Numerical approximation of monotone **BSDEs**

Arnaud LIONNET

University of Oxford

2nd Young Researchers Meeting on BSDEs, Numerics and Finance

Université de Bordeaux, France 7th–9th July 2014

We consider the Euler schemes for BSDEs with a driver f that is monotone with polynomial growth in Y .

Implicit scheme : good (converges).

Explicit : bad (explodes).

[Based on joint work with Gonçalo dos Reis and Lukasz Szpruch.]

 Ω

BSDEs

$$
\begin{cases} dY_t = -f(t, Y_t, Z_t)dt + Z_t dW_t \\ Y_T = \xi. \end{cases}
$$

Several connections, applications, points of view.

- stochastic control
- **•** mathematical finance
- a target/inverse problem for a controlled SDE
- **•** nonlinear expectations
- a probabilistic representation for PDEs backward stochastic ODE.

Connection between FBSDEs and PDEs.

Forward and backward SDE : for $s \leq t \leq T$,

$$
\begin{cases}\nX_s = x \\
dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t \\
dY_t = -f(t, X_t, Y_t, Z_t)dt + Z_t dW_t \\
Y_T = \xi = g(X_T).\n\end{cases}
$$

PDE :

$$
\begin{cases}\nv_t + \frac{1}{2}\sigma^2 v_{xx} + bv_x + f(t, x, v, v_x \sigma) = 0 \\
v(T, x) = g(x).\n\end{cases}
$$

Connection : $v(t, X_t) = Y_t$ and $(v_x \sigma)(t, X_t) = Z_T$. Nonlinear Feynman–Kac formula $v(s,x) = Y_s$. Generalization of the method of characteristics to 2nd order, parabolic PDEs.

 200

BSDE : backward stochastic ODE.

The BSDE can be re-writen

$$
Y_t = E\left(\xi + \int_t^T f(Y_u, Z_u) du \middle| \mathcal{F}_t\right)
$$

where

 $\int Z dW =$ martingale part of the semimartingale Y.

Two things taking place continuously :

- ODE dynamics : $\xi + \int_t^T f(Y_u) du$ (backward in time)
- **o** conditional expectation.

 Ω

Discretize the time interval [0, T] : let $h = T/N$ and

$$
0 = t_0 < t_1 = h < t_2 = 2h < \ldots < t_N = Nh = T.
$$

Over an interval $[t_i, t_{i+1}]$,

$$
Y_{t_i}=E\bigg(Y_{t_{i+1}}+\int_{t_i}^{t_{i+1}}f(Y_u,Z_u)du\bigg|\mathcal{F}_{t_i}\bigg)
$$

and $\int Z_t dW_t$ is the martingale part of Y.

 200

Over an interval $[t_i, t_{i+1}]$,

$$
Y_{t_i}=E\bigg(Y_{t_{i+1}}+\int_{t_i}^{t_{i+1}}f(Y_u,Z_u)du\bigg|\mathcal{F}_t\bigg)
$$

and $\int Z_t dW_t$ is the martingale part of Y .

Approximating the integral (several possibilities : choose an integration rule) leads to time-discretization schemes : produces a sequence $(Y_i,Z_i)_i$ approximating $(Y_{t_i},Z_{t_i})_i.$

Initialization : define (Y_N, Z_N) . Backward computations : from $i = N - 1$ to $i = 0$ compute (Y_i, Z_i) , knowing (Y_{i+1}, Z_{i+1}) .

つくへ

 \rightarrow Euler schemes (rectangle rule).

$$
Y_{t_i}=E\bigg(Y_{t_{i+1}}+\int_{t_i}^{t_{i+1}}f(Y_u,Z_u)du\bigg|\mathcal{F}_t\bigg)
$$

becomes either

$$
Y_i = E\left(Y_{i+1} + f(Y_{i+1}, Z_{i+1})h\middle|\mathcal{F}_i\right)
$$

(explicit scheme, right-end point rule) or

$$
Y_i = E\left(Y_{i+1}\bigg|\mathcal{F}_i\right) + f(Y_i, Z_i)h
$$

(implicit scheme, left-end point rule).

What about Z_i ? Since $\int Z dW$ is the martingale part of Y,

$$
\left\langle W, Y \right\rangle_{t_i}^{t_{i+1}} = \int_{t_i}^{t_{i+1}} d \left\langle W, Y \right\rangle_t = \int_{t_i}^{t_{i+1}} Z_t dt
$$

so

$$
Z_{t_i} \approx E\left(\frac{1}{h}\int_{t_i}^{t_{i+1}} Z_t dt \Big| \mathcal{F}_i\right) \approx E\left(\frac{1}{h}(W_{t_{i+1}} - W_{t_i})(Y_{t_{i+1}} - Y_{t_i})\Big| \mathcal{F}_i\right)
$$

=
$$
E\left(\frac{\Delta W_{t_{i+1}}}{h} Y_{t_{i+1}} \Big| \mathcal{F}_i\right),
$$

which leads to setting

$$
Z_i = E\left(\frac{\Delta W_{t_{i+1}}}{h} Y_{i+1} \Big| \mathcal{F}_i\right)
$$

Euler schemes : explicit and implicit

Explicit scheme :

$$
Y_i = E\left(Y_{i+1} + f(Y_{i+1}, Z_{i+1})h | \mathcal{F}_i\right)
$$

$$
Z_i = E\left(\frac{\Delta W_{i+1}}{h} \left\{Y_{i+1} + f(Y_{i+1}, Z_{i+1})h\right\} | \mathcal{F}_i\right)
$$

Implicit scheme :

$$
Y_i = E\left(Y_{i+1} \middle| \mathcal{F}_i\right) + f(Y_i, Z_i)h
$$

$$
Z_i = E\left(\frac{\Delta W_{i+1}}{h} \left\{Y_{i+1} + 0\right\} \middle| \mathcal{F}_i\right)
$$

э

つくへ

Euler scheme(s) : well understood (to some extent ...) and well-behaved in the case of Lipschitz drivers f (moment estimates, regularity, etc).

We study the Euler schemes for BSDEs when the driver f is monotone and has polynomial growth in the Y variable.

Motivation : reaction-diffusion PDEs,

- FitzHugh–Nagumo equation,
- Allen–Cahn equation, ...

Typically the driver in these equations is a polynomial in y.

 Ω

The monotonicity condition

The monotonicity condition

つくへ

Linear growth \rightsquigarrow Gronwall \rightsquigarrow bounds. The solution cannot explode.

As soon as there is some superlinear growth (in y , in z , ...), no guarantee anymore. Need to add a condition on the structure of the driver.

"Monotonicity condition" : monotone decreasing.

Precisely, there exists $\mu \in \mathbb{R}$:

$$
\langle f(y',z)-f(y,z)|y'-y\rangle \leq \mu |y'-y|^2
$$

(can think of $\mu \leq 0$).

 Ω

Implicit scheme : converges as usual.

Explicit scheme : diverges in general.

 \rightarrow The time-discretization "breaks the structure"

For a better understanding, we studied the θ -schemes.

Euler schemes : theta, implicit and explicit

 θ -scheme :

$$
Y_i = E\left(Y_{i+1} + (1 - \theta)f(Y_{i+1}, Z_{i+1})h | \mathcal{F}_i\right) + \theta f(Y_i, Z_i)h
$$

$$
Z_i = E\left(\frac{\Delta W_{i+1}}{h} \left\{Y_{i+1} + (1 - \theta)f(Y_{i+1}, Z_{i+1})h\right\} | \mathcal{F}_i\right)
$$

- θ = degree of implicitness.
- $\theta = 1$: implicit scheme,
- $\theta = 0$: explicit scheme.

Findings. Main message of this talk.

Explicit scheme : diverges in general.

Implicit scheme : converges as usual.

 \rightarrow the time-discretization "breaks the structure".

For a better understanding, we studied the θ -schemes.

 $\theta \geq \frac{1}{2}$ $\frac{1}{2}$ (mostly-implicit) : scheme is *somehow stable*, and converges.

 $\theta = 1$ (pure implicit) : scheme is stable (and so converges).

 Ω

Comparison with ODEs.

The case of ODEs.

The case of SDEs.

The case of BSDEs.

FIGURE: Time step $h=1$.

 QQ

FIGURE: Time step $h=1$.

Arnaud LIONNET | [Numerical approximation of monotone BSDEs](#page-0-0)

FIGURE: Time step $h=1$.

FIGURE: Time step $h=1$.

 QQ

FIGURE: Time step $h=1$.

FIGURE: Time step h=0.25.

FIGURE: Time step h=0.25.

Comparison with ODEs.

The case of ODEs.

- Thresholds.
- Initial condition is a point : bounded.

The case of SDEs.

The case of BSDEs.

Comparison with ODEs.

The case of ODEs.

The case of SDEs.

- Initial condition is a point : bounded.
- Noise ΔW_t can throw the system out of the safe zone.

The case of BSDEs.

Why does the explicit scheme explode?

Comparison with ODEs.

The case of ODEs.

The case of SDEs.

The case of BSDEs.

- **•** Terminal condition is a distribution : unbounded.
- \bullet ODE component of the BSDE \rightsquigarrow explosion (conditional expectations don't help).

Recall the θ -scheme :

$$
Y_i = E\left(Y_{i+1} + (1 - \theta)f(Y_{i+1}, Z_{i+1})h | \mathcal{F}_i\right) + \theta f(Y_i, Z_i)h
$$

$$
Z_i = E\left(\frac{\Delta W_{i+1}}{h} \left\{Y_{i+1} + (1 - \theta)f(Y_{i+1}, Z_{i+1})h\right\} | \mathcal{F}_i\right)
$$

- θ = degree of implicitness. $\theta = 1$: implicit scheme,
- $\theta = 0$: explicit scheme.

Write $S_i = (Y_i, Z_i)$. In all generality, a scheme does $S_i = \Phi(S_{i+1})$.

Write $S_{t_i} = (Y_{t_i}, Z_{t_i})$ for the BSDE solution on the grid. BSDE dynamics : $S_{t_i} = \Psi(S_{t_{i+1}})$.

Global error :

$$
\operatorname{ERR}\left((Y_i, Z_i)_i, (Y_{t_i}, \overline{Z}_{t_i})_i\right)^2 = \max_{i=0...N} E\left[|Y_i - Y_{t_i}|^2\right] + E\left[\sum_{i=0}^{N-1} |Z_i - \overline{Z}_{t_i}|^2 h\right].
$$

Error at time t_i : $\epsilon_i =$ distance between $\mathcal{S}_i = (\mathcal{Y}_i, Z_i)$ and $\mathcal{S}_{t_i} = (\mathcal{Y}_{t_i}, Z_{t_i})$, i.e. between output of the scheme for time t_i and BSDE solution at t_i .

$$
S_i-S_{t_i}=\left(S_i-\widehat{S}_i\right)+\left(\widehat{S}_i-S_{t_i}\right)
$$

= $\underbrace{\Phi(S_{i+1})-\Phi(S_{t_{i+1}})}_{\text{error propagation}}+\underbrace{\Phi(S_{t_{i+1}})-\Psi(S_{t_{i+1}})}_{\text{one-step error}}$.

Distance between $S_i = \Phi(S_{i+1})$ and $\widehat{S}_i = \Phi(S_{t_{i+1}})$: propagation at time t_i of the error ϵ_{i+1} that existed already at time t_{i+1} , denoted by ρ_i .

Distance between $\widehat{S}_i = \Phi(S_{t_{i+1}})$ and $S_{t_i} = \Psi(S_{t_{i+1}})$: one-step time-discretization error $=$: $\tau_i.$

So we have

$$
\mathrm{dist}\Big(\mathbf{S}_i,\mathbf{S}_{t_i}\Big)=\epsilon_i\leq \rho_i+\tau_i\ .
$$

Stability estimate for the scheme : essentially says that

$$
\rho_i = \text{dist}\Big(\Phi(S_{i+1}), \Phi(S_{t_{i+1}})\Big) \leq e^{c h} \text{ dist}\Big(S_{i+1}, S_{t_{i+1}}\Big) + R_i^{\theta} = e^{c h} \epsilon_{i+1} + R_i^{\theta},
$$

where R_i^θ is a remainder term. $R_i^\theta=0$ corresponds to the usual stability estimate.

This gives

$$
\epsilon_i \leq e^{c h} \epsilon_{i+1} + R_i^{\theta} + \tau_i.
$$

Gronwall type estimation leads to (Fundamental Lemma)

$$
\operatorname{ERR}\Big((S_i)_i,(S_{t_i})_i\Big) \lesssim \mathsf{Err}(\mathsf{Term}.\mathsf{Cond}) + \sum_{i=0}^{N-1} \tau_i + \mathcal{R}^S,
$$

where $\mathcal{R}^{\mathcal{S}}=\sum_{i}R_{i}^{\theta}$ is the stability remainder.

$$
\operatorname{ERR}\Big((S_i)_i,(S_{t_i})_i\Big) \lesssim \mathsf{Err}(\mathsf{Term}.\mathsf{Cond}) + \sum_{i=0}^{N-1} \tau_i + \mathcal{R}^S
$$

Err(Term.Cond) + $\sum_{i=0}^{N-1} \tau_i$: similar to Lipschitz drivers. \lesssim ERR(X) + REG^F(Y, Z).

Stability remainder $\mathcal{R}^{\mathcal{S}} = \sum_i R_i^{\theta}$: due to superlinear growth, and scheme-specific.

.

 200

Our analysis shows that :

- For $\theta=1$ (implicit scheme) : $R_i^\theta=0.$ Hence the scheme is stable in the usual sense, and we have convergence.

- For $\theta\in[\frac{1}{2},1[$: $R_{i}^{\theta}\neq0$ but further estimation (using $\theta\geq\frac{1}{2}$ allows to show that $\mathcal{R}^S \to 0$ as $h \to 0$. $\frac{1}{2}$

- For $\theta = \frac{1}{2}$ $\frac{1}{2}$, and under further assumptions on f, we find higher-order estimates for $\mathcal{R}^\mathcal{S}$ as well as $\sum_{i=0}^{\mathcal{N}-1} \tau_i$, hence we have a higher-order scheme.

This analysis also allows us to study the convergence of a simple tamed explicit scheme (cf Lukasz's talk).

Some numerical simulations

FIGURE: Driver $f(y) = y - y^3$, term.cond. $g(x) = 1/(1 + e^x)$, X=BM. Time grid with $N = 10...70$. Expectations computed by regression on a basis of polynomials up to degree $K = 7$, with $M = 200k$ simulated paths.

つくへ

Some numerical simulations

FIGURE: Driver $f(y) = -y^3$, term.cond. $g(x) = x$, $X = gBM$ $(\mu = \sigma = \frac{1}{2})$ Time grid with $N = 30...90$. Expectations computed by regression on a basis of polynomials up to degree $K = 4$, wit[h](#page-35-0) $M = 100k$ simulat[ed](#page-35-0) [pat](#page-37-0)h[s.](#page-36-0) QQ

We study the time-discretization for BSDEs with monotone drivers.

Lipschitz/linear growth \rightsquigarrow Gronwall \rightsquigarrow bounds. Explosion cannot happen. BSDE and schemes well behaved. Superlinear growth : no guarantee. The discretization "breaks the structure". Explicit Euler scheme : unstable, explodes. Implicit Euler scheme : stable, converges.

General and abstract analysis of the global error : allows to easily study the convergence of time-discretization schemes. Study of θ -schemes. $\theta \geq \frac{1}{2} \Rightarrow$ convergence (but $\theta = 1$ more stable).

THANK YOU

FOR YOUR

ATTENTION

Arnaud LIONNET [Numerical approximation of monotone BSDEs](#page-0-0)

- 4 重 8 3 4 重 8

э

 Ω