0 + M − A.

• By martingale representation we know that M =
∫

ZdW . Verification of (E,Z )

belonging to A follows from (LSC).
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Supersolutions of BSDEs
Idea of the proof

Step 2: A preorder on A and Zorn’s Lemma

• For two supersolutions (Y 1,Z 1) and (Y 2,Z 2) in A we define the preorder � by

(Y 1,Z 1) � (Y 2,Z 2) :⇐⇒


τ1 ≤ τ2

(Y 1,Z 1)1[0,τ1[ = (Y 2,Z 2)1[0,τ1[

for the stopping time τi = inf
{

t ≥ 0 : Y i
t > Et + ε

}
.

• For ((Y i ,Z i ))i∈I a totally ordered chain we consider

τ∗ := ess sup
i∈I

τi .

• By monotonicity we find (τk ) such that τ∗ = limk τk .
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Supersolutions of BSDEs
Idea of the proof: Step 3: A candidate upper bound (Y , Z )

Crucial part: construct upper bound (Y ,Z ) for the chain ((Y i ,Z i ))i∈I
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Supersolutions of BSDEs
Idea of the proof: Step 3: A candidate upper bound (Y , Z )

Paste corresponding supersolutions (Y k ,Z k ) at times τk up to τ∗
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Supersolutions of BSDEs
Idea of the proof

Jump down to Eτ∗ + ε
2
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Supersolutions of BSDEs
Idea of the proof

(NOR) allows for Z = 0 on short time interval [τ∗, σ[ without leaving ε-nbh of E
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Supersolutions of BSDEs
Idea of the proof

At time σ, there is (Ỹ , Z̃ ) ∈ A lying below; Concatenate with it on [σ,T ]
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Supersolutions of BSDEs
Idea of the proof

We have constructed a supersolution (Y ,Z ) ∈ A
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Supersolutions of BSDEs
Idea of the proof

(Y ,Z ) is an upper bound since it stays longer in ε-neighborhood than τ∗
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Supersolutions of BSDEs
Idea of the proof

Final step: Zorn yields a maximal element (Y M ,Z M ).

• Verifying Z ∈ L and that (Y ,Z ) satisfies (∗) yields that (Y ,Z ) ∈ A and we have
thus constructed an upper bound. Zorn’s lemma ensures the existence of a
maximal element (Y M ,Z M ) with respect to �.

• Finally, prove that the corresponding stopping time τM satisfies τM = T to
conclude that ∥∥∥E − Y M

∥∥∥
R∞
≤ ε ,

which finishes the proof.
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Supersolutions of BSDEs under Constraints
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Supersolutions of BSDEs under Constraints
Motivation

Being a priori only progressive, controls Z ∈ L exhibit in general no path regularities.

More structure constrain admissible controls to the specific set

Θ :=

{
Z ∈ L : Z = z +

∫
∆du +

∫
ΓdW

}


Ys −
∫ t

s
g(Yu ,Zu ,∆u , Γu)du +

∫ t

s
ZudWu ≥ Yt , 0 ≤ s ≤ t ≤ T

YT ≥ ξ

(∗)

Set of constrained supersolutions with generator g and terminal condition ξ:

A := {(Y ,Z ) ∈ S ×Θ : (Y ,Z ) fulfills (∗)}

Incorporated: Gamma Constraints, short-selling,...
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Supersolutions of BSDEs under Constraints
Generator, Notion of minimality

1 Introducing constraints comes at a cost. Generators need to satisfy

(CON) (y , z, δ, γ) 7→ g(y , z, δ, γ) is jointly convex

(DGC) g(y , z, δ, γ) ≥ c1 + c2
(
|δ|2 + |γ|2

)
for c1 ∈ R, c2 > 0.

2 Furthermore, we introduce a specific notion of minimality.

Definition

Fix a time t ∈ [0,T ]. A supersolution (Y min,Z min) is said to be minimal at time t if it
holds

Y min
t ≤ Yt for all (Y ,Z ) ∈ A satisfying Z[0,t] = Z min

[0,t] .

Justification: pasting arbitrary supersolutions violates the constraints!
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Supersolutions of BSDEs under Constraints
Pasting without constraints

Illustration: Pasting without constraints
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Supersolutions of BSDEs under Constraints
Pasting with constraints

Illustration: Pasting with constraints
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Supersolutions of BSDEs under Constraints
Existence of supersolution minimal at time t

At t ∈ [0,T ] candidate for the value process of a minimal supersolution given Z∗
[0,t]:

Et

(
Z∗[0,t]

)
= ess inf

{
Yt : (Y ,Z ) ∈ A fulfilling Z[0,t] = Z∗

[0,t]

}
.

Theorem

Assume a positive lsc generator g fulfils (CON) and (DGC). Suppose ξ− ∈ L1 and
A 6= ∅. Then for each attainable control Z∗

[0,t] the set{
(Y ,Z ) ∈ A : Yt = Et

(
Z∗[0,t]

)
and Z[0,t] = Z∗[0,t]

}
is non-empty.
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Supersolutions of BSDEs under Constraints
Idea of the proof

Idea of the proof for t = 0

Choose minimizing sequence ((Y n,Z n)) such that Y n
0 ↓ E

g
0 .

Compactness arguments yield ((Ỹ n, Z̃ n)) satisfying
∫

Z ndW →
∫

ZdW in H2,
compare [DS] and [DHK].

Z ∈ Θ and ((Ỹ n, Z̃ n)) ⊂ A(ξ, g) by means of (DGC) and (CON).

(Ãn), the FV-parts in the Doob-Meyer decomposition of (Ỹ n) converge to Ã by a
version of Helly’s theorem.

For Y := Eg
0 +

∫
ZdW − lims↓· Ãs , verify (Y ,Z ) ∈ A.
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Supersolutions of BSDEs under Constraints
Existence of supersolution minimal at finitely many times

The preceding result may be extended to finitely many times.

Theorem

Assume a positive lsc generator g fulfils (CON) and (DGC). Suppose ξ− ∈ L1 and
A 6= ∅. Then for each finite subset {t1, . . . , tn} of [0,T ] the set{

(Y ,Z ) ∈ A : Yti = Eti
(
Z[0,ti ]

)
for all i = 1, . . . , n

}
is non-empty.
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Duality under Constraints
Nonlinear operator E0(·, z)

Of particular interest are the properties of the nonlinear operator ξ 7→ E0(ξ) = E0(ξ, z)

Monotone convergence: (ξn) ↑ ξ implies E0(ξ) = limn E0(ξn).

Fatou’s lemma: E0(lim infn ξn) ≤ lim infn E0(ξn).

σ(L1, L∞)-lower semicontinuity

convexity

Let us consider generators independent of y , that is g(y , z, δ, γ) = g(z, δ, γ).
 the last two points above give way to convex duality of the form

E0(ξ) = sup
dQ
dP ∈L∞

{
EQ [ξ]− E∗0 (Q)

}
where E∗0 (Q) = sup

ξ∈L1
{EQ [ξ]− E0(ξ)} .
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Duality under Constraints
Dual representation

1 Of which structure is E∗0 (Q) and is it always attained?

Theorem

For Q ∼ P with dQ
dP = exp(

∫
qdW − 1

2

∫
|q|2du), the dual operator E∗0 (Q) is given by

E∗0 (Q) = sup
(∆,Γ )

{
EQ

[∫ T

0
−gu(Zu ,∆u , Γu) + qu

(∫ u

0
(∆s + qsΓs)ds

)
du

]}

There exist (∆Q , ΓQ) attaining E∗0 (Q), they are unique if the convexity of g is strict.

2 How may we compute E∗0 (Q)? Consider g(δ, γ) = |δ|2 + |γ|2.

Theorem

For a given Q ∼ P, the processes (∆Q , ΓQ) attaining E∗0 (Q) are given by

∆Q
u = −

1
2

∫ u

0
qsds + c1 ΓQ

u = −
1
2

qu

(∫ u

0
qsds + c2

)
for some constants c1, c2 ∈ R.
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Duality under Constraints
Duality↔ Solutions of constrained BSDEs

Existence of solutions of BSDEs under constraints connected to optimal measure Q̂

Theorem

Assume that

E0(ξ) = sup
dQ
dP ∈L∞

{
EQ [ξ]− E∗0 (Q)

}
= EQ̂ [ξ]− E∗0 (Q̂) .

Then there exists a solution of the constrained BSDE with terminal condition ξ and
generator g.

 Extends results of [DELBAEN ET AL.] and [DRAPEAU ET AL.] to the constrained case.
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Supersolutions of BSDEs
Summary

Framework Results

(A, ξ, g)

(LSC),(POS),(NOR)
unconstrained

existence and uniqueness of M.S.S.
relaxations: (POS) and (NOR)
 g ≥ az + b and

∫
gu(y , 0)du

(A,Θ, ξ, g(∆, Γ, ·))

(LSC),(CON),(DGC)
constrained: Z ∈ Θ

existence of supersolutions minimal at {t0, . . . , tn}
stability of ξ 7→ Et (ξ,Z[0,t])

duality: characterisation of E∗0 (Q) in terms of (∆, Γ )
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Thank you
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