Pareto optimal allocations and optimal risk sharing for quasiconvex risk measures

Elisa Mastrogiacomo

University of Milano-Bicocca, Italy

(joint work with Prof. Emanuela Rosazza Gianin)

Second Young researchers meeting on BSDEs, Numerics and Finance Bordeaux, July 7-10, 2014

KORKA REPARATION ADD

Agenda

Pareto optimal allocations and optimal risk sharing: motivation and basic definitions

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Pareto optimal allocations and optimal risk sharing: motivation and basic definitions

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

• inf-convolution and quasiconvex inf-convolution

- Pareto optimal allocations and optimal risk sharing: motivation and basic definitions
- inf-convolution and quasiconvex inf-convolution
- **•** characterization of Pareto optimal allocations: from convex risk measures to quasiconvex risk measures

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

- Pareto optimal allocations and optimal risk sharing: motivation and basic definitions
- inf-convolution and quasiconvex inf-convolution
- characterization of Pareto optimal allocations: from convex risk measures to quasiconvex risk measures
- (weakly) optimal risk sharing (under cash-additivity of one risk measure or not)

KORKA REPARATION ADD

Given

A1 - insurer: initial risky position X_1 ; premium π_1 A2 - reinsurer: initial risky position X_2 ; premium π_2 and $X = X_1 + X_2$ aggregate risk

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Given

A1 - insurer: initial risky position X_1 ; premium π_1

A2 - reinsurer: initial risky position X_2 ; premium π_2

and $X = X_1 + X_2$ aggregate risk

 \rightsquigarrow find *Y* and $(X - Y)$ such that insurer and reinsurer optimally share the risk *X*

A DIA K PIA K E A LE A DIA K E A VION

Given

A1 - insurer: initial risky position X_1 ; premium π_1 A2 - reinsurer: initial risky position X_2 ; premium π_2 and $X = X_1 + X_2$ aggregate risk

 \rightsquigarrow find *Y* and $(X - Y)$ such that insurer and reinsurer optimally share the risk *X*

In other words

we want to find the "best way" for two (or more) agents to share the total (aggregate) risk.

KORKA REPARATION ADD

Pareto optimal allocations

Let $\pi_1, \pi_2 : L^{\infty} \to \overline{\mathbb{R}}$.

\n- $$
A(X) \triangleq \{(\xi_1, \xi_2) : \xi_1, \xi_2 \in L^\infty \text{ and } \xi_1 + \xi_2 = X\}
$$
 set of attainable allocations
\n

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

Pareto optimal allocations

Let $\pi_1, \pi_2 : L^{\infty} \to \overline{\mathbb{R}}$.

- $A(X) \triangleq \{(\xi_1, \xi_2) : \xi_1, \xi_2 \in L^\infty \text{ and } \xi_1 + \xi_2 = X\}$ set of attainable allocations
- $(\xi_1, \xi_2) \in A(X)$ is Pareto optimal (POA) when:

if
$$
\exists (\eta_1, \eta_2) \in A(X) : \pi_1(\eta_1) \leq \pi_1(\xi_1)
$$
 and $\pi_2(\eta_2) \leq \pi_2(\xi_2)$
\n $\Rightarrow \pi_1(\eta_1) = \pi_1(\xi_1)$ and $\pi_2(\eta_2) = \pi_2(\xi_2)$

A DIA K PIA K E A LE A DIA K E A VION

Pareto optimal allocations

Let $\pi_1, \pi_2 : L^{\infty} \to \overline{\mathbb{R}}$.

- $A(X) \triangleq \{(\xi_1, \xi_2) : \xi_1, \xi_2 \in L^\infty \text{ and } \xi_1 + \xi_2 = X\}$ set of attainable allocations
- $(\xi_1, \xi_2) \in A(X)$ is Pareto optimal (POA) when:

if
$$
\exists (\eta_1, \eta_2) \in A(X) : \pi_1(\eta_1) \leq \pi_1(\xi_1)
$$
 and $\pi_2(\eta_2) \leq \pi_2(\xi_2)$
\n $\Rightarrow \pi_1(\eta_1) = \pi_1(\xi_1)$ and $\pi_2(\eta_2) = \pi_2(\xi_2)$

 \bullet $(\xi_1, \xi_2) \in A(X)$ is weakly Pareto optimal if

 $\exists (\eta_1, \eta_2) \in A(X) : \pi_1(\eta_1) < \pi_1(\xi_1)$ and $\pi_2(\eta_2) < \pi_2(\xi_2)$

A DIA K PIA K E A LE A DIA K E A VION

Let $\pi_1, \pi_2 : L^{\infty} \to \overline{\mathbb{R}}$.

- $A(X) \triangleq \{(\xi_1, \xi_2) : \xi_1, \xi_2 \in L^\infty \text{ and } \xi_1 + \xi_2 = X\}$ set of attainable allocations
- $(\xi_1, \xi_2) \in A(X)$ is Pareto optimal (POA) when:

if
$$
\exists (\eta_1, \eta_2) \in A(X) : \pi_1(\eta_1) \leq \pi_1(\xi_1)
$$
 and $\pi_2(\eta_2) \leq \pi_2(\xi_2)$
\n $\Rightarrow \pi_1(\eta_1) = \pi_1(\xi_1)$ and $\pi_2(\eta_2) = \pi_2(\xi_2)$

 \bullet $(\xi_1, \xi_2) \in A(X)$ is weakly Pareto optimal if

 $\exists (\eta_1, \eta_2) \in A(X) : \pi_1(\eta_1) < \pi_1(\xi_1)$ and $\pi_2(\eta_2) < \pi_2(\xi_2)$

 \bullet (ξ_1, ξ_2) \in *A*(*X*) is an optimal risk sharing (ORS) if it is Pareto optimal and $\pi_1(\xi_1) \leq \pi_1(X_1)$ and $\pi_2(\xi_2) \leq \pi_2(X_2)$ (Individual Rationality).

Our contribution:

- \bullet π_1 , π_2 quasiconvex risk measures
- Comparison with the results established in the literature for convex risk measures

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Our contribution:

- \bullet π_1 , π_2 quasiconvex risk measures
- Comparison with the results established in the literature for convex risk measures

Remind that $\pi : L^{\infty} \to \bar{\mathbb{R}}$ is quasiconvex if

 $\pi(\alpha X + (1-\alpha)Y) \leq \max{\pi(X), \pi(Y)}, \quad \forall \alpha \in (0,1), X, Y \in L^{\infty}.$

KORKA REPARATION ADD

Main reason of our interest for quasiconvex risk measures The right formulation of diversification of risk is quasiconvexity:

$$
\text{if } \pi(X), \pi(Y) \leq \pi(Z) \quad \Rightarrow \pi(\alpha X + (1 - \alpha)Y) \leq \pi(Z), \forall \alpha \in (0, 1)
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

(see Cerreia-Vioglio et al. (2011), Drapeau and Kupper (2013), Frittelli and Maggis (2011))

Main reason of our interest for quasiconvex risk measures The right formulation of diversification of risk is quasiconvexity:

$$
\text{if } \pi(X), \pi(Y) \leq \pi(Z) \quad \Rightarrow \pi(\alpha X + (1 - \alpha)Y) \leq \pi(Z), \forall \alpha \in (0, 1)
$$

KORKA REPARATION ADD

(see Cerreia-Vioglio et al. (2011), Drapeau and Kupper (2013), Frittelli and Maggis (2011))

For a monotone risk measure

- convexity \Rightarrow quasi-convexity
- **•** equivalence is true under cash-additivity of π

Several results:

• firstly studied in the insurance literature: see Borch (1962), Bühlmann and Jewell (1979) and Deprez and Gerber (1985)

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Several results:

- **•** firstly studied in the insurance literature: see Borch (1962), Bühlmann and Jewell (1979) and Deprez and Gerber (1985)
- more recently, studied for coherent and convex risk measures. See Barrieu and El Karoui (2005), Jouini, Schachermayer and Touzi (2008), Klöppel and Schweizer (2007), Filipovic and Kupper (2008), ...

KORKAR KERKER EL VOLO

Main tools

Fenchel-Moreau representation of convex risk measures

$$
\pi(X) = \max_{Q \in \mathcal{M}_1} \left\{ E_Q[X] - F(Q) \right\},\,
$$

where \mathcal{M}_1 denotes the set of all $\mathcal{Q} \ll P$ and *F* is the convex conjugate of π .

• inf-convolution, where

$$
(\pi_1 \square \pi_2)(X) \triangleq \inf_{Y \in L^{\infty}} {\{\pi_1(X - Y) + \pi_2(Y)\}}.
$$

KORKA REPARATION ADD

Fenchel-Moreau subdifferential "∂" of a convex function

• Fenchel-Moreau biconjugate Theorem cannot be applied; any quasiconvex, monotone and continuous from above risk measure $\pi : L^{\infty} \to \mathbb{R}$ can be represented as

$$
\pi(X) = \max_{Q \in \mathcal{M}_1} R(E_Q[X], Q), \quad \forall X \in L^{\infty}
$$

where M_1 denotes the set of all $Q \ll P$ and

$$
R(t, Q) = \inf\{\pi(Y) | E_Q[Y] = t\}
$$
 (1)

KORKAR KERKER EL VOLO

See Penot and Volle (1990), Cerreia-Vioglio et al. (2011), Drapeau and Kupper (2013) and Frittelli and Maggis (2011).

• inf-convolution replaced by quasiconvex inf-convolution (more appropriate since stable wrt convex and quasiconvex functionals):

$$
(\pi_1 \nabla \pi_2)(X) \triangleq \inf_{Y \in L^{\infty}} \{ \pi_1(X - Y) \vee \pi_2(Y) \}.
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

• inf-convolution replaced by quasiconvex inf-convolution (more appropriate since stable wrt convex and quasiconvex functionals):

$$
(\pi_1 \nabla \pi_2)(X) \triangleq \inf_{Y \in L^{\infty}} \{ \pi_1(X - Y) \vee \pi_2(Y) \}.
$$

a suitable subdifferential: more precisely, the Greenberg-Pierskalla subdifferential of π at \bar{X} will be useful

$$
\partial^{GP} \pi(\bar{X}) \triangleq \big\{ Q: \ E_Q[X - \bar{X}] < 0, \forall X \text{ s.t. } \pi(X) < \pi(\bar{X}) \big\}
$$

A DIA K PIA K E A LE A DIA K E A VION

(see Penot and Zalinescu (2003) and Penot (2003))

Theorem [Jouini, Schachermayer and Touzi (2008)]

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ be convex risk measures satisfying monotonicity, $\sigma(L^{\infty}, L^{1})$ -lsc, cash-additivity and $\pi_{1}(0) = \pi_{2}(0) = 0$ with convex conjugate F_1 , F_2 . Let $X \in L^{\infty}$ be a given aggregate risk.

KORKAR KERKER EL VOLO

Theorem [Jouini, Schachermayer and Touzi (2008)]

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ be convex risk measures satisfying monotonicity, $\sigma(L^{\infty}, L^{1})$ -lsc, cash-additivity and $\pi_{1}(0) = \pi_{2}(0) = 0$ with convex conjugate F_1, F_2 . Let $X \in L^{\infty}$ be a given aggregate risk.

KORKAR KERKER DRAM

The following conditions are equivalent: (i) $(\xi_1, \xi_2) \in A(X)$ is Pareto optimal; (ii) $(\pi_1 \Box \pi_2)(X) = \pi_1(\xi_1) + \pi_2(\xi_2)$ (that is, exact); $\overline{\mathcal{A}}$ (iii) $\pi_i(\xi_i) = E_{\overline{\Omega}}[\xi_i] - F_i(\overline{Q})$ for some $\overline{Q} \in \mathcal{M}_1$; (iv) $\partial \pi_1(\xi_1) \cap \partial \pi_2(\xi_2) \neq \emptyset$.

Can Pareto optimal allocations be characterized also in the quasiconvex framework????

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Can Pareto optimal allocations be characterized also in the quasiconvex framework????

YES, as seen in a while

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Quasiconvex inf-convolution of risk measures

Given an insurance premium $\pi_1 : L^{\infty} \to \mathbb{R}$ and a reinsurance premium $\pi_2 : L^{\infty} \to \overline{\mathbb{R}}$,

$$
(\pi_1 \nabla \pi_2)(X) \triangleq \inf_{Y \in L^{\infty}} \{ \pi_1(X - Y) \vee \pi_2(Y) \}.
$$
 (2)

Given an insurance premium $\pi_1 : L^{\infty} \to \mathbb{R}$ and a reinsurance premium $\pi_2 : L^{\infty} \to \mathbb{R}$,

$$
(\pi_1 \nabla \pi_2)(X) \triangleq \inf_{Y \in L^{\infty}} \{ \pi_1(X - Y) \vee \pi_2(Y) \}.
$$
 (2)

Interpretation

 $\pi_1(X - Y) \vee \pi_2(Y)$ maximal premium to be paid for the insurance and reinsurance separately when *Y* is transferred by the insurer to the reinsurer.

 $\rightsquigarrow (\pi_1 \nabla \pi_2)(X)$ can be seen as minimization of the maximal premium to be paid for each insurance and reinsurance contract.

Proposition

If $\pi_1, \pi_2 : L^{\infty} \to \bar{\mathbb{R}}$ are quasiconvex and monotone, then $(\pi_1 \nabla \pi_2)$ is quasiconvex and monotone.

Moreover:

(i) if at least one between π_1 and π_2 is continuous from above, then also $(\pi_1 \nabla \pi_2)$ is continuous from above.

(ii) if at least one between π_1 and π_2 is cash-subadditive, then also $(\pi_1 \nabla \pi_2)$ is cash-subadditive.

KORKAR KERKER EL VOLO

(iii) if $\pi_1(0) = \pi_2(0) = 0$, then $(\pi_1 \nabla \pi_2)(0) \leq 0$.

Representation of the quasiconvex inf-convolution

Remind that any quasiconvex, monotone and continuous from above risk measure $\pi : L^{\infty} \to \overline{\mathbb{R}}$ can be represented as

$$
\pi(X) = \max_{Q \in \mathcal{M}_1} R(E_Q[X], Q), \quad \forall X \in L^{\infty}.
$$

Representation of the quasiconvex inf-convolution

Remind that any quasiconvex, monotone and continuous from above risk measure $\pi : L^{\infty} \to \overline{\mathbb{R}}$ can be represented as

$$
\pi(X) = \max_{Q \in \mathcal{M}_1} R(E_Q[X], Q), \quad \forall X \in L^{\infty}.
$$

Theorem

Let $\pi_1, \pi_2 : L^{\infty} \to \bar{\mathbb{R}}$ be quasiconvex, monotone and continuous from above risk measures and let R_1, R_2 be their corresponding functionals.

Then $\pi^{\nabla} = \pi_1 \nabla \pi_2$ is quasiconvex, monotone and continuous from above with

$$
R^{\nabla}(t, Q) \triangleq (R_1 \nabla_t R_2) (t, Q) \triangleq \inf_{t_1+t_2=t} \left\{ R_1(t_1, Q) \vee R_2(t_2, Q) \right\}.
$$

A DIA K PIA A BIA A BIA A Q A CA

... coming back to Pareto optimal allocations ...

Problem

What about POA with quasiconvex risk measures?

... coming back to Pareto optimal allocations ...

Problem

What about POA with quasiconvex risk measures?

is it possible to extend the characterization of Jouini, Schachermayer and Touzi (2008) by means of quasiconvex inf-convolution and GP-subdifferential?

KORKA REPARATION ADD

Assumption $(A\pi)$:

Let $\pi_1, \pi_2 : L^{\infty} \to \bar{\mathbb{R}}$ be quasiconvex risk functionals satisfying monotonicity and continuity from above. Hence, π_1 and π_2 can be represented as

$$
\pi(X) = \max_{Q \in \mathcal{M}_1} R(E_Q[X], Q), \quad \forall X \in L^{\infty}.
$$

Theorem (Pareto optimal - quasiconvex case)

Let π_1, π_2 satisfy Assumption (A π) and let R_1, R_2 be the corresponding functionals. Let $X \in L^{\infty}$ be a given aggregate risk.

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Theorem (Pareto optimal - quasiconvex case)

Let π_1, π_2 satisfy Assumption (A π) and let R_1, R_2 be the corresponding functionals. Let $X \in L^{\infty}$ be a given aggregate risk.

(i) If
$$
(\pi_1 \nabla \pi_2)(X) = \pi_1(\xi_1) \vee \pi_2(\xi_2)
$$
 for some $(\xi_1, \xi_2) \in A(X)$, then (ξ_1, ξ_2) is a weakly Pareto optimal allocation.

\n- (ii) Let
$$
(\xi_1, \xi_2) \in A(X)
$$
 and $\overline{Q}, Q_{1,2}$ be s.t.
\n- $(\pi_1 \nabla \pi_2)(X) = R^{\nabla}(E_{\overline{Q}}(X), \overline{Q})$ and $\pi_i(\xi_i) = R_i(E_{Q_i}(\xi_i), Q_i)$, $i = 1, 2$.
\n- $(\pi_1 \nabla \pi_2)(X) = \pi_1(\xi_1) \vee \pi_2(\xi_2)$ iff the following conditions are both satisfied:
\n- (ii-r) $R^{\nabla}(E_{\overline{Q}}(X), \overline{Q}) = R_1(E_{Q_1}(\xi_1), Q_1) \vee R_2(E_{Q_2}(\xi_2), Q_2)$;
\n- (ii-p) $\pi_i(\xi_i) = R_i(E_{\overline{Q}}(\xi_i), \overline{Q})$ whenever $\pi_i(\xi_i) > \pi_j(\xi_j)$ or $\pi_i(\xi_i) = \pi_j(\xi_j)$ and $R_i(E_{\overline{Q}}(\xi_i), \overline{Q}) > R_j(E_{\overline{Q}}(\xi_j), \overline{Q})$ (for $i, j = 1, 2$).
\n

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

(iii) Let π_1 and π_2 be $\sigma(L^{\infty}, L^1)$ -upper semi-continuous. If $\pi_1 \nabla \pi_2(X) = \pi_1(\xi_1) \vee \pi_2(\xi_2)$ for $(\xi_1, \xi_2) \in A(X)$ and ξ_1, ξ_2 are not local minimizers of π_1, π_2 , then

$$
\partial^{GP}(\pi_1 \nabla \pi_2)(X) = \partial^{GP} \pi_1(\xi_1) \cap \partial^{GP} \pi_2(\xi_2).
$$

KORKA REPARATION ADD

. link between weakly Pareto, exactness of gco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.

- **.** link between weakly Pareto, exactness of gco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures

KORKA REPARATION ADD

- **.** link between weakly Pareto, exactness of gco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures
- weaker than JST's results since POAs not fully characterized for quasiconvex risk measures

KORKA REPARATION ADD

- **.** link between weakly Pareto, exactness of gco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures
- weaker than JST's results since POAs not fully characterized for quasiconvex risk measures For quasiconvex risk measures, indeed,
	- exactness of gco inf-convolution \Rightarrow weakly Pareto (not necessarily Pareto)

4 D X 4 P X 3 X 4 B X 3 B X 9 Q Q

- **.** link between weakly Pareto, exactness of gco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures
- weaker than JST's results since POAs not fully characterized for quasiconvex risk measures For quasiconvex risk measures, indeed,
	- exactness of gco inf-convolution \Rightarrow weakly Pareto (not necessarily Pareto)

4 D X 4 P X 3 X 4 B X 3 B X 9 Q Q

- $\ldots \Rightarrow$ Pareto (For convex risk measures)
- weakly Pareto \Rightarrow exactness of gco inf-convolution
- **.** link between weakly Pareto, exactness of gco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures
- weaker than JST's results since POAs not fully characterized for quasiconvex risk measures For quasiconvex risk measures, indeed,
	- exactness of gco inf-convolution \Rightarrow weakly Pareto (not necessarily Pareto)
		- $\ldots \Rightarrow$ Pareto (For convex risk measures)
	- weakly Pareto \Rightarrow exactness of gco inf-convolution
	- \bullet exactness $\Rightarrow \partial^{GP} \pi_1(\xi_1) \cap \partial^{GP} \pi_2(\xi_2) \neq \emptyset$
- **.** link between weakly Pareto, exactness of gco inf-convolution, representation of quasiconvex risk measures and Greenberg-Pierskalla subdifferential.
- extension of JST: true both for quasiconvex and for convex risk measures
- weaker than JST's results since POAs not fully characterized for quasiconvex risk measures For quasiconvex risk measures, indeed,
	- exactness of gco inf-convolution \Rightarrow weakly Pareto (not necessarily Pareto)
		- $\ldots \Rightarrow$ Pareto (For convex risk measures)
	- weakly Pareto \Rightarrow exactness of gco inf-convolution
	- \bullet exactness $\Rightarrow \partial^{GP} \pi_1(\xi_1) \cap \partial^{GP} \pi_2(\xi_2) \neq \emptyset$ the converse is true under further continuity assumptions

メロトメ 御 トメミト メミト ニミー つんぴ

o for convex risk measures:

 $(\xi_1^*, \xi_2^*) \in A(X)$ optimal risk sharing iff $(\pi_1 \square \pi_2)(X_1 + X_2)$ is exact at (ξ_1^*, ξ_2^*) (or, equivalently, Pareto optimal) and $\pi_i(\xi_i^*) \leq \pi_i(X_i)$ for $i=1,2$ (individual rationality) - see Jouini et al. (2008)

KORKA REPARATION ADD

• for convex risk measures:

 $(\xi_1^*, \xi_2^*) \in A(X)$ optimal risk sharing iff $(\pi_1 \square \pi_2)(X_1 + X_2)$ is exact at (ξ_1^*, ξ_2^*) (or, equivalently, Pareto optimal) and $\pi_i(\xi_i^*) \leq \pi_i(X_i)$ for $i=1,2$ (individual rationality) - see Jouini et al. (2008)

 \rightarrow for gco risk measures we will look for a weakly optimal risk sharing, i.e. $(\xi_1^*, \xi_2^*) \in A(X)$ at which $(\pi_1 \nabla \pi_2)(X)$ is exact and satisfying individual rationality.

KOR & KERKER CRAMEL

• for convex risk measures:

 $(\xi_1^*, \xi_2^*) \in A(X)$ optimal risk sharing iff $(\pi_1 \square \pi_2)(X_1 + X_2)$ is exact at (ξ_1^*, ξ_2^*) (or, equivalently, Pareto optimal) and $\pi_i(\xi_i^*) \leq \pi_i(X_i)$ for $i=1,2$ (individual rationality) - see Jouini et al. (2008)

 \rightarrow for gco risk measures we will look for a weakly optimal risk sharing, i.e. $(\xi_1^*, \xi_2^*) \in A(X)$ at which $(\pi_1 \nabla \pi_2)(X)$ is exact and satisfying individual rationality.

KORKAR KERKER DRAM

o for convex risk measures (see JST): ORS may be obtained starting from a POA and taking into account a suitable price

• for convex risk measures:

 $(\xi_1^*, \xi_2^*) \in A(X)$ optimal risk sharing iff $(\pi_1 \square \pi_2)(X_1 + X_2)$ is exact at (ξ_1^*, ξ_2^*) (or, equivalently, Pareto optimal) and $\pi_i(\xi_i^*) \leq \pi_i(X_i)$ for $i=1,2$ (individual rationality) - see Jouini et al. (2008)

 \rightarrow for gco risk measures we will look for a weakly optimal risk sharing, i.e. $(\xi_1^*, \xi_2^*) \in A(X)$ at which $(\pi_1 \nabla \pi_2)(X)$ is exact and satisfying individual rationality.

KORKAR KERKER EL VOLO

- **o** for convex risk measures (see JST): ORS may be obtained starting from a POA and taking into account a suitable price
- for quasiconvex risk measures: similar result?

Following the approach of Jouini et al. (2008):

$$
p_1(\eta) \triangleq \pi_1(X_1) - \pi_1(X_1 - \eta)
$$

$$
p_2(\eta) \triangleq \pi_2(X_2 + \eta) - \pi_2(X_2),
$$

for any $\eta \in L^{\infty}$.

Following the approach of Jouini et al. (2008):

$$
p_1(\eta) \triangleq \pi_1(X_1) - \pi_1(X_1 - \eta)
$$

$$
p_2(\eta) \triangleq \pi_2(X_2 + \eta) - \pi_2(X_2),
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

for any $\eta \in L^{\infty}$. η can be seen as the risk transferred from insurer to reinsurer Following the approach of Jouini et al. (2008):

$$
\rho_1(\eta) \triangleq \pi_1(X_1) - \pi_1(X_1 - \eta)
$$

$$
\rho_2(\eta) \triangleq \pi_2(X_2 + \eta) - \pi_2(X_2),
$$

for any $\eta \in L^{\infty}$.

 η can be seen as the risk transferred from insurer to reinsurer

For cash-additive risk measures:

 $p_1(\eta)$ maximal price that agent 1 would pay because of the "risk" exchange"; similarly $p_2(\eta)$ can be seen as the minimal amount that 2 would like to receive because of the additional risk η .

Given a POA $(X_1 - \xi^*, X_2 + \xi^*)$ we would like to find $p > 0$ st

$$
\pi_1(X_1) - \pi_1(X_1 - \xi^* + p) \ge 0
$$

$$
\pi_2(X_2) - \pi_2(X_2 + \xi^* - p) \ge 0
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Hence $(X_1 - \xi^* + p, X_2 + \xi^* - p)$ (with $p \in \mathbb{R}$) is an ORS iff $p \in [p_2(\xi^*), p_1(\xi^*)]$

What about optimal risk sharing in the quasiconvex case???

What about optimal risk sharing in the quasiconvex case???

More difficult since cash-additivity does not hold in general!

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ satisfy assumption $(A\pi)$ and cash-subadditivity and let $X = X_1 + X_2$ be the aggregate risk.

KOD KARD KED KED E VOOR

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ satisfy assumption $(A\pi)$ and cash-subadditivity and let $X = X_1 + X_2$ be the aggregate risk. Assume that $\pi_1(X_1) \geq \pi_2(X_2)$ and that $(\pi_1 \nabla \pi_2)(X)$ is exact at $(X_1 - \xi^*, X_2 + \xi^*)$.

KORKA REPARATION ADD

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ satisfy assumption $(A\pi)$ and cash-subadditivity and let $X = X_1 + X_2$ be the aggregate risk. Assume that $\pi_1(X_1) \geq \pi_2(X_2)$ and that $(\pi_1 \nabla \pi_2)(X)$ is exact at $(X_1 - \xi^*, X_2 + \xi^*)$. i) If $\pi_1(X_1) = \pi_2(X_2)$, then $(X_1 - \xi^*, X_2 + \xi^*)$ is a weakly ORS rule.

KORKA REPARATION ADD

ORS rule or the following hold:

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ satisfy assumption $(A\pi)$ and cash-subadditivity and let $X = X_1 + X_2$ be the aggregate risk. Assume that $\pi_1(X_1) \geq \pi_2(X_2)$ and that $(\pi_1 \nabla \pi_2)(X)$ is exact at $(X_1 - \xi^*, X_2 + \xi^*)$. i) If $\pi_1(X_1) = \pi_2(X_2)$, then $(X_1 - \xi^*, X_2 + \xi^*)$ is a weakly ORS rule. ii) If $\pi_1(X_1) > \pi_2(X_2)$, then either $(X_1 - \xi^*, X_2 + \xi^*)$ is a weakly

if $(X_1 - \xi^* + p, X_2 + \xi^* - p)$ is a weakly ORS for some $p > 0$, then $\pi_1(X_1 - \xi^* + p) = \pi_1(X_1 - \xi^*) \vee \pi_2(X_2 + \xi^*)$ and

 $p \ge \max{\pi_2(X_2 + \xi^*) - \pi_2(X_2)}$; $\pi_2(X_2 + \xi^*) - \pi_1(X_1 - \xi^*)$.

Let $\pi_1, \pi_2 : L^{\infty} \to \mathbb{R}$ satisfy assumption $(A\pi)$ and cash-subadditivity and let $X = X_1 + X_2$ be the aggregate risk. Assume that $\pi_1(X_1) \geq \pi_2(X_2)$ and that $(\pi_1 \nabla \pi_2)(X)$ is exact at $(X_1 - \xi^*, X_2 + \xi^*)$. i) If $\pi_1(X_1) = \pi_2(X_2)$, then $(X_1 - \xi^*, X_2 + \xi^*)$ is a weakly ORS rule. ii) If $\pi_1(X_1) > \pi_2(X_2)$, then either $(X_1 - \xi^*, X_2 + \xi^*)$ is a weakly ORS rule or the following hold:

if $(X_1 - \xi^* + p, X_2 + \xi^* - p)$ is a weakly ORS for some $p > 0$, then $\pi_1(X_1 - \xi^* + p) = \pi_1(X_1 - \xi^*) \vee \pi_2(X_2 + \xi^*)$ and

$$
p \geq \max \left\{ \pi_2(X_2 + \xi^*) - \pi_2(X_2); \pi_2(X_2 + \xi^*) - \pi_1(X_1 - \xi^*) \right\}.
$$

If, in addition, π_2 is cash-additive, then also the converse holds true.

Differently from Jouini et al. (2008), in the quasiconvex case the constraint on *p* depends not only on $p_1(\xi^*)$ and $p_2(\xi^*)$, but also on the difference between $\pi_1(X_1)$ and $\pi_2(X_2)$.

Indeed it is equivalent to

$$
p \geq \max\{p_2(\xi^*); p_2(\xi^*)+p_1(\xi^*)+\pi_2(X_2)-\pi_1(X_1)\}.
$$

A DIA K PIA A BIA A BIA A Q A CA

Thank you for your attention!!!

Basic references, I

- Barrieu, P., El Karoui, N. (2005): Inf-convolution of risk measures and optimal risk transfer. Finance and Stochastics
- Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L. (2011): Risk measures: rationality and diversification, *Mathematical Finance*
- Drapeau, S., Kupper, M. (2013): Risk Preferences and their Robust Representation, *Mathematics of Operations Research*
- Frittelli, M., Maggis, M. (2011): Dual Representation of Quasiconvex Conditional Maps, *SIAM Journal of Financial Mathematics*
- Jouini, E., Schachermayer, W., Touzi, N. (2008): Optimal risk sharing for law invariant monetary utility functions. Mathematical Finance
- Luc, D.T., Volle, M. (1997): Level Sets, Infimal Convolution and Level Addition. Journal of Optmization Theory and applications
- Penot, J.-P., Volle, M. (1990): On quasiconvex duality, *Math. Oper. Res.*

KORKA REPARATION ADD

Seeger, A., Volle, M. (1995): On a convolution operation obtained by adding level sets: classical and new results. Operations Research