Pareto optimal allocations and optimal risk sharing for quasiconvex risk measures

Elisa Mastrogiacomo

University of Milano-Bicocca, Italy

(joint work with Prof. Emanuela Rosazza Gianin)

Second Young researchers meeting on BSDEs, Numerics and Finance Bordeaux, July 7-10, 2014

(ロ) (型) (E) (E) (E) (O)

Agenda

◆□ > < 個 > < E > < E > E 9 < 0</p>

• Pareto optimal allocations and optimal risk sharing: motivation and basic definitions

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• Pareto optimal allocations and optimal risk sharing: motivation and basic definitions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• inf-convolution and quasiconvex inf-convolution

- Pareto optimal allocations and optimal risk sharing: motivation and basic definitions
- inf-convolution and quasiconvex inf-convolution
- characterization of Pareto optimal allocations: from convex risk measures to quasiconvex risk measures

ション ふゆ アメリア メリア しょうくの

- Pareto optimal allocations and optimal risk sharing: motivation and basic definitions
- inf-convolution and quasiconvex inf-convolution
- characterization of Pareto optimal allocations: from convex risk measures to quasiconvex risk measures
- (weakly) optimal risk sharing (under cash-additivity of one risk measure or not)

ション ふゆ アメリア メリア しょうくの

Given

A1 - insurer: initial risky position X_1 ; premium π_1 A2 - reinsurer: initial risky position X_2 ; premium π_2 and $X = X_1 + X_2$ aggregate risk

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Given

A1 - insurer: initial risky position X_1 ; premium π_1

A2 - reinsurer: initial risky position X_2 ; premium π_2

and $X = X_1 + X_2$ aggregate risk

 \rightsquigarrow find Y and (X - Y) such that insurer and reinsurer optimally share the risk X

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Given

A1 - insurer: initial risky position X_1 ; premium π_1 A2 - reinsurer: initial risky position X_2 ; premium π_2 and $X = X_1 + X_2$ aggregate risk

 \rightsquigarrow find Y and (X - Y) such that insurer and reinsurer optimally share the risk X

In other words

we want to find the "best way" for two (or more) agents to share the total (aggregate) risk.

ション ふゆ アメリア メリア しょうくの

Let $\pi_1, \pi_2 : L^{\infty} \to \overline{\mathbb{R}}$.

• $A(X) \triangleq \{(\xi_1, \xi_2) : \xi_1, \xi_2 \in L^{\infty} \text{ and } \xi_1 + \xi_2 = X\}$ set of attainable allocations

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $\pi_1, \pi_2 : L^{\infty} \to \overline{\mathbb{R}}$.

- $A(X) \triangleq \{(\xi_1, \xi_2) : \xi_1, \xi_2 \in L^{\infty} \text{ and } \xi_1 + \xi_2 = X\}$ set of attainable allocations
- $(\xi_1, \xi_2) \in A(X)$ is Pareto optimal (POA) when:

if
$$\exists (\eta_1, \eta_2) \in A(X) : \pi_1(\eta_1) \le \pi_1(\xi_1) \text{ and } \pi_2(\eta_2) \le \pi_2(\xi_2)$$

 $\Rightarrow \pi_1(\eta_1) = \pi_1(\xi_1) \text{ and } \pi_2(\eta_2) = \pi_2(\xi_2)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $\pi_1, \pi_2 : L^{\infty} \to \overline{\mathbb{R}}$.

- $A(X) \triangleq \{(\xi_1, \xi_2) : \xi_1, \xi_2 \in L^{\infty} \text{ and } \xi_1 + \xi_2 = X\}$ set of attainable allocations
- $(\xi_1, \xi_2) \in A(X)$ is Pareto optimal (POA) when:

if
$$\exists (\eta_1, \eta_2) \in A(X) : \pi_1(\eta_1) \le \pi_1(\xi_1) \text{ and } \pi_2(\eta_2) \le \pi_2(\xi_2)$$

 $\Rightarrow \pi_1(\eta_1) = \pi_1(\xi_1) \text{ and } \pi_2(\eta_2) = \pi_2(\xi_2)$

• $(\xi_1,\xi_2) \in A(X)$ is weakly Pareto optimal if

 $\nexists(\eta_1,\eta_2)\in A(X): \quad \pi_1(\eta_1)<\pi_1(\xi_1) \text{ and } \pi_2(\eta_2)<\pi_2(\xi_2)$

Let $\pi_1, \pi_2 : L^{\infty} \to \overline{\mathbb{R}}$.

- $A(X) \triangleq \{(\xi_1, \xi_2) : \xi_1, \xi_2 \in L^{\infty} \text{ and } \xi_1 + \xi_2 = X\}$ set of attainable allocations
- $(\xi_1, \xi_2) \in A(X)$ is Pareto optimal (POA) when:

if
$$\exists (\eta_1, \eta_2) \in A(X) : \pi_1(\eta_1) \le \pi_1(\xi_1) \text{ and } \pi_2(\eta_2) \le \pi_2(\xi_2)$$

 $\Rightarrow \pi_1(\eta_1) = \pi_1(\xi_1) \text{ and } \pi_2(\eta_2) = \pi_2(\xi_2)$

• $(\xi_1,\xi_2) \in A(X)$ is weakly Pareto optimal if

 $\nexists(\eta_1,\eta_2)\in A(X): \quad \pi_1(\eta_1)<\pi_1(\xi_1) \text{ and } \pi_2(\eta_2)<\pi_2(\xi_2)$

• $(\xi_1, \xi_2) \in A(X)$ is an optimal risk sharing (ORS) if it is Pareto optimal and $\pi_1(\xi_1) \leq \pi_1(X_1)$ and $\pi_2(\xi_2) \leq \pi_2(X_2)$ (Individual Rationality).

Our contribution:

- π_1, π_2 quasiconvex risk measures
- Comparison with the results established in the literature for convex risk measures

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Our contribution:

- π_1, π_2 quasiconvex risk measures
- Comparison with the results established in the literature for convex risk measures

Remind that $\pi: L^{\infty} \to \overline{\mathbb{R}}$ is quasiconvex if

 $\pi(\alpha X + (1 - \alpha)Y) \le \max\{\pi(X); \pi(Y)\}, \quad \forall \alpha \in (0, 1), X, Y \in L^{\infty}.$

ション ふゆ アメリア メリア しょうくの

Main reason of our interest for quasiconvex risk measures The right formulation of diversification of risk is quasiconvexity:

$$\text{if } \pi(X), \pi(Y) \leq \pi(Z) \quad \Rightarrow \pi(\alpha X + (1 - \alpha)Y) \leq \pi(Z), \forall \alpha \in (0, 1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(see Cerreia-Vioglio et al. (2011), Drapeau and Kupper (2013), Frittelli and Maggis (2011)) Main reason of our interest for quasiconvex risk measures The right formulation of diversification of risk is quasiconvexity:

$$\text{if } \pi(X), \pi(Y) \leq \pi(Z) \quad \Rightarrow \pi(\alpha X + (1 - \alpha)Y) \leq \pi(Z), \forall \alpha \in (0, 1)$$

ション ふゆ く は マ く ほ マ く し マ

(see Cerreia-Vioglio et al. (2011), Drapeau and Kupper (2013), Frittelli and Maggis (2011))

For a monotone risk measure

- convexity \Rightarrow quasi-convexity
- $\bullet\,$ equivalence is true under cash-additivity of $\pi\,$

Several results:

• firstly studied in the insurance literature: see Borch (1962), Bühlmann and Jewell (1979) and Deprez and Gerber (1985)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Several results:

- firstly studied in the insurance literature: see Borch (1962), Bühlmann and Jewell (1979) and Deprez and Gerber (1985)
- more recently, studied for coherent and convex risk measures. See Barrieu and El Karoui (2005), Jouini, Schachermayer and Touzi (2008), Klöppel and Schweizer (2007), Filipovic and Kupper (2008), ...

Main tools

• Fenchel-Moreau representation of convex risk measures

$$\pi(X) = \max_{Q \in \mathcal{M}_1} \left\{ E_Q[X] - F(Q) \right\},\,$$

where \mathcal{M}_1 denotes the set of all $Q \ll P$ and F is the convex conjugate of π .

• inf-convolution, where

$$(\pi_1 \Box \pi_2)(X) \triangleq \inf_{Y \in L^{\infty}} \{\pi_1(X - Y) + \pi_2(Y)\}.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

• Fenchel-Moreau subdifferential " ∂ " of a convex function

• Fenchel-Moreau biconjugate Theorem cannot be applied; any quasiconvex, monotone and continuous from above risk measure $\pi: L^{\infty} \to \overline{\mathbb{R}}$ can be represented as

$$\pi\left(X
ight) = \max_{Q\in\mathcal{M}_{1}} R\left(E_{Q}\left[X
ight],Q
ight), \quad \forall X\in L^{\infty}$$

where \mathcal{M}_1 denotes the set of all $Q \ll P$ and

$$R(t,Q) = \inf\{\pi(Y) | E_Q[Y] = t\}$$
(1)

See Penot and Volle (1990), Cerreia-Vioglio et al. (2011), Drapeau and Kupper (2013) and Frittelli and Maggis (2011).

• inf-convolution replaced by quasiconvex inf-convolution (more appropriate since stable wrt convex and quasiconvex functionals):

$$(\pi_1 \nabla \pi_2)(X) \triangleq \inf_{Y \in L^{\infty}} \{\pi_1(X - Y) \lor \pi_2(Y)\}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• inf-convolution replaced by quasiconvex inf-convolution (more appropriate since stable wrt convex and quasiconvex functionals):

$$(\pi_1 \nabla \pi_2)(X) \triangleq \inf_{Y \in L^\infty} \{\pi_1(X - Y) \lor \pi_2(Y)\}.$$

• a suitable subdifferential: more precisely, the Greenberg-Pierskalla subdifferential of π at \bar{X} will be useful

$$\partial^{GP} \pi(ar{X}) riangleq \left\{ Q: \; E_Q[X - ar{X}] < 0, orall X \; ext{s.t.} \; \pi(X) < \pi(ar{X})
ight\}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

(see Penot and Zalinescu (2003) and Penot (2003))

Theorem [Jouini, Schachermayer and Touzi (2008)]

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ be convex risk measures satisfying monotonicity, $\sigma(L^{\infty}, L^1)$ -lsc, cash-additivity and $\pi_1(0) = \pi_2(0) = 0$ with convex conjugate F_1, F_2 . Let $X \in L^{\infty}$ be a given aggregate risk.

Theorem [Jouini, Schachermayer and Touzi (2008)]

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ be convex risk measures satisfying monotonicity, $\sigma(L^{\infty}, L^1)$ -lsc, cash-additivity and $\pi_1(0) = \pi_2(0) = 0$ with convex conjugate F_1, F_2 . Let $X \in L^{\infty}$ be a given aggregate risk.

ション ふゆ く は マ く ほ マ く し マ

The following conditions are equivalent: (i) $(\xi_1, \xi_2) \in A(X)$ is Pareto optimal; (ii) $(\pi_1 \Box \pi_2)(X) = \pi_1(\xi_1) + \pi_2(\xi_2)$ (that is, exact); (iii) $\pi_i(\xi_i) = E_{\bar{Q}}[\xi_i] - F_i(\bar{Q})$ for some $\bar{Q} \in \mathcal{M}_1$; (iv) $\partial \pi_1(\xi_1) \cap \partial \pi_2(\xi_2) \neq \emptyset$. Can Pareto optimal allocations be characterized also in the quasiconvex framework????

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Can Pareto optimal allocations be characterized also in the quasiconvex framework????

YES, as seen in a while

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Quasiconvex inf-convolution of risk measures

Given an insurance premium $\pi_1: L^{\infty} \to \overline{\mathbb{R}}$ and a reinsurance premium $\pi_2: L^{\infty} \to \overline{\mathbb{R}}$,

$$(\pi_1 \nabla \pi_2)(X) \triangleq \inf_{Y \in L^\infty} \{ \pi_1(X - Y) \lor \pi_2(Y) \}.$$
 (2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given an insurance premium $\pi_1: L^{\infty} \to \overline{\mathbb{R}}$ and a reinsurance premium $\pi_2: L^{\infty} \to \overline{\mathbb{R}}$,

$$(\pi_1 \nabla \pi_2)(X) \triangleq \inf_{Y \in L^{\infty}} \{ \pi_1(X - Y) \lor \pi_2(Y) \}.$$
 (2)

Interpretation

 $\pi_1(X - Y) \lor \pi_2(Y)$ maximal premium to be paid for the insurance and reinsurance separately when Y is transferred by the insurer to the reinsurer.

 $\rightsquigarrow (\pi_1 \nabla \pi_2)(X)$ can be seen as minimization of the maximal premium to be paid for each insurance and reinsurance contract.

Proposition

If $\pi_1, \pi_2: L^{\infty} \to \mathbb{\bar{R}}$ are quasiconvex and monotone, then $(\pi_1 \nabla \pi_2)$ is quasiconvex and monotone.

Moreover:

(i) if at least one between π_1 and π_2 is continuous from above, then also $(\pi_1 \nabla \pi_2)$ is continuous from above.

(ii) if at least one between π_1 and π_2 is cash-subadditive, then also $(\pi_1 \nabla \pi_2)$ is cash-subadditive.

(iii) if
$$\pi_1(0) = \pi_2(0) = 0$$
, then $(\pi_1 \nabla \pi_2)(0) \le 0$.

Representation of the quasiconvex inf-convolution

Remind that any quasiconvex, monotone and continuous from above risk measure $\pi:L^\infty\to\bar{\mathbb{R}}$ can be represented as

$$\pi\left(X
ight)=\max_{Q\in\mathcal{M}_{1}}R\left(E_{Q}\left[X
ight],Q
ight),\quadorall X\in L^{\infty}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Representation of the quasiconvex inf-convolution

Remind that any quasiconvex, monotone and continuous from above risk measure $\pi:L^\infty\to\bar{\mathbb{R}}$ can be represented as

$$\pi\left(X\right) = \max_{Q\in\mathcal{M}_{1}} R\left(E_{Q}\left[X\right],Q\right), \quad \forall X\in L^{\infty}.$$

Theorem

Let $\pi_1, \pi_2 : L^{\infty} \to \overline{\mathbb{R}}$ be quasiconvex, monotone and continuous from above risk measures and let R_1, R_2 be their corresponding functionals.

Then $\pi^{\nabla}=\pi_1\nabla\pi_2$ is quasiconvex, monotone and continuous from above with

$$R^{\nabla}(t,Q) \triangleq (R_1 \nabla_t R_2)(t,Q) \triangleq \inf_{t_1+t_2=t} \{R_1(t_1,Q) \lor R_2(t_2,Q)\}.$$

... coming back to Pareto optimal allocations ...

Problem

What about POA with quasiconvex risk measures?

(ロ)、

... coming back to Pareto optimal allocations ...

Problem

What about POA with quasiconvex risk measures?

is it possible to extend the characterization of Jouini, Schachermayer and Touzi (2008) by means of quasiconvex inf-convolution and GP-subdifferential?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Assumption $(A\pi)$:

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ be quasiconvex risk functionals satisfying monotonicity and continuity from above. Hence, π_1 and π_2 can be represented as

$$\pi\left(X\right) = \max_{Q \in \mathcal{M}_{1}} R\left(E_{Q}\left[X\right], Q\right), \quad \forall X \in L^{\infty}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (Pareto optimal - quasiconvex case)

Let π_1, π_2 satisfy Assumption (A π) and let R_1, R_2 be the corresponding functionals. Let $X \in L^{\infty}$ be a given aggregate risk.

Theorem (Pareto optimal - quasiconvex case)

Let π_1, π_2 satisfy Assumption (A π) and let R_1, R_2 be the corresponding functionals. Let $X \in L^{\infty}$ be a given aggregate risk.

(i) If $(\pi_1 \nabla \pi_2)(X) = \pi_1(\xi_1) \vee \pi_2(\xi_2)$ for some $(\xi_1, \xi_2) \in A(X)$, then (ξ_1, ξ_2) is a weakly Pareto optimal allocation.

(ii) Let
$$(\xi_1, \xi_2) \in A(X)$$
 and $\bar{Q}, Q_{1,2}$ be s.t.
 $(\pi_1 \nabla \pi_2)(X) = R^{\nabla}(E_{\bar{Q}}(X), \bar{Q})$ and $\pi_i(\xi_i) = R_i(E_{Q_i}(\xi_i), Q_i)$,
 $i = 1, 2$.
 $(\pi_1 \nabla \pi_2)(X) = \pi_1(\xi_1) \vee \pi_2(\xi_2)$ iff the following conditions are
both satisfied:
(ii-r) $R^{\nabla}(E_{\bar{Q}}(X), \bar{Q}) = R_1(E_{Q_1}(\xi_1), Q_1) \vee R_2(E_{Q_2}(\xi_2), Q_2)$;
(ii-p) $\pi_i(\xi_i) = R_i(E_{\bar{Q}}(\xi_i), \bar{Q})$ whenever $\pi_i(\xi_i) > \pi_j(\xi_j)$ or
 $\pi_i(\xi_i) = \pi_j(\xi_j)$ and $R_i(E_{\bar{Q}}(\xi_i), \bar{Q}) > R_j(E_{\bar{Q}}(\xi_j), \bar{Q})$ (for
 $i, j = 1, 2$),

(iii) Let π_1 and π_2 be $\sigma(L^{\infty}, L^1)$ -upper semi-continuous. If $\pi_1 \nabla \pi_2(X) = \pi_1(\xi_1) \vee \pi_2(\xi_2)$ for $(\xi_1, \xi_2) \in A(X)$ and ξ_1, ξ_2 are not local minimizers of π_1, π_2 , then

$$\partial^{GP}(\pi_1 \nabla \pi_2)(X) = \partial^{GP} \pi_1(\xi_1) \cap \partial^{GP} \pi_2(\xi_2).$$

 link between weakly Pareto, exactness of qco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.

- link between weakly Pareto, exactness of qco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures

- link between weakly Pareto, exactness of qco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures
- weaker than JST's results since POAs not fully characterized for quasiconvex risk measures

- link between weakly Pareto, exactness of qco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures
- weaker than JST's results since POAs not fully characterized for quasiconvex risk measures
 For quasiconvex risk measures, indeed,
 - exactness of qco inf-convolution ⇒ weakly Pareto (not necessarily Pareto)

- link between weakly Pareto, exactness of qco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures
- weaker than JST's results since POAs not fully characterized for quasiconvex risk measures
 For quasiconvex risk measures, indeed,
 - exactness of qco inf-convolution \Rightarrow weakly Pareto (not necessarily Pareto)

- ... \Rightarrow Pareto (For convex risk measures)
- weakly Pareto \Rightarrow exactness of qco inf-convolution

- link between weakly Pareto, exactness of qco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures
- weaker than JST's results since POAs not fully characterized for quasiconvex risk measures
 For quasiconvex risk measures, indeed,
 - exactness of qco inf-convolution ⇒ weakly Pareto (not necessarily Pareto)

- $\dots \Rightarrow Pareto$ (For convex risk measures)
- weakly Pareto \Rightarrow exactness of qco inf-convolution
- exactness $\Rightarrow \partial^{GP} \pi_1(\xi_1) \cap \partial^{GP} \pi_2(\xi_2) \neq \emptyset$

- link between weakly Pareto, exactness of qco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures
- weaker than JST's results since POAs not fully characterized for quasiconvex risk measures
 For quasiconvex risk measures, indeed,
 - exactness of qco inf-convolution \Rightarrow weakly Pareto (not necessarily Pareto)
 - ... \Rightarrow Pareto (For convex risk measures)
 - weakly Pareto \Rightarrow exactness of qco inf-convolution
 - exactness ⇒ ∂^{GP}π₁(ξ₁) ∩ ∂^{GP}π₂(ξ₂) ≠ Ø the converse is true under further continuity assumptions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへで

• for convex risk measures:

 $(\xi_1^*, \xi_2^*) \in A(X)$ optimal risk sharing iff $(\pi_1 \Box \pi_2)(X_1 + X_2)$ is exact at (ξ_1^*, ξ_2^*) (or, equivalently, Pareto optimal) and $\pi_i(\xi_i^*) \leq \pi_i(X_i)$ for i = 1, 2 (individual rationality) - see Jouini et al. (2008)

• for convex risk measures:

 $(\xi_1^*, \xi_2^*) \in A(X)$ optimal risk sharing iff $(\pi_1 \Box \pi_2)(X_1 + X_2)$ is exact at (ξ_1^*, ξ_2^*) (or, equivalently, Pareto optimal) and $\pi_i(\xi_i^*) \leq \pi_i(X_i)$ for i = 1, 2 (individual rationality) - see Jouini et al. (2008)

 \rightsquigarrow for qco risk measures we will look for a weakly optimal risk sharing, i.e. $(\xi_1^*, \xi_2^*) \in A(X)$ at which $(\pi_1 \nabla \pi_2)(X)$ is exact and satisfying individual rationality.

• for convex risk measures:

 $(\xi_1^*, \xi_2^*) \in A(X)$ optimal risk sharing iff $(\pi_1 \Box \pi_2)(X_1 + X_2)$ is exact at (ξ_1^*, ξ_2^*) (or, equivalently, Pareto optimal) and $\pi_i(\xi_i^*) \leq \pi_i(X_i)$ for i = 1, 2 (individual rationality) - see Jouini et al. (2008)

 \rightsquigarrow for qco risk measures we will look for a weakly optimal risk sharing, i.e. $(\xi_1^*, \xi_2^*) \in A(X)$ at which $(\pi_1 \nabla \pi_2)(X)$ is exact and satisfying individual rationality.

 for convex risk measures (see JST): ORS may be obtained starting from a POA and taking into account a suitable price

• for convex risk measures:

 $(\xi_1^*, \xi_2^*) \in A(X)$ optimal risk sharing iff $(\pi_1 \Box \pi_2)(X_1 + X_2)$ is exact at (ξ_1^*, ξ_2^*) (or, equivalently, Pareto optimal) and $\pi_i(\xi_i^*) \leq \pi_i(X_i)$ for i = 1, 2 (individual rationality) - see Jouini et al. (2008)

 \rightsquigarrow for qco risk measures we will look for a weakly optimal risk sharing, i.e. $(\xi_1^*, \xi_2^*) \in A(X)$ at which $(\pi_1 \nabla \pi_2)(X)$ is exact and satisfying individual rationality.

- for convex risk measures (see JST): ORS may be obtained starting from a POA and taking into account a suitable price
- for quasiconvex risk measures: similar result?

Following the approach of Jouini et al. (2008):

$$p_1(\eta) \triangleq \pi_1(X_1) - \pi_1(X_1 - \eta)$$
$$p_2(\eta) \triangleq \pi_2(X_2 + \eta) - \pi_2(X_2),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for any $\eta \in L^{\infty}$.

Following the approach of Jouini et al. (2008):

$$p_1(\eta) \triangleq \pi_1(X_1) - \pi_1(X_1 - \eta)$$
$$p_2(\eta) \triangleq \pi_2(X_2 + \eta) - \pi_2(X_2),$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for any $\eta \in L^\infty.$ η can be seen as the risk transferred from insurer to reinsurer

Following the approach of Jouini et al. (2008):

$$p_1(\eta) \triangleq \pi_1(X_1) - \pi_1(X_1 - \eta)$$
$$p_2(\eta) \triangleq \pi_2(X_2 + \eta) - \pi_2(X_2),$$

for any $\eta \in L^{\infty}$.

 η can be seen as the risk transferred from insurer to reinsurer

For cash-additive risk measures:

 $p_1(\eta)$ maximal price that agent 1 would pay because of the "risk exchange"; similarly $p_2(\eta)$ can be seen as the minimal amount that 2 would like to receive because of the additional risk η .

Given a POA $(X_1 - \xi^*, X_2 + \xi^*)$ we would like to find p > 0 st

$$\pi_1(X_1) - \pi_1(X_1 - \xi^* + p) \ge 0$$

 $\pi_2(X_2) - \pi_2(X_2 + \xi^* - p) \ge 0$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Hence $(X_1 - \xi^* + p, X_2 + \xi^* - p)$ (with $p \in \mathbb{R}$) is an ORS iff $p \in [p_2(\xi^*), p_1(\xi^*)]$

What about optimal risk sharing in the quasiconvex case???

What about optimal risk sharing in the quasiconvex case???

More difficult since cash-additivity does not hold in general!

(ロ)、

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ satisfy assumption $(A\pi)$ and cash-subadditivity and let $X = X_1 + X_2$ be the aggregate risk.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ satisfy assumption $(A\pi)$ and cash-subadditivity and let $X = X_1 + X_2$ be the aggregate risk.

Assume that $\pi_1(X_1) \ge \pi_2(X_2)$ and that $(\pi_1 \nabla \pi_2)(X)$ is exact at $(X_1 - \xi^*, X_2 + \xi^*)$.

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ satisfy assumption $(A\pi)$ and cash-subadditivity and let $X = X_1 + X_2$ be the aggregate risk.

Assume that $\pi_1(X_1) \ge \pi_2(X_2)$ and that $(\pi_1 \nabla \pi_2)(X)$ is exact at $(X_1 - \xi^*, X_2 + \xi^*)$.

i) If $\pi_1(X_1) = \pi_2(X_2)$, then $(X_1 - \xi^*, X_2 + \xi^*)$ is a weakly ORS rule.

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ satisfy assumption $(A\pi)$ and cash-subadditivity and let $X = X_1 + X_2$ be the aggregate risk.

Assume that $\pi_1(X_1) \ge \pi_2(X_2)$ and that $(\pi_1 \nabla \pi_2)(X)$ is exact at $(X_1 - \xi^*, X_2 + \xi^*)$.

i) If $\pi_1(X_1) = \pi_2(X_2)$, then $(X_1 - \xi^*, X_2 + \xi^*)$ is a weakly ORS rule.

ii) If $\pi_1(X_1) > \pi_2(X_2)$, then either $(X_1 - \xi^*, X_2 + \xi^*)$ is a weakly ORS rule or the following hold:

if $(X_1 - \xi^* + p, X_2 + \xi^* - p)$ is a weakly ORS for some p > 0, then $\pi_1(X_1 - \xi^* + p) = \pi_1(X_1 - \xi^*) \lor \pi_2(X_2 + \xi^*)$ and

 $p \geq \max \left\{ \pi_2(X_2 + \xi^*) - \pi_2(X_2); \pi_2(X_2 + \xi^*) - \pi_1(X_1 - \xi^*) \right\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ satisfy assumption $(A\pi)$ and cash-subadditivity and let $X = X_1 + X_2$ be the aggregate risk.

Assume that $\pi_1(X_1) \ge \pi_2(X_2)$ and that $(\pi_1 \nabla \pi_2)(X)$ is exact at $(X_1 - \xi^*, X_2 + \xi^*)$.

i) If $\pi_1(X_1) = \pi_2(X_2)$, then $(X_1 - \xi^*, X_2 + \xi^*)$ is a weakly ORS rule.

ii) If $\pi_1(X_1) > \pi_2(X_2)$, then either $(X_1 - \xi^*, X_2 + \xi^*)$ is a weakly ORS rule or the following hold:

if $(X_1 - \xi^* + p, X_2 + \xi^* - p)$ is a weakly ORS for some p > 0, then $\pi_1(X_1 - \xi^* + p) = \pi_1(X_1 - \xi^*) \lor \pi_2(X_2 + \xi^*)$ and

$$p \geq \max\left\{\pi_2(X_2+\xi^*)-\pi_2(X_2); \pi_2(X_2+\xi^*)-\pi_1(X_1-\xi^*)
ight\}.$$

If, in addition, π_2 is cash-additive, then also the converse holds true.

Differently from Jouini et al. (2008), in the quasiconvex case the constraint on p depends not only on $p_1(\xi^*)$ and $p_2(\xi^*)$, but also on the difference between $\pi_1(X_1)$ and $\pi_2(X_2)$.

Indeed it is equivalent to

$$p \geq \max\{p_2(\xi^*); p_2(\xi^*) + p_1(\xi^*) + \pi_2(X_2) - \pi_1(X_1)\}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Thank you for your attention!!!

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Basic references, I

- Barrieu, P., El Karoui, N. (2005): Inf-convolution of risk measures and optimal risk transfer. Finance and Stochastics
- Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L. (2011): Risk measures: rationality and diversification, *Mathematical Finance*
- Drapeau, S., Kupper, M. (2013): Risk Preferences and their Robust Representation, *Mathematics of Operations Research*
- Frittelli, M., Maggis, M. (2011): Dual Representation of Quasiconvex Conditional Maps, *SIAM Journal of Financial Mathematics*
- Jouini, E., Schachermayer, W., Touzi, N. (2008): Optimal risk sharing for law invariant monetary utility functions. Mathematical Finance

- Luc, D.T., Volle, M. (1997): Level Sets, Infimal Convolution and Level Addition. Journal of Optmization Theory and applications
- Penot, J.-P., Volle, M. (1990): On quasiconvex duality, *Math. Oper. Res.*

ション ふゆ く は マ く ほ マ く し マ

• Seeger, A., Volle, M. (1995): On a convolution operation obtained by adding level sets: classical and new results. Operations Research