Alexander Steinicke University of Innsbruck

Second Young researchers meeting on BSDEs, Numerics and Finance Bordeaux, July 7-9, 2014

joint work with Christel Geiss, University of Innsbruck

- Malliavin differentiation in the Lévy case
- The BSDE

2 Malliavin differentiation of random functions

- The Malliavin derivative in direction of the jump part a difference operator
- Chain rule for the Brownian part of the derivative

3 Malliavin Differentiation of the BSDE

- Conditions on f
- Exceeding the assumptions

- Preliminaries

└─ Malliavin differentiation in the Lévy case

Let
$$X = (X_t)_{0 \le t \le T}$$
 be a Lévy process on $(\Omega, \mathcal{F}, \mathbb{P})$, where $\mathcal{F} = \widehat{\mathcal{F}_T^X}$

$$X_t = \gamma t + \sigma W_t + \int_{(0,t] \times \{x \ge 1\}} x \mathcal{N}(ds, dx) + \int_{(0,t] \times \{x < 1\}} x \tilde{\mathcal{N}}(ds, dx)$$

Preliminaries

└─ Malliavin differentiation in the Lévy case

Let
$$X = (X_t)_{0 \le t \le T}$$
 be a Lévy process on $(\Omega, \mathcal{F}, \mathbb{P})$, where $\mathcal{F} = \widehat{\mathcal{F}_T^X}$

$$X_t = \gamma t + \sigma W_t + \int_{(0,t] \times \{x \ge 1\}} x \mathcal{N}(ds, dx) + \int_{(0,t] \times \{x < 1\}} x \tilde{\mathcal{N}}(ds, dx)$$

• *N* Poisson random measure: $A \in \mathcal{B}(\mathbb{R} \setminus \{0\})$

$$N([0, t] \times A) = \#\{s \in [0, t] : X_s - X_{s-} \in A\}$$

Preliminaries

└─ Malliavin differentiation in the Lévy case

Let
$$X = (X_t)_{0 \le t \le T}$$
 be a Lévy process on $(\Omega, \mathcal{F}, \mathbb{P})$, where $\mathcal{F} = \widehat{\mathcal{F}_T^X}$

$$X_t = \gamma t + \sigma W_t + \int_{(0,t] \times \{x \ge 1\}} x \mathcal{N}(ds, dx) + \int_{(0,t] \times \{x < 1\}} x \tilde{\mathcal{N}}(ds, dx)$$

• *N* Poisson random measure: $A \in \mathcal{B}(\mathbb{R} \setminus \{0\})$

$$N([0, t] \times A) = \#\{s \in [0, t] : X_s - X_{s-} \in A\}$$

ν Lévy measure

$$\nu(A) := \mathbb{E}N([0,1] \times A)$$

Preliminaries

└─ Malliavin differentiation in the Lévy case

Let
$$X = (X_t)_{0 \le t \le T}$$
 be a Lévy process on $(\Omega, \mathcal{F}, \mathbb{P})$, where $\mathcal{F} = \widehat{\mathcal{F}_T^X}$

$$X_t = \gamma t + \sigma W_t + \int_{(0,t] \times \{x \ge 1\}} x \mathcal{N}(ds, dx) + \int_{(0,t] \times \{x < 1\}} x \tilde{\mathcal{N}}(ds, dx)$$

• *N* Poisson random measure: $A \in \mathcal{B}(\mathbb{R} \setminus \{0\})$

$$N([0, t] \times A) = \#\{s \in [0, t] : X_s - X_{s-} \in A\}$$

ν Lévy measure

$$\nu(A) := \mathbb{E}N([0,1] \times A)$$

• \tilde{N} compensated Poisson random measure

$$ilde{\mathcal{N}}([0,t] imes A) \hspace{2mm} := \hspace{2mm} \mathcal{N}([0,t] imes A) - t
u(A)$$

Preliminaries

└─ Malliavin differentiation in the Lévy case

■ random measure *M*

$$M(ds, dx) = \begin{cases} \sigma dW_s & \text{if } x = 0\\ \tilde{N}(ds, dx) & \text{if } x \neq 0 \end{cases}$$

- Preliminaries
 - └─ Malliavin differentiation in the Lévy case

■ random measure *M*

$$M(ds, dx) = \left\{ egin{array}{cc} \sigma dW_s & ext{if } x = 0 \ ilde{N}(ds, dx) & ext{if } x
eq 0 \end{array}
ight.$$

• For $B \in \mathcal{B}(\mathbb{R})$ and $s, t \in [0, T]$

$$\mathbb{E}M([0,t] \times A) \ M([0,s] \times B)$$

$$= (s \wedge t) [\sigma^2 \delta_0(A \cap B) + \nu(A \cap B)]$$

$$=: (s \wedge t) \mu(A \cap B) =: m (([0,t] \times A) \cap ([0,s] \times B))$$

- Preliminaries
 - └─ Malliavin differentiation in the Lévy case

■ random measure *M*

$$M(ds, dx) = \left\{ egin{array}{cc} \sigma dW_s & ext{if } x = 0 \ ilde{N}(ds, dx) & ext{if } x
eq 0 \end{array}
ight.$$

• For
$$B \in \mathcal{B}(\mathbb{R})$$
 and $s, t \in [0, T]$

$$\begin{split} \mathbb{E}M([0,t]\times A) \ M([0,s]\times B) \\ &= (s\wedge t) \left[\sigma^2 \delta_0(A\cap B) + \nu(A\cap B)\right] \\ &=: (s\wedge t) \,\mu(A\cap B) =: \mathrm{m}\left(([0,t]\times A) \cap ([0,s]\times B)\right) \end{split}$$

• $I_n(f_n)$ multiple integrals (w.r.t. the random measure M)

Preliminaries

└─ Malliavin differentiation in the Lévy case

Malliavin calculus for Lévy processes used here:

• for any $F \in L^2 = L^2(\Omega, \mathcal{F}, \mathbb{P})$ exists the chaos expansion

$$F=\sum_{n=0}^{\infty}I_n(f_n),\mathbb{P}-a.s.$$

with symmetric functions $f_n \in L^2_n = L^2(([0, T] \times \mathbb{R})^n)$. $\mathbb{D}_{1,2}$ is the subspace of L^2 such that

$$\sum_{n=0}^{\infty} nn! \|f_n\|_{L^2_n}^2 < \infty$$

• $\mathcal{D}F$ in $L^2(\Omega \times [0, T] \times \mathbb{R}; \mathbb{R})$ is defined by

$$\mathcal{D}_{r,v}F = \sum_{n=1}^{\infty} nI_{n-1}(f_n((r,v),\cdot))$$

- Preliminaries

└─ Malliavin differentiation in the Lévy case

Malliavin calculus for Lévy processes used here:

• for any $F \in L^2 = L^2(\Omega, \mathcal{F}, \mathbb{P})$ exists the chaos expansion

$$F=\sum_{n=0}^{\infty}I_n(f_n),\mathbb{P}-a.s.$$

with symmetric functions $f_n \in L^2_n = L^2(([0, T] \times \mathbb{R})^n)$. $\mathbb{D}_{1,2}$ is the subspace of L^2 such that

$$\sum_{n=0}^{\infty} nn! \|f_n\|_{L^2_n}^2 < \infty$$

• $\mathcal{D}F$ in $L^2(\Omega \times [0, T] \times \mathbb{R}; \mathbb{R})$ is defined by

 $\mathcal{D}_{r,v}F = \sum_{n=1}^{\infty} nI_{n-1}(f_n((r,v),\cdot) = \mathcal{D}_{r,0}F\mathbb{1}_{\{v=0\}}(v) + \mathcal{D}_{r,v}F\mathbb{1}_{\{v\neq0\}}(v)$

Preliminaries

└─ The BSDE

Formulation of the BSDE:

Preliminaries

└─ The BSDE

Formulation of the BSDE:

$$Y_{t} = \boldsymbol{\xi} + \int_{t}^{T} f\left(s, (X_{r})_{0 \leq r \leq T}, Y_{s}, Z_{s}, \int_{\mathbb{R}_{0}} g(U_{s}(x))g_{1}(x)\nu(dx)\right) ds$$
$$- \int_{t}^{T} Z_{s}dW(s) - \int_{(t,T]\times\mathbb{R}_{0}} U_{s}(x)\tilde{N}(ds, dx), \quad 0 \leq t \leq T$$

(First) assumptions on the data:

• Terminal condition $\xi \in \mathbb{D}_{1,2}$

Preliminaries

└─ The BSDE

Formulation of the BSDE:

$$Y_{t} = \xi + \int_{t}^{T} f\left(s, (X_{r})_{0 \le r \le T}, Y_{s}, Z_{s}, \int_{\mathbb{R}_{0}} g(U_{s}(x))g_{1}(x)\nu(dx)\right) ds$$
$$- \int_{t}^{T} Z_{s}dW(s) - \int_{(t,T]\times\mathbb{R}_{0}} U_{s}(x)\tilde{N}(ds, dx), \quad 0 \le t \le T$$

- Terminal condition $\xi \in \mathbb{D}_{1,2}$
- The generator f: [0, T] × D([0, T]) × ℝ³ → ℝ is adapted and jointly measurable. D([0, T]) = càdlàg functions, filtration is given by B(D([0, t]))_{0≤t≤T}

Preliminaries

└─ The BSDE

Formulation of the BSDE:

$$Y_{t} = \xi + \int_{t}^{T} f\left(s, (X_{r})_{0 \le r \le T}, Y_{s}, Z_{s}, \int_{\mathbb{R}_{0}} g(U_{s}(x))g_{1}(x)\nu(dx)\right) ds$$
$$- \int_{t}^{T} Z_{s}dW(s) - \int_{(t,T]\times\mathbb{R}_{0}} U_{s}(x)\tilde{N}(ds, dx), \quad 0 \le t \le T$$

- Terminal condition $\xi \in \mathbb{D}_{1,2}$
- The generator f: [0, T] × D([0, T]) × ℝ³ → ℝ is adapted and jointly measurable. D([0, T]) = càdlàg functions, filtration is given by B(D([0, t]))_{0≤t≤T}
- f is \mathbb{P} -a.s. continuously differentiable in (y, z, u)

Preliminaries

└─ The BSDE

Formulation of the BSDE:

$$Y_{t} = \xi + \int_{t}^{T} f\left(s, (X_{r})_{0 \le r \le T}, Y_{s}, Z_{s}, \int_{\mathbb{R}_{0}} g(U_{s}(x))g_{1}(x)\nu(dx)\right) ds$$
$$- \int_{t}^{T} Z_{s}dW(s) - \int_{(t,T]\times\mathbb{R}_{0}} U_{s}(x)\tilde{N}(ds, dx), \quad 0 \le t \le T$$

- Terminal condition $\xi \in \mathbb{D}_{1,2}$
- The generator f: [0, T] × D([0, T]) × ℝ³ → ℝ is adapted and jointly measurable. D([0, T]) = càdlàg functions, filtration is given by B(D([0, t]))_{0≤t≤T}
- f is \mathbb{P} -a.s. continuously differentiable in (y, z, u)
- **g** is C^1 with bounded derivative

Preliminaries

└─ The BSDE

Formulation of the BSDE:

$$Y_{t} = \xi + \int_{t}^{T} f\left(s, (X_{r})_{0 \le r \le T}, Y_{s}, Z_{s}, \int_{\mathbb{R}_{0}} g(U_{s}(x))g_{1}(x)\nu(dx)\right) ds$$
$$- \int_{t}^{T} Z_{s}dW(s) - \int_{(t,T]\times\mathbb{R}_{0}} U_{s}(x)\tilde{N}(ds, dx), \quad 0 \le t \le T$$

- Terminal condition $\xi \in \mathbb{D}_{1,2}$
- The generator f: [0, T] × D([0, T]) × ℝ³ → ℝ is adapted and jointly measurable. D([0, T]) = càdlàg functions, filtration is given by B(D([0, t]))_{0≤t≤T}
- f is \mathbb{P} -a.s. continuously differentiable in (y, z, u)
- g is C^1 with bounded derivative
- $g_1 \in L_2(\mathbb{R}, \nu)$

- Preliminaries
 - └─ The BSDE

Questions:

- Explicit expression for the Z and U-processes?
- Can Malliavin differentiation be applied to the LHS and RHS of the BSDE to get a formula like

$$\mathcal{D}_{r,v}Y_{t} = \mathcal{D}_{r,v}\xi + \int_{t}^{T} \mathcal{F}_{r,v}(s, X, \mathcal{D}_{r,v}Y_{s}, \mathcal{D}_{r,v}Z_{s}, \mathcal{D}_{r,v}U_{s}(\cdot)) ds$$
$$- \int_{t}^{T} \mathcal{D}_{r,v}Z_{s}dW_{s} - \int_{]t,T]\times\mathbb{R}} \mathcal{D}_{r,v}U_{s,x}\tilde{N}(ds, dx)?$$

- How to find $\mathcal{D}_{r,\nu}f\left(s,(X_r)_{0\leq r\leq T},Y_s,Z_s,\int_{\mathbb{R}_0}g(U_s(x))g_1(x)\nu(dx)\right)$?
- Conditions on f such that applying $\mathcal{D}_{r,v}$ is possible?

– Preliminaries

└─ The BSDE

Theorems about Malliavin differentiation of BSDEs have been stated by:

Pardoux and Peng (1992): Brownian setting, Forward-Backward SDEs

El Karoui et al. (1997): Brownian setting

Elie (2006): FBSDEs with jumps

Ankirchner, dos Reis and Imkeller (2007): QBSDEs in the Brownian setting

Delong and Imkeller (2010): Time delayed BSDEs with jumps on the canonical probability space of a Lévy process, sufficiently small Lipschitz constant or time horizon Malliavin differentiation of random functions

1 Preliminaries

Malliavin differentiation in the Lévy caseThe BSDE

2 Malliavin differentiation of random functions

- The Malliavin derivative in direction of the jump part a difference operator
- Chain rule for the Brownian part of the derivative

3 Malliavin Differentiation of the BSDE

- Conditions on f
- Exceeding the assumptions

└─ Malliavin differentiation of random functions

└─ The Malliavin derivative in direction of the jump part - a difference operator

Require: Differentiability of the generator, $f(s, X, \Phi_s)$, here $\Phi_s = (Y_s, Z_s, \int_{\mathbb{R}_0} g(U_s(x))g_1(x)\nu(dx)).$ What does the differentiated object look like?

Malliavin differentiation of random functions

The Malliavin derivative in direction of the jump part - a difference operator

Require: Differentiability of the generator, $f(s, X, \Phi_s)$, here $\Phi_s = (Y_s, Z_s, \int_{\mathbb{R}_0} g(U_s(x))g_1(x)\nu(dx)).$ What does the differentiated object look like?

Theorem

Let $F: D([0, T]) \to \mathbb{R}$. Assume that $F(X) \in \mathbb{D}_{1,2}$. Then for $v \neq 0$,

$$\mathcal{D}_{r,v}F(X) = F(X + v\mathbb{1}_{[r,T]}) - F(X), \mathbb{P}\otimes \mathrm{m}$$
-a.e.

Malliavin differentiation of random functions

└─ The Malliavin derivative in direction of the jump part - a difference operator

Require: Differentiability of the generator, $f(s, X, \Phi_s)$, here $\Phi_s = (Y_s, Z_s, \int_{\mathbb{R}_0} g(U_s(x))g_1(x)\nu(dx)).$ What does the differentiated object look like?

Theorem

Let $F: D([0, T]) \to \mathbb{R}$. Assume that $F(X) \in \mathbb{D}_{1,2}$. Then for $v \neq 0$,

$$\mathcal{D}_{r,v}F(X) = F(X + v\mathbb{1}_{[r,T]}) - F(X), \mathbb{P}\otimes \mathbb{m}$$
-a.e.

Theorem

Assume that $f(s, X, \Phi_s) \in \mathbb{D}_{1,2}$. Then for $v \neq 0$,

$$\mathcal{D}_{r,v}f(s,X,\Phi_s) = f(s,X+v\mathbb{I}_{[r,T]},\Phi_s+\mathcal{D}_{r,v}\Phi_s) - f(s,X,\Phi_s),$$

 $\mathbb{P} \otimes \mathbb{m}$ -a.e.

- -Malliavin differentiation of random functions
 - L The Malliavin derivative in direction of the jump part a difference operator

What conditions hold for $f(s, X + v \mathbb{1}_{[r,T]}, y, z, u)$ (Lipschitz, differentiability, quadratic growth etc.)?

Malliavin differentiation of random functions

L The Malliavin derivative in direction of the jump part - a difference operator

What conditions hold for $f(s, X + v \mathbb{1}_{[r,T]}, y, z, u)$ (Lipschitz, differentiability, quadratic growth etc.)?

Let $\Lambda \subseteq D([0, T])$ be the set, for which a path property for f in (y, z, u) holds.

Theorem

If $\mathbb{P}(X \notin \Lambda) = 0$, then

$$\mathbb{P}\otimes \mathrm{m}\left(\left\{(\omega,r,v):X(\omega)+v\mathbb{1}_{[r,\mathcal{T}]}\notin\Lambda\right\}\right)=0.$$

- Malliavin differentiation of random functions
 - Chain rule for the Brownian part of the derivative

The case v = 0: Analyze the situation on the Wiener space of continuous functions:

The Levy-Itô decomposition implies that the Brownian and the pure-jump part of the process are independent,

$$X_t(\omega) = \gamma t + \sigma W(\omega^w)_t + J_t(\omega^J), \quad t \in [0, T], \omega = (\omega^w, \omega^J).$$

- Malliavin differentiation of random functions
 - └─ Chain rule for the Brownian part of the derivative

The case v = 0: Analyze the situation on the Wiener space of continuous functions:

The Levy-Itô decomposition implies that the Brownian and the pure-jump part of the process are independent,

$$X_t(\omega) = \gamma t + \sigma W(\omega^w)_t + J_t(\omega^J), \quad t \in [0, T], \omega = (\omega^w, \omega^J).$$

We may consider random variables (w.r.t. to σ -algebra generated by X) as function-valued random variables on the Wiener space

$$\begin{split} \xi \colon \Omega \to \mathbb{R} & \leftrightarrow \quad \tilde{\xi} \colon \Omega^{W} \times \Omega^{J} \to \mathbb{R} \quad \leftrightarrow \quad \tilde{\tilde{\xi}} \colon \Omega^{W} \to L_{0}(\Omega^{J}), \\ L_{2}(\Omega^{W} \times \Omega^{J}) &\cong L_{2}(\Omega^{W}; L_{2}(\Omega^{J})). \end{split}$$

Malliavin differentiation of random functions

Chain rule for the Brownian part of the derivative

Let *E* be a separable Hilbert space (e.g. $L_2(\Omega^J)$).

Kusuoka-Stroock Sobolev spaces: RV $\xi \colon \Omega^W \to E$ such that

└─ Malliavin differentiation of random functions

Chain rule for the Brownian part of the derivative

Let *E* be a separable Hilbert space (e.g. $L_2(\Omega^J)$).

Kusuoka-Stroock Sobolev spaces: RV $\xi: \Omega^W \to E$ such that

• $\forall h \in L_2([0, T]) \exists \xi^h = \xi$ a.s. such that for all $\omega \in \Omega^W$ the map

$$t\mapsto
ho_{th}(\xi^h)(\omega):=\xi^h\left(\omega+t\int_0^\cdot h(s)ds
ight)$$
 is absolutely continuous

 $\boldsymbol{\xi}$ is ray absolutely continuous

Malliavin differentiation of random functions

Chain rule for the Brownian part of the derivative

Let *E* be a separable Hilbert space (e.g. $L_2(\Omega^J)$).

Kusuoka-Stroock Sobolev spaces: RV $\xi: \Omega^W \to E$ such that

• $\forall h \in L_2([0, T]) \exists \xi^h = \xi$ a.s. such that for all $\omega \in \Omega^W$ the map

$$t\mapsto
ho_{th}(\xi^h)(\omega):=\xi^h\left(\omega+t\int_0^\cdot h(s)ds
ight)$$
 is absolutely continuous

 ξ is ray absolutely continuous $\exists \nabla \xi \in L_p(\Omega^W; L_2([0, 1]; E))$ such that for all $h \in L_2([0, 1])$:

$$\frac{\rho_{th}(\xi)-\xi}{t} \xrightarrow{\mathbb{P}^W} \langle \nabla \xi, h \rangle_{L_2([0,1])}$$

 $\boldsymbol{\xi}$ is stochastically Gateaux differentiable

- Malliavin differentiation of random functions
 - Chain rule for the Brownian part of the derivative

Theorem (Sugita '85)

The Malliavin Sobolev spaces $\mathbb{D}_{1,p}(E)$ on the Wiener space equal the Kusuoka-Stroock Sobolev spaces.

Moreover, for the Malliavin derivative on the Wiener space \mathcal{D}^W it holds that

$$\mathcal{D}^W \xi =
abla \xi$$
 a.s.

- Malliavin differentiation of random functions
 - Chain rule for the Brownian part of the derivative

Theorem (Sugita '85)

The Malliavin Sobolev spaces $\mathbb{D}_{1,p}(E)$ on the Wiener space equal the Kusuoka-Stroock Sobolev spaces.

Moreover, for the Malliavin derivative on the Wiener space \mathcal{D}^W it holds that

$$\mathcal{D}^W \xi =
abla \xi$$
 a.s.

One identifies \mathcal{D}^W and $\mathcal{D}_{.0}$ (up to the multiplicative constant σ).

- └─ Malliavin differentiation of random functions
 - Chain rule for the Brownian part of the derivative

Extended chain rule for \mathcal{D}^W (or $\mathcal{D}_{t,0}$):

- Malliavin differentiation of random functions
 - Chain rule for the Brownian part of the derivative

Extended chain rule for
$$\mathcal{D}^W$$
 (or $\mathcal{D}_{t,0}$):

Theorem

Suppose
$$G = (G_1, \ldots, G_d) \in (\mathbb{D}_{1,2}(E))^d$$
 and

1
$$f(\omega, \cdot) \in C^1(\mathbb{R}^d)$$
 for a.a. $\omega \in \Omega$,

2
$$\forall \eta \in \mathbb{R}^d : f(\cdot, \eta) \in \mathbb{D}_{1,2}^W(E),$$

3 $\forall N \in \mathbb{N} \exists K_N \in \bigcup_{p>0} L_p(\mathbb{P}) : \eta, \tilde{\eta} \in B_N(0)$ and for a.a. ω

$$\|(D^{W}f(\cdot,\eta))(\omega) - (D^{W}f(\cdot,\tilde{\eta}))(\omega)\|_{L_{2}[0,T]} \leq K_{N}(\omega)|\eta - \tilde{\eta}|,$$

'locally Lipschitz'

4
$$D^W f(\cdot, \eta)|_{\eta=G} \in L_2(\Omega^W; L_2(L_2[0, T]; E))$$
 and

$$\sum_{k=1}^{d} \partial_{\eta_k} f(\cdot, G_1, ..., G_d) D^W G_k \in L_2(\Omega^W; L_2([0, T]; E)).$$

- —Malliavin differentiation of random functions
 - Chain rule for the Brownian part of the derivative

Theorem

Then

$$f(\cdot, G_1, ..., G_d) \in \mathbb{D}_{1,2}^W(E)$$

and

$$D^{W}f(\cdot, G_{1}, ..., G_{d}) = D^{W}f(\cdot, \eta)|_{\eta=G} + \sum_{k=1}^{d} \partial_{\eta_{k}}f(\cdot, G_{1}, ..., G_{d})D^{W}G_{k} \in L_{2}(\Omega^{W}; L_{2}(L_{2}[0, T]; E)).$$

- Malliavin differentiation of random functions
 - Chain rule for the Brownian part of the derivative

Theorem

Then

$$f(\cdot, G_1, ..., G_d) \in \mathbb{D}_{1,2}^W(E)$$

and

$$D^{W}f(\cdot, G_{1}, ..., G_{d}) = D^{W}f(\cdot, \eta)|_{\eta=G} + \sum_{k=1}^{d} \partial_{\eta_{k}}f(\cdot, G_{1}, ..., G_{d})D^{W}G_{k} \in L_{2}(\Omega^{W}; L_{2}(L_{2}[0, T]; E)).$$

Application to the generator: $f(\cdot, G_1, G_2, G_3) = f(X, \Phi_s)$

- Malliavin differentiation of random functions
 - Chain rule for the Brownian part of the derivative

Theorem

Then

$$f(\cdot, G_1, ..., G_d) \in \mathbb{D}_{1,2}^W(E)$$

and

$$D^{W}f(\cdot, G_{1}, ..., G_{d}) = D^{W}f(\cdot, \eta)|_{\eta=G} + \sum_{k=1}^{d} \partial_{\eta_{k}}f(\cdot, G_{1}, ..., G_{d})D^{W}G_{k} \in L_{2}(\Omega^{W}; L_{2}(L_{2}[0, T]; E)).$$

Application to the generator: $f(\cdot, G_1, G_2, G_3) = f(X, \Phi_s)$

└─ Malliavin Differentiation of the BSDE

Malliavin differentiation in the Lévy caseThe BSDE

2 Malliavin differentiation of random functions

- The Malliavin derivative in direction of the jump part a difference operator
- Chain rule for the Brownian part of the derivative

3 Malliavin Differentiation of the BSDE

- Conditions on f
- Exceeding the assumptions

Malliavin Differentiation of the BSDE

 \Box Conditions on f

$$Y_{t} = \xi + \int_{t}^{T} f\left(s, X, Y_{s}, Z_{s}, \int_{\mathbb{R}_{0}} g(U_{s}(x))g_{1}(x)\nu(dx)\right) ds$$
$$- \int_{t}^{T} Z_{s}dW(s) - \int_{(t,T]\times\mathbb{R}_{0}} U_{s}(x)\tilde{N}(ds, dx), \quad 0 \le t \le T$$

Theorem

Under assumptions given below the following assertions hold:

The processes Y, Z and U are Malliavin differentiable.

└─ Malliavin Differentiation of the BSDE

Conditions on *f*

$$Y_{t} = \xi + \int_{t}^{T} f\left(s, X, Y_{s}, Z_{s}, \int_{\mathbb{R}_{0}} g(U_{s}(x))g_{1}(x)\nu(dx)\right) ds$$
$$- \int_{t}^{T} Z_{s}dW(s) - \int_{(t,T]\times\mathbb{R}_{0}} U_{s}(x)\tilde{N}(ds, dx), \quad 0 \le t \le T$$

Theorem

Under assumptions given below the following assertions hold:

- The processes Y, Z and U are Malliavin differentiable.
- A version of DY and DZ satisfies the following BSDE $\mathbb{P} \otimes m$ -a.e.

$$\mathcal{D}_{r,v}Y_{t} = \mathcal{D}_{r,v}\xi + \int_{t}^{T} \mathcal{D}_{r,v}f(s, X, \Phi_{s}) ds$$
$$-\int_{t}^{T} \mathcal{D}_{r,v}Z_{s}dW_{s} - \int_{]t,T]\times\mathbb{R}_{0}} \mathcal{D}_{r,v}U_{s}(x)\tilde{N}(ds, dx)$$
18/23

- └─ Malliavin Differentiation of the BSDE
 - -Conditions on *t*

Theorem

• The differentiated generator is given by

$$\begin{aligned} \mathcal{D}_{r,v}f(t,X,\Phi_s) &= \\ \left\{ \mathcal{D}_{r,0}f(t,X,\phi)|_{\phi=\Phi_s} + \langle \nabla_{\phi}f(s,X,\Phi_s), \mathcal{D}_{r,0}\Phi_s \rangle, \qquad v = 0, \\ f(s,X+v \mathbb{I}_{[r,T]},\Phi_s + \mathcal{D}_{r,v}\Phi_s) - f(s,X,\Phi_s), \qquad v \neq 0 \end{aligned} \right. \end{aligned}$$

- Malliavin Differentiation of the BSDE
 - \Box Conditions on f

Theorem

The differentiated generator is given by

$$\begin{aligned} \mathcal{D}_{r,v}f(t,X,\Phi_s) &= \\ \left(\mathcal{D}_{r,0}f(t,X,\phi) |_{\phi=\Phi_s} + \langle \nabla_{\!\!\phi} f(s,X,\Phi_s), \mathcal{D}_{r,0}\Phi_s \rangle, \qquad v = 0, \\ f(s,X+v \mathbb{I}_{[r,T]},\Phi_s + \mathcal{D}_{r,v}\Phi_s) - f(s,X,\Phi_s), \qquad v \neq 0 \end{aligned} \right. \end{aligned}$$

For m-almost all (r, v), $\mathcal{D}_{r,v}Y$ admits a càdlàg version in t.

- Malliavin Differentiation of the BSDE
 - └─ Conditions on *f*

Theorem

The differentiated generator is given by

$$\begin{split} \mathcal{D}_{r,v}f(t,X,\Phi_s) &= \\ \left\{ \mathcal{D}_{r,0}f(t,X,\phi)|_{\phi=\Phi_s} + \langle \nabla_{\!\!\phi}f(s,X,\Phi_s), \mathcal{D}_{r,0}\Phi_s \rangle, \qquad v=0, \\ f(s,X+v\mathbb{I}_{[r,T]},\Phi_s + \mathcal{D}_{r,v}\Phi_s) - f(s,X,\Phi_s), \qquad v\neq0 \end{split} \right. \end{split}$$

For m-almost all (r, v), D_{r,v}Y admits a càdlàg version in t.
 D_{r,v}Y_r := lim_{t ∖ r} D_{r,v}Y_t is well defined and it holds

$$Z \stackrel{version}{=} {}^{p}\left((\mathcal{D}_{r,0}Y_r)_{r\in[0,T]}\right),$$

$$U \stackrel{version}{=} {}^{p} \left((\mathcal{D}_{r,v} Y_r)_{(r,v) \in [0,T] \times \mathbb{R}_0} \right)$$

└─ Malliavin Differentiation of the BSDE

- Conditions on a

Assumptions on f which admit differentiation:

Malliavin Differentiation of the BSDE

 \Box Conditions on f

Assumptions on f which admit differentiation:

 $\blacksquare \mathbb{E} \int_0^T |f(s, X, 0, 0, 0)|^2 \, ds < \infty.$

└─ Malliavin Differentiation of the BSDE

 \Box Conditions on f

Assumptions on f which admit differentiation:

■
$$\mathbb{E} \int_0^T |f(s, X, 0, 0, 0)|^2 ds < \infty.$$

■ $\forall t \in [0, T]$:

$$\mathbb{R}^3
i \phi \mapsto \partial_{\phi_i} f(t, X, \phi), \quad i = 1, 2, 3$$

is $\mathbb P\text{-}a.s.$ bounded and continuous.

└─ Malliavin Differentiation of the BSDE

 \Box Conditions on f

Assumptions on f which admit differentiation:

■
$$\mathbb{E} \int_0^T |f(s, X, 0, 0, 0)|^2 ds < \infty.$$

■ $\forall t \in [0, T]$:

$$\mathbb{R}^3 \ni \phi \mapsto \partial_{\phi_i} f(t, X, \phi), \quad i = 1, 2, 3$$

is \mathbb{P} -a.s. bounded and continuous.

•
$$\forall (t,\phi) \in [0,T] \times \mathbb{R}^3 : f(t,X,\phi) \in \mathbb{D}_{1,2}$$

└─ Malliavin Differentiation of the BSDE

 \Box Conditions on f

Assumptions on f which admit differentiation:

■
$$\mathbb{E} \int_0^T |f(s, X, 0, 0, 0)|^2 ds < \infty.$$

■ $\forall t \in [0, T]$:

$$\mathbb{R}^3 \ni \phi \mapsto \partial_{\phi_i} f(t, X, \phi), \quad i = 1, 2, 3$$

is \mathbb{P} -a.s. bounded and continuous.

• $\forall (t,\phi) \in [0,T] \times \mathbb{R}^3 : f(t,X,\phi) \in \mathbb{D}_{1,2}$

• $\forall G \in (L_2)^3 : \exists \Gamma \in L_2(\mathbb{P} \otimes m)$, such that for a.e. t it holds

 $|(D_{r,v}f)(t,\cdot,G)| \leq \Gamma_{r,v} \quad \mathbb{P}\otimes \mathrm{m}-a.e.$

└─ Malliavin Differentiation of the BSDE

 \Box Conditions on f

Assumptions on f which admit differentiation:

■
$$\mathbb{E} \int_0^T |f(s, X, 0, 0, 0)|^2 ds < \infty.$$

■ $\forall t \in [0, T]$:

$$\mathbb{R}^3 \ni \phi \mapsto \partial_{\phi_i} f(t, X, \phi), \quad i = 1, 2, 3$$

is \mathbb{P} -a.s. bounded and continuous.

- $\forall (t, \phi) \in [0, T] \times \mathbb{R}^3 : f(t, X, \phi) \in \mathbb{D}_{1,2}$
- $\forall G \in (L_2)^3 : \exists \Gamma \in L_2(\mathbb{P} \otimes m)$, such that for a.e. t it holds

 $|(D_{r,v}f)(t,\cdot,G)| \leq \Gamma_{r,v} \quad \mathbb{P}\otimes \mathrm{m}-a.e.$

• $\forall t \in [0, T], \forall N \in \mathbb{N} \exists K_N^t \in \bigcup_{\rho > 0} L_\rho :$ for $\eta, \tilde{\eta} \in B_N(0)$ and a. a. ω

 $\| (D_{\cdot,0}f)(\cdot,t,\eta)(\omega) - (D_{\cdot,0}f)(\cdot,t,\tilde{\eta})(\omega) \|_{L_2[0,T]} < \mathcal{K}_N^t(\omega) |\eta - \tilde{\eta}|.$

└─ Malliavin Differentiation of the BSDE

Exceeding the assumptions

Exceeding the assumptions:

└─ Malliavin Differentiation of the BSDE

Exceeding the assumptions

Exceeding the assumptions:

If $\nu(\mathbb{R})<\infty,$ and $\xi\in L_\infty$ then the theorem above remains also true for the BSDE

$$Y_{t} = \xi + \int_{t}^{T} \left(f_{g}(s, X, Y_{s}, Z_{s}, U_{s}) + \int_{\mathbb{R}_{0}} \frac{e^{\alpha U_{s}(x)} - \alpha U_{s}(x) - 1}{\alpha} \nu(dx) \right) ds$$
$$- \int_{t}^{T} Z_{s} dW(s) - \int_{(t, T] \times \mathbb{R}_{0}} U_{s}(x) \tilde{N}(ds, dx), \quad 0 \le t \le T$$

└─ Malliavin Differentiation of the BSDE

Exceeding the assumptions

■ É. Pardoux, S. Peng

Backward Stochastic Differential Equations and Quasilinear Parabolic Partial Differential Equations Stochastic partial differential equations and their applications

(Charlotte, NC, 1991), 200-217, Lecture Notes in Control and Inform. Sci., 176, Springer, 1992.

- N. El Karoui, S. Peng, M.C. Quenez Backward stochastic differential equations in finance Math. Finance 7 (1) (1997) 1-71.
- 🛛 R. Elie

Contrôle stochastique et méthodes numériques en finance mathématique

Thèses. ENSAE ParisTech (11/12/2006), Nizar Touzi (Dir.)

 S. Ankirchner, G. dos Reis and P. Imkeller Classical and variational differentiability of BSDEs with quadratic growth Electronic Journal of Probability, Vol. 12, (2007), 1418-1453.

└─ Malliavin Differentiation of the BSDE

Exceeding the assumptions

- L. Delong, P. Imkeller
 - On Malliavin's differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures

Stochastic Process. Appl. 120 (2010), no. 9, 1748-1775.

 Ch. Geiss and A. S. Malliavin derivative of random functions and applications to Lévy driven BSDEs arXiv.org, 1404.4477