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Motivation I

Problem
Given
A1 - insurer: initial risky position X1; premium π1
A2 - reinsurer: initial risky position X2; premium π2
and X = X1 + X2 aggregate risk

� find Y and (X − Y ) such that insurer and reinsurer optimally
share the risk X

In other words
we want to find the “best way” for two (or more) agents to share
the total (aggregate) risk.
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Pareto optimal allocations

Let π1, π2 : L∞ → R.

A(X ) � {(ξ1, ξ2) : ξ1, ξ2 ∈ L∞ and ξ1 + ξ2 = X}
set of attainable allocations

(ξ1, ξ2) ∈ A(X ) is Pareto optimal (POA) when:

if ∃(η1, η2) ∈ A(X ) : π1(η1) ≤ π1(ξ1) and π2(η2) ≤ π2(ξ2)

⇒ π1(η1) = π1(ξ1) and π2(η2) = π2(ξ2)

(ξ1, ξ2) ∈ A(X ) is weakly Pareto optimal if

�(η1, η2) ∈ A(X ) : π1(η1) < π1(ξ1) and π2(η2) < π2(ξ2)

(ξ1, ξ2) ∈ A(X ) is an optimal risk sharing (ORS) if it is Pareto
optimal and π1(ξ1) ≤ π1(X1) and π2(ξ2) ≤ π2(X2) (Individual
Rationality).
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Quasiconvex risk measures

Our contribution:
π1, π2 quasiconvex risk measures
Comparison with the results established in the literature for
convex risk measures

Remind that π : L∞ → R̄ is quasiconvex if

π(αX +(1−α)Y ) ≤ max{π(X );π(Y )}, ∀α ∈ (0, 1),X ,Y ∈ L
∞.
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Quasiconvex risk measures

Main reason of our interest for quasiconvex risk measures
The right formulation of diversification of risk is quasiconvexity:

if π(X ), π(Y ) ≤ π(Z ) ⇒ π(αX +(1−α)Y ) ≤ π(Z ), ∀α ∈ (0, 1)

(see Cerreia-Vioglio et al. (2011), Drapeau and Kupper (2013),
Frittelli and Maggis (2011))

For a monotone risk measure
convexity ⇒ quasi-convexity
equivalence is true under cash-additivity of π
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Convex case: existing literature and main tools

Several results:

firstly studied in the insurance literature: see Borch (1962),
Bühlmann and Jewell (1979) and Deprez and Gerber (1985)

more recently, studied for coherent and convex risk measures.
See Barrieu and El Karoui (2005), Jouini, Schachermayer and
Touzi (2008), Klöppel and Schweizer (2007), Filipovic and
Kupper (2008), ...
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Convex case: existing literature and main tools

Main tools
Fenchel-Moreau representation of convex risk measures

π(X ) = max
Q∈M1

{EQ [X ]− F (Q)} ,

where M1 denotes the set of all Q � P and F is the convex
conjugate of π.
inf-convolution, where

(π1�π2)(X ) � inf
Y∈L∞

{π1(X − Y ) + π2(Y )}.

Fenchel-Moreau subdifferential “∂” of a convex function



Quasiconvex Risk measures: main tools

Fenchel-Moreau biconjugate Theorem cannot be applied;
any quasiconvex, monotone and continuous from above risk
measure π : L∞ → R̄ can be represented as

π (X ) = max
Q∈M1

R (EQ [X ] ,Q) , ∀X ∈ L
∞

where M1 denotes the set of all Q � P and

R (t,Q) = inf{π (Y )|EQ [Y ] = t} (1)

See Penot and Volle (1990), Cerreia-Vioglio et al. (2011), Drapeau
and Kupper (2013) and Frittelli and Maggis (2011).



Main tools

inf-convolution replaced by quasiconvex inf-convolution (more
appropriate since stable wrt convex and quasiconvex
functionals):

(π1∇π2)(X ) � inf
Y∈L∞

{π1(X − Y ) ∨ π2(Y )}.

a suitable subdifferential: more precisely, the
Greenberg-Pierskalla subdifferential of π at X̄ will be useful

∂GPπ(X̄ ) �
�
Q : EQ [X − X̄ ] < 0, ∀X s.t. π(X ) < π(X̄ )

�

(see Penot and Zalinescu (2003) and Penot (2003))
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For convex risk measures

Theorem [Jouini, Schachermayer and Touzi (2008)]
Let π1, π2 : L∞ → R be convex risk measures satisfying
monotonicity, σ(L∞, L1)-lsc, cash-additivity and π1(0) = π2(0) = 0
with convex conjugate F1,F2.
Let X ∈ L∞ be a given aggregate risk.

The following conditions are equivalent:
(i) (ξ1, ξ2) ∈ A(X ) is Pareto optimal;

(ii) (π1�π2)(X ) = π1(ξ1) + π2(ξ2) (that is, exact);

(iii) πi (ξi ) = EQ̄ [ξi ]− Fi (Q̄) for some Q̄ ∈ M1;

(iv) ∂π1(ξ1) ∩ ∂π2(ξ2) �= ∅.
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Can Pareto optimal allocations be characterized also

in the quasiconvex framework????

YES, as seen in a while
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Quasiconvex inf-convolution of risk measures

Given an insurance premium π1 : L∞ → R̄ and a reinsurance
premium π2 : L∞ → R̄,

(π1∇π2)(X ) � inf
Y∈L∞

{π1(X − Y ) ∨ π2(Y )}. (2)

Interpretation
π1(X − Y ) ∨ π2(Y ) maximal premium to be paid for the insurance
and reinsurance separately when Y is transferred by the insurer to
the reinsurer.
� (π1∇π2)(X ) can be seen as minimization of the maximal
premium to be paid for each insurance and reinsurance contract.
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Quasiconvex inf-convolution: properties

Proposition
If π1, π2 : L∞ → R̄ are quasiconvex and monotone,
then (π1∇π2) is quasiconvex and monotone.

Moreover:
(i) if at least one between π1 and π2 is continuous from above,
then also (π1∇π2) is continuous from above.

(ii) if at least one between π1 and π2 is cash-subadditive, then also
(π1∇π2) is cash-subadditive.

(iii) if π1 (0) = π2 (0) = 0, then (π1∇π2) (0) ≤ 0.



Representation of the quasiconvex inf-convolution

Remind that any quasiconvex, monotone and continuous from
above risk measure π : L∞ → R̄ can be represented as

π (X ) = max
Q∈M1

R (EQ [X ] ,Q) , ∀X ∈ L
∞.

Theorem
Let π1, π2 : L∞ → R̄ be quasiconvex, monotone and continuous
from above risk measures and let R1,R2 be their corresponding
functionals.
Then π∇ = π1∇π2 is quasiconvex, monotone and continuous from
above with

R
∇ (t,Q) � (R1∇tR2) (t,Q) � inf

t1+t2=t
{R1 (t1,Q) ∨ R2 (t2,Q)} .
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... coming back to Pareto optimal allocations ...

Problem
What about POA with quasiconvex risk measures?

is it possible to extend the characterization of Jouini,
Schachermayer and Touzi (2008) by means of quasiconvex
inf-convolution and GP-subdifferential?
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Assumption (Aπ):
Let π1, π2 : L∞ → R̄ be quasiconvex risk functionals satisfying
monotonicity and continuity from above. Hence, π1 and π2 can be
represented as

π (X ) = max
Q∈M1

R (EQ [X ] ,Q) , ∀X ∈ L
∞.



Theorem (Pareto optimal - quasiconvex case)

Let π1, π2 satisfy Assumption (Aπ) and let R1, R2 be the
corresponding functionals. Let X ∈ L∞ be a given aggregate risk.

(i) If (π1∇π2)(X ) = π1(ξ1) ∨ π2(ξ2) for some (ξ1, ξ2) ∈ A(X ),
then (ξ1, ξ2) is a weakly Pareto optimal allocation.

(ii) Let (ξ1, ξ2) ∈ A(X ) and Q̄,Q1,2 be s.t.
(π1∇π2)(X ) = R∇(EQ̄(X ), Q̄) and πi (ξi ) = Ri (EQi (ξi ),Qi ),
i = 1, 2.
(π1∇π2)(X ) = π1(ξ1) ∨ π2(ξ2) iff the following conditions are
both satisfied:
(ii-r) R∇(EQ̄(X ), Q̄) = R1(EQ1(ξ1),Q1) ∨ R2(EQ2(ξ2),Q2);
(ii-p) πi (ξi ) = Ri (EQ̄(ξi ), Q̄) whenever πi (ξi ) > πj(ξj) or
πi (ξi ) = πj(ξj) and Ri (EQ̄(ξi ), Q̄) > Rj(EQ̄(ξj), Q̄) (for
i , j = 1, 2),
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Theorem (Pareto optimal - quasiconvex case) - Continued

(iii) Let π1 and π2 be σ(L∞, L1)-upper semi-continuous.

If π1∇π2(X ) = π1(ξ1) ∨ π2(ξ2) for (ξ1, ξ2) ∈ A(X ) and ξ1, ξ2
are not local minimizers of π1, π2, then

∂GP(π1∇π2)(X ) = ∂GPπ1(ξ1) ∩ ∂GPπ2(ξ2).



Comparison with the convex case (see Jouini et al. (2008))

link between weakly Pareto, exactness of qco inf-convolution,
representation of quasiconvex risk measures and
Greenberg-Pierskalla subdifferential.

extension of JST: true both for quasiconvex and for convex
risk measures
weaker than JST’s results since POAs not fully characterized
for quasiconvex risk measures
For quasiconvex risk measures, indeed,

exactness of qco inf-convolution ⇒ weakly Pareto (not
necessarily Pareto)
... ⇒ Pareto (For convex risk measures)
weakly Pareto � exactness of qco inf-convolution
exactness � ∂GPπ1(ξ1) ∩ ∂GPπ2(ξ2) �= ∅
the converse is true under further continuity assumptions
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Optimal risk sharing

for convex risk measures:
(ξ∗1 , ξ

∗
2) ∈ A(X ) optimal risk sharing iff (π1�π2)(X1 + X2) is

exact at (ξ∗1 , ξ∗2) (or, equivalently, Pareto optimal) and
πi (ξ∗i ) ≤ πi (Xi ) for i = 1, 2 (individual rationality) - see Jouini
et al. (2008)
� for qco risk measures we will look for a weakly optimal risk
sharing, i.e. (ξ∗1 , ξ

∗
2) ∈ A(X ) at which (π1∇π2)(X ) is exact

and satisfying individual rationality.
for convex risk measures (see JST):
ORS may be obtained starting from a POA and taking into
account a suitable price
for quasiconvex risk measures: similar result?
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Optimal risk sharing - Convex case

Following the approach of Jouini et al. (2008):

p1(η) � π1(X1)− π1(X1 − η)

p2(η) � π2(X2 + η)− π2(X2),

for any η ∈ L∞.

η can be seen as the risk transferred from insurer to reinsurer

For cash-additive risk measures:
p1(η) maximal price that agent 1 would pay because of the “risk
exchange”; similarly p2(η) can be seen as the minimal amount that
2 would like to receive because of the additional risk η.
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Optimal risk sharing - Convex cash-additive case

Given a POA (X1 − ξ∗,X2 + ξ∗) we would like to find p > 0 st

π1(X1)− π1(X1 − ξ∗ + p) ≥ 0
π2(X2)− π2(X2 + ξ∗ − p) ≥ 0

Hence (X1 − ξ∗ + p,X2 + ξ∗ − p) (with p ∈ R) is an ORS iff
p ∈ [p2(ξ∗), p1(ξ∗)]



Problem
What about optimal risk sharing in the quasiconvex case???

More difficult since cash-additivity does not hold in general!
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Theorem (Optimal risk sharing - Quasiconvex case)

Let π1, π2 : L∞ → R satisfy assumption (Aπ) and
cash-subadditivity and let X = X1 + X2 be the aggregate risk.

Assume that π1(X1) ≥ π2(X2) and that (π1∇π2)(X ) is exact at
(X1 − ξ∗,X2 + ξ∗).

i) If π1(X1) = π2(X2), then (X1 − ξ∗,X2 + ξ∗) is a weakly ORS
rule.
ii) If π1(X1) > π2(X2), then either (X1 − ξ∗,X2 + ξ∗) is a weakly
ORS rule or the following hold:
if (X1 − ξ∗ + p,X2 + ξ∗ − p) is a weakly ORS for some p > 0, then
π1(X1 − ξ∗ + p) = π1(X1 − ξ∗) ∨ π2(X2 + ξ∗) and

p ≥ max {π2(X2 + ξ∗)− π2(X2);π2(X2 + ξ∗)− π1(X1 − ξ∗)} .

If, in addition, π2 is cash-additive, then also the converse holds true.



Theorem (Optimal risk sharing - Quasiconvex case)

Let π1, π2 : L∞ → R satisfy assumption (Aπ) and
cash-subadditivity and let X = X1 + X2 be the aggregate risk.
Assume that π1(X1) ≥ π2(X2) and that (π1∇π2)(X ) is exact at
(X1 − ξ∗,X2 + ξ∗).

i) If π1(X1) = π2(X2), then (X1 − ξ∗,X2 + ξ∗) is a weakly ORS
rule.
ii) If π1(X1) > π2(X2), then either (X1 − ξ∗,X2 + ξ∗) is a weakly
ORS rule or the following hold:
if (X1 − ξ∗ + p,X2 + ξ∗ − p) is a weakly ORS for some p > 0, then
π1(X1 − ξ∗ + p) = π1(X1 − ξ∗) ∨ π2(X2 + ξ∗) and

p ≥ max {π2(X2 + ξ∗)− π2(X2);π2(X2 + ξ∗)− π1(X1 − ξ∗)} .

If, in addition, π2 is cash-additive, then also the converse holds true.



Theorem (Optimal risk sharing - Quasiconvex case)

Let π1, π2 : L∞ → R satisfy assumption (Aπ) and
cash-subadditivity and let X = X1 + X2 be the aggregate risk.
Assume that π1(X1) ≥ π2(X2) and that (π1∇π2)(X ) is exact at
(X1 − ξ∗,X2 + ξ∗).

i) If π1(X1) = π2(X2), then (X1 − ξ∗,X2 + ξ∗) is a weakly ORS
rule.

ii) If π1(X1) > π2(X2), then either (X1 − ξ∗,X2 + ξ∗) is a weakly
ORS rule or the following hold:
if (X1 − ξ∗ + p,X2 + ξ∗ − p) is a weakly ORS for some p > 0, then
π1(X1 − ξ∗ + p) = π1(X1 − ξ∗) ∨ π2(X2 + ξ∗) and

p ≥ max {π2(X2 + ξ∗)− π2(X2);π2(X2 + ξ∗)− π1(X1 − ξ∗)} .

If, in addition, π2 is cash-additive, then also the converse holds true.



Theorem (Optimal risk sharing - Quasiconvex case)

Let π1, π2 : L∞ → R satisfy assumption (Aπ) and
cash-subadditivity and let X = X1 + X2 be the aggregate risk.
Assume that π1(X1) ≥ π2(X2) and that (π1∇π2)(X ) is exact at
(X1 − ξ∗,X2 + ξ∗).

i) If π1(X1) = π2(X2), then (X1 − ξ∗,X2 + ξ∗) is a weakly ORS
rule.
ii) If π1(X1) > π2(X2), then either (X1 − ξ∗,X2 + ξ∗) is a weakly
ORS rule or the following hold:
if (X1 − ξ∗ + p,X2 + ξ∗ − p) is a weakly ORS for some p > 0, then
π1(X1 − ξ∗ + p) = π1(X1 − ξ∗) ∨ π2(X2 + ξ∗) and

p ≥ max {π2(X2 + ξ∗)− π2(X2);π2(X2 + ξ∗)− π1(X1 − ξ∗)} .

If, in addition, π2 is cash-additive, then also the converse holds true.



Theorem (Optimal risk sharing - Quasiconvex case)

Let π1, π2 : L∞ → R satisfy assumption (Aπ) and
cash-subadditivity and let X = X1 + X2 be the aggregate risk.
Assume that π1(X1) ≥ π2(X2) and that (π1∇π2)(X ) is exact at
(X1 − ξ∗,X2 + ξ∗).

i) If π1(X1) = π2(X2), then (X1 − ξ∗,X2 + ξ∗) is a weakly ORS
rule.
ii) If π1(X1) > π2(X2), then either (X1 − ξ∗,X2 + ξ∗) is a weakly
ORS rule or the following hold:
if (X1 − ξ∗ + p,X2 + ξ∗ − p) is a weakly ORS for some p > 0, then
π1(X1 − ξ∗ + p) = π1(X1 − ξ∗) ∨ π2(X2 + ξ∗) and

p ≥ max {π2(X2 + ξ∗)− π2(X2);π2(X2 + ξ∗)− π1(X1 − ξ∗)} .

If, in addition, π2 is cash-additive, then also the converse holds true.



Differently from Jouini et al. (2008), in the quasiconvex case the
constraint on p depends not only on p1(ξ∗) and p2(ξ∗), but also on
the difference between π1(X1) and π2(X2).

Indeed it is equivalent to

p ≥ max{p2(ξ
∗); p2(ξ

∗) + p1(ξ
∗) + π2(X2)− π1(X1)}.



Thank you for your attention!!!
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