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Summary of the talk

We consider the Euler schemes for BSDEs with a driver f that
is monotone with polynomial growth in Y.

Implicit scheme : good (converges).
Explicit : bad (explodes).

[Based on joint work with Gongalo dos Reis and Lukasz
Szpruch.]
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BSDEs

dYt - _f-(t7 Yt7 Zt)dt + thWt
Yr = ¢

Several connections, applications, points of view.
stochastic control

mathematical finance
a target/inverse problem for a controlled SDE
nonlinear expectations

a probabilistic representation for PDEs —backward
stochastic ODE.

Arnaud LIONNET Numerical approximation of monotone BSDEs



Connection between FBSDEs and PDEs.

Forward and backward SDE : for s <t < T,
X =x
dX; = b(t, X;)dt + o(t, X;)dW,;
dYy = —f(t, X, Y, Z¢)dt + Z,dW,;
Yr=§=g(X7).

PDE :

1
Ve + §a2vxx + bvy + f(t, x, v, v0o) =0

v(T,x) = g(x).

Connection : v(t, X;) = Y; and (v0)(t, X;) = Z7.
Nonlinear Feynman—-Kac formula v(s, x) = Y.
Generalization of the method of characteristics to 2nd order,
parabolic PDEs.



BSDE : backward stochastic ODE.

The BSDE can be re-writen

.
Y, = E<§+/ F(Y,, Z,)du

ft)
where

[ ZdW = martingale part of the semimartingale Y.

Two things taking place continuously :
e ODE dynamics : £ + ftT f(Y,)du (backward in time)

@ conditional expectation.
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Numerical approximation of BSDEs

Discretize the time interval [0, T] : let h= T /N and

O=t<ti=h<tb=2h<...<ty=Nh=T.

Over an interval [t;, t; 1],

tit1
Y: = E(Yti+1 +/ f(Yy, Z,)du
ti

)

and thth is the martingale part of Y.
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Numerical approximation of BSDEs

Over an interval [t;, t; 1],

tiv1
Yt,—E<Yt,.+l+/ f(Yu,Zu)du‘]-"t)
t,

and [ Z,dW, is the martingale part of Y.
Approximating the integral (several possibilities : choose an

integration rule) leads to time-discretization schemes :
produces a sequence (Y;, Z;); approximating (Y:,, Zt,)i.

Initialization : define ( Yy, Zy).

Backward computations : from i = N — 1 to i = 0 compute
(i, Z), knowing (Yiy1, Ziy1).
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Numerical approximation of BSDEs

— Euler schemes (rectangle rule).

tit1
Yt,_:E<Yt,.H+/ f(Yu,Zu)du‘]-“t)
t,

i

becomes either
Vi = E(Yix + f(Yiur, Zia) | F)

(explicit scheme, right-end point rule)
or

Y, = E(Y,-H

Fi) + F(Y;, Z)h

(implicit scheme, left-end point rule).



Numerical approximation of BSDEs

What about Z; ? Since [ ZdW is the martingale part of Y,

tiz1 tit1
(W, Y>Z+1 = / d(W,Y), = / Z:dt
t, t

i i

1 [ 1
Zti ~ E (z/ Zj_—dt‘ﬁ) ~ E (Z(th.+l - Wti)(yti+l - Yt,')
ti

AW,

)

which leads to setting

AW,
Zi=E (% Yi+1‘]'_i>
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Euler schemes : explicit and implicit

Explicit scheme :
Y= E<Yi+l + f(Yii, Zi+1)h‘}—i>

AW,
Zi = E( p H{Yiﬂ + f(Yi+1,Zi+1)h}']‘-")

Implicit scheme :

<
Il

E(Yia|F) + (Vi Z)h

Zi = E<AWI+1{Y/'+1 + 0}’.7:,)
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Analytic framework

Euler scheme(s) : well understood (to some extent ...) and
well-behaved in the case of Lipschitz drivers f (moment
estimates, regularity, etc).

We study the Euler schemes for BSDEs when the driver f is
monotone and has polynomial growth in the Y variable.

Motivation : reaction-diffusion PDEs,

e FitzHugh—Nagumo equation,
@ Allen—Cahn equation, ...

Typically the driver in these equations is a polynomial in y.
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The monotonicity condition

3

Solution to the ODE y’=y

solution

I
0 0.5 1 1.5 2 25 3

time
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The monotonicity condition

Solution to the ODE y’=—y3

0.8 7

solution

0.4 T

0.2 4

I I I I I
0 5 10 15 20 25 30 35 40

time
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The monotonicity condition

Linear growth ~~ Gronwall ~~ bounds. The solution cannot
explode.

As soon as there is some superlinear growth (in y, in z, ...), no
guarantee anymore.
Need to add a condition on the structure of the driver.

“Monotonicity condition” : monotone decreasing.

Precisely, there exists u € R :
(f(ys2) = f(y,2) [y —y) < uly’ =y

(can think of 1 < 0).
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Findings. Main message of this talk.

Implicit scheme : converges as usual.
Explicit scheme : diverges in general.

— The time-discretization “breaks the structure”.

For a better understanding, we studied the f-schemes.
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Euler schemes : theta, implicit and explicit

0-scheme :

Vi = E(Yiot + (L= 0)F(Yiis, Ze)h| F) + 0F (Y, Z)h

AW,
Z = E( Y+ (1- e)f(ml,z,-ﬂ)h}‘f,)

0 = degree of implicitness.
0 =1 : implicit scheme,
0 = 0 : explicit scheme.
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Findings. Main message of this talk.

Explicit scheme : diverges in general.
Implicit scheme : converges as usual.

— the time-discretization “breaks the structure”.

For a better understanding, we studied the f-schemes.

0> % (mostly-implicit) : scheme is somehow stable, and
converges.

6 =1 (pure implicit) : scheme is stable (and so converges).
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Why does the explicit scheme explode ?

Comparison with ODEs.
The case of ODEs.
The case of SDEs.

The case of BSDEs.
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Explicit Euler scheme for a superlinear ODE

Explicit Euler scheme for the ODE y’=-y®

value

L L L L L L L L L ,
0 0.5 1 15 2 25 3 35 4 45 5

time

FIGURE: Time step h=1.
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Explicit Euler scheme for a superlinear ODE

Explicit Euler scheme for the ODE y’=-y®

value
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FIGURE: Time step h=1.
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Explicit Euler scheme for a superlinear ODE

Explicit Euler scheme for the ODE y’=-y®

value
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FIGURE: Time step h=1.
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Explicit Euler scheme for a superlinear ODE

Explicit Euler scheme for the ODE y’=-y®

value
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time

FIGURE: Time step h=1.
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Explicit Euler scheme for a superlinear ODE

Explicit Euler scheme for the ODE y’=-y®
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FIGURE: Time step h=1.
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Explicit Euler scheme for a superlinear ODE

Explicit Euler scheme for the ODE y’=-y®

value

F1GURE: Time step h=0.25.
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Explicit Euler scheme for a superlinear ODE

Explicit Euler scheme for the ODE y’=-y®

value

F1GURE: Time step h=0.25.
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Why does the explicit scheme explode ?

Comparison with ODEs.

The case of ODEs.

@ Thresholds.
@ Initial condition is a point : bounded.

The case of SDEs.

The case of BSDEs.
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Why does the explicit scheme explode ?

Comparison with ODEs.
The case of ODEs.

The case of SDEs.

@ Initial condition is a point : bounded.

@ Noise AW; can throw the system out of the safe zone.

The case of BSDEs.
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Why does the explicit scheme explode ?

Comparison with ODEs.
The case of ODEs.
The case of SDEs.

The case of BSDEs.

@ Terminal condition is a distribution : unbounded.

@ ODE component of the BSDE ~~ explosion (conditional
expectations don't help).
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Convergence for the mostly implicit schemes

Recall the 0-scheme :

Vi = E(Yier + (L= 0)f(Yios, Zia)h|Fi ) + 0F(Yi, Z)h

AW,
Zi = E( p +1{Yi+1 + (1= 0)f(Yiga, Zi+1)h}’]:i>

0 = degree of implicitness.
6 =1 : implicit scheme,
0 = 0 : explicit scheme.

Write S,' = (Y,, Z,)
In all generality, a scheme does S; = ®(5;,1).
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Convergence for the mostly implicit schemes

Write S;, = (Y4, Z+,) for the BSDE solution on the grid.
BSDE dynamics : S;, = W(S,,.,).

Global error :

ERR((Y/, 7)i ,(Ytl.,ft’_)i)2 _ ,.Q?f.XNE[lw — Yr,-|2}

N-1

-+ E{Zm - th} .
i=0

Error at time t; :

¢; = distance between S; = (Y}, Z;) and Sy, = (Y3, Z4,), i.e.
between output of the scheme for time t; and BSDE solution
at t;.
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Convergence for the mostly implicit schemes

Si—Sy=(5=S5)+(5-5S:)
= fD(Serl) - ¢(Sti+lz+ij>(5ti+1) - \U(Sti+1) :

J/

vV vV
error propagation one-step error

Distance between S; = ®(S;,1) and S = d(S,,)
propagation at time t; of the error ¢, ; that existed already at
time t;.1, denoted by p;.

Distance between §, =®(S;,,) and S, = V(S,,,) -
one-step time-discretization error = : 7;.

So we have
dist <5,‘, Sti) = € S Pi + 7.
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Convergence for the mostly implicit schemes

Stability estimate for the scheme : essentially says that

;= dist ((S1-1), (S,
S eCh dist <S,‘+1, Sti+1) + RI()
= eChe',-vl + RIH s

where R/ is a remainder term. R = 0 corresponds to the
usual stability estimate.
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Convergence for the mostly implicit schemes

This gives

h 6
¢ <e e+ RO+

Gronwall type estimation leads to (Fundamental Lemma)
N—1
ERR((S,-),-, (st,.),-) < Err(Term.Cond) + > 7 + R,
i=0

where R° = >~ R/ is the stability remainder.
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Convergence for the mostly implicit schemes

N—-1

ERR((S;),-, (St,.),-> < Err(Term.Cond) + Z i+ R
i=0

Err(Term.Cond) + Z,/.V:_Ol 7; : similar to Lipschitz drivers.
< ERR(X) + REG/(Y, 2).

Stability remainder R = ", R’ : due to superlinear growth,
and scheme-specific.
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Convergence for the mostly implicit schemes

Our analysis shows that :

- For § = 1 (implicit scheme) : R = 0. Hence the scheme is
stable in the usual sense, and we have convergence.

- For 0 € [3,1] : R # 0 but further estimation (using 6 > 1)
allows to show that R — 0 as h — 0.

- For 6 = % and under further assumptions on f, we find

. ) - N-1
higher-order estimates for 2~ as well as ) ;" 7;, hence we
have a higher-order scheme.

This analysis also allows us to study the convergence of a
simple tamed explicit scheme (cf Lukasz's talk).
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Some numerical simulations

-4.5- LI
-5 Ty
—_ * gﬁ
& .
E] o Implicit scheme o
< -5.5¢ . ! [<g.
" Linear fit, slope = -0.96141 Sy o
z hES
> a  Explicit scheme R <
= -6f -
E = = = Linear fit, slope=-0.99073 % SV4 0
m ~ ~' .
= * Trapezoidal scheme o .
£ 65t
—— Linear fit, slope=-0.029893
-7r * x
_75 . . . .

2.5 3 . 35
In (number of intervals)

FIGURE: Driver f(y) = y — y3, term.cond. g(x) = 1/(1 + ), X=BM. Time grid

with N = 10...70. Expectations computed by regression on a basis of polynomials up
to degree K = 7, with M = 200k simulated paths.
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Some numerical simulations

-1.9r

o implicit scheme
- linear fit, slope=—0.49995
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FIGURE: Driver f(y) = —y3, term.cond. g(x) = x, X=gBM (=0 = %) Time
grid with V = 30...90. Expectations computed by regression on a basis of
polynomials up to degree K = 4, with M = 100k simulated paths.
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We study the time-discretization for BSDEs with monotone
drivers.

Lipschitz/linear growth ~~ Gronwall ~~ bounds. Explosion
cannot happen. BSDE and schemes well behaved.
Superlinear growth : no guarantee. The discretization “breaks
the structure”.

Explicit Euler scheme : unstable, explodes.

Implicit Euler scheme : stable, converges.

General and abstract analysis of the global error : allows to
easily study the convergence of time-discretization schemes.
Study of #-schemes. 6 > % = convergence (but § = 1 more
stable).
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That's all folks ...

THANK YOU

FOR YOUR

ATTENTION




