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Summary of the talk

We consider the Euler schemes for BSDEs with a driver f that
is monotone with polynomial growth in Y .

Implicit scheme : good (converges).

Explicit : bad (explodes).

[Based on joint work with Gonçalo dos Reis and Lukasz
Szpruch.]
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BSDEs

{
dYt = −f (t,Yt ,Zt)dt + ZtdWt

YT = ξ.

Several connections, applications, points of view.

stochastic control

mathematical finance

a target/inverse problem for a controlled SDE

nonlinear expectations

a probabilistic representation for PDEs —backward
stochastic ODE.
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Connection between FBSDEs and PDEs.

Forward and backward SDE : for s ≤ t ≤ T ,
Xs = x

dXt = b(t,Xt)dt + σ(t,Xt)dWt

dYt = −f (t,Xt ,Yt ,Zt)dt + ZtdWt

YT = ξ = g(XT ).

PDE :  vt +
1

2
σ2vxx + bvx + f (t, x , v , vxσ) = 0

v(T , x) = g(x).

Connection : v(t,Xt) = Yt and (vxσ)(t,Xt) = ZT .
Nonlinear Feynman–Kac formula v(s, x) = Ys .
Generalization of the method of characteristics to 2nd order,
parabolic PDEs.
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BSDE : backward stochastic ODE.

The BSDE can be re-writen

Yt = E

(
ξ +

∫ T

t

f (Yu,Zu)du

∣∣∣∣Ft

)
where∫
ZdW = martingale part of the semimartingale Y .

Two things taking place continuously :

ODE dynamics : ξ +
∫ T

t
f (Yu)du (backward in time)

conditional expectation.
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Numerical approximation of BSDEs

Discretize the time interval [0,T ] : let h = T/N and

0 = t0 < t1 = h < t2 = 2h < . . . < tN = Nh = T .

Over an interval [ti , ti+1],

Yti = E

(
Yti+1

+

∫ ti+1

ti

f (Yu,Zu)du

∣∣∣∣Fti

)
and

∫
ZtdWt is the martingale part of Y .
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Numerical approximation of BSDEs

Over an interval [ti , ti+1],

Yti = E

(
Yti+1

+

∫ ti+1

ti

f (Yu,Zu)du
∣∣∣Ft

)
and

∫
ZtdWt is the martingale part of Y .

Approximating the integral (several possibilities : choose an
integration rule) leads to time-discretization schemes :
produces a sequence (Yi ,Zi)i approximating (Yti ,Zti )i .

Initialization : define (YN ,ZN).
Backward computations : from i = N − 1 to i = 0 compute
(Yi ,Zi), knowing (Yi+1,Zi+1).
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Numerical approximation of BSDEs

→ Euler schemes (rectangle rule).

Yti = E

(
Yti+1

+

∫ ti+1

ti

f (Yu,Zu)du
∣∣∣Ft

)
becomes either

Yi = E
(
Yi+1 + f (Yi+1,Zi+1)h

∣∣∣Fi

)
(explicit scheme, right-end point rule)
or

Yi = E
(
Yi+1

∣∣∣Fi

)
+ f (Yi ,Zi)h

(implicit scheme, left-end point rule).
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Numerical approximation of BSDEs

What about Zi ? Since
∫
ZdW is the martingale part of Y,

〈W ,Y 〉ti+1

ti
=

∫ ti+1

ti

d 〈W ,Y 〉t =

∫ ti+1

ti

Ztdt

so

Zti ≈ E

(
1

h

∫ ti+1

ti

Ztdt
∣∣∣Fi

)
≈ E

(
1

h
(Wti+1

−Wti )(Yti+1
− Yti )

∣∣∣Fi

)
= E

(
∆Wti+1

h
Yti+1

∣∣∣Fi

)
,

which leads to setting

Zi = E

(
∆Wti+1

h
Yi+1

∣∣∣Fi

)
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Euler schemes : explicit and implicit

Explicit scheme :

Yi = E
(
Yi+1 + f (Yi+1,Zi+1)h

∣∣∣Fi

)
Zi = E

(
∆Wi+1

h

{
Yi+1 + f (Yi+1,Zi+1)h

}∣∣∣∣Fi

)

Implicit scheme :

Yi = E
(
Yi+1

∣∣∣Fi

)
+ f (Yi ,Zi)h

Zi = E

(
∆Wi+1

h

{
Yi+1 + 0

}∣∣∣∣Fi

)
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Analytic framework

Euler scheme(s) : well understood (to some extent ...) and
well-behaved in the case of Lipschitz drivers f (moment
estimates, regularity, etc).

We study the Euler schemes for BSDEs when the driver f is
monotone and has polynomial growth in the Y variable.

Motivation : reaction-diffusion PDEs,

FitzHugh–Nagumo equation,

Allen–Cahn equation, . . .

Typically the driver in these equations is a polynomial in y .
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The monotonicity condition
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The monotonicity condition
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The monotonicity condition

Linear growth  Gronwall  bounds. The solution cannot
explode.

As soon as there is some superlinear growth (in y , in z , ...), no
guarantee anymore.
Need to add a condition on the structure of the driver.

“Monotonicity condition” : monotone decreasing.

Precisely, there exists µ ∈ R :〈
f (y ′, z)− f (y , z)

∣∣y ′ − y
〉
≤ µ|y ′ − y |2

(can think of µ ≤ 0).
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Findings. Main message of this talk.

Implicit scheme : converges as usual.

Explicit scheme : diverges in general.

→ The time-discretization “breaks the structure”.

For a better understanding, we studied the θ-schemes.
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Euler schemes : theta, implicit and explicit

θ-scheme :

Yi = E
(
Yi+1 + (1− θ)f (Yi+1,Zi+1)h

∣∣∣Fi

)
+ θf (Yi ,Zi)h

Zi = E

(
∆Wi+1

h

{
Yi+1 + (1− θ)f (Yi+1,Zi+1)h

}∣∣∣∣Fi

)

θ = degree of implicitness.
θ = 1 : implicit scheme,
θ = 0 : explicit scheme.
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Findings. Main message of this talk.

Explicit scheme : diverges in general.

Implicit scheme : converges as usual.

→ the time-discretization “breaks the structure”.

For a better understanding, we studied the θ-schemes.

θ ≥ 1
2

(mostly-implicit) : scheme is somehow stable, and
converges.

θ = 1 (pure implicit) : scheme is stable (and so converges).

Arnaud LIONNET Numerical approximation of monotone BSDEs



Why does the explicit scheme explode ?

Comparison with ODEs.

The case of ODEs.

The case of SDEs.

The case of BSDEs.
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Explicit Euler scheme for a superlinear ODE
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Figure: Time step h=1.
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Explicit Euler scheme for a superlinear ODE
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Explicit Euler scheme for a superlinear ODE
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Explicit Euler scheme for a superlinear ODE
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Explicit Euler scheme for a superlinear ODE
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Explicit Euler scheme for a superlinear ODE
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Figure: Time step h=0.25.
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Explicit Euler scheme for a superlinear ODE
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Why does the explicit scheme explode ?

Comparison with ODEs.

The case of ODEs.

Thresholds.

Initial condition is a point : bounded.

The case of SDEs.

The case of BSDEs.
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Why does the explicit scheme explode ?

Comparison with ODEs.

The case of ODEs.

The case of SDEs.

Initial condition is a point : bounded.

Noise ∆Wt can throw the system out of the safe zone.

The case of BSDEs.
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Why does the explicit scheme explode ?

Comparison with ODEs.

The case of ODEs.

The case of SDEs.

The case of BSDEs.

Terminal condition is a distribution : unbounded.

ODE component of the BSDE  explosion (conditional
expectations don’t help).
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Convergence for the mostly implicit schemes

Recall the θ-scheme :

Yi = E
(
Yi+1 + (1− θ)f (Yi+1,Zi+1)h

∣∣∣Fi

)
+ θf (Yi ,Zi)h

Zi = E

(
∆Wi+1

h

{
Yi+1 + (1− θ)f (Yi+1,Zi+1)h

}∣∣∣∣Fi

)

θ = degree of implicitness.
θ = 1 : implicit scheme,
θ = 0 : explicit scheme.

Write Si = (Yi ,Zi).
In all generality, a scheme does Si = Φ(Si+1).
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Convergence for the mostly implicit schemes

Write Sti = (Yti ,Z ti ) for the BSDE solution on the grid.
BSDE dynamics : Sti = Ψ(Sti+1

).

Global error :

ERR
(

(Yi ,Zi)i , (Yti ,Z ti )i
)2

= max
i=0...N

E
[
|Yi − Yti |2

]
+ E

[ N−1∑
i=0

|Zi − Z ti |2h
]
.

Error at time ti :
εi = distance between Si = (Yi ,Zi) and Sti = (Yti ,Z ti ), i.e.
between output of the scheme for time ti and BSDE solution
at ti .
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Convergence for the mostly implicit schemes

Si − Sti =
(
Si − Ŝi

)
+
(
Ŝi − Sti

)
= Φ(Si+1)− Φ(Sti+1

)︸ ︷︷ ︸
error propagation

+ Φ(Sti+1
)−Ψ(Sti+1

)︸ ︷︷ ︸
one-step error

.

Distance between Si = Φ(Si+1) and Ŝi = Φ(Sti+1
) :

propagation at time ti of the error εi+1 that existed already at
time ti+1, denoted by ρi .

Distance between Ŝi = Φ(Sti+1
) and Sti = Ψ(Sti+1

) :
one-step time-discretization error = : τi .

So we have

dist
(
Si , Sti

)
= εi ≤ ρi + τi .
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Convergence for the mostly implicit schemes

Stability estimate for the scheme : essentially says that

ρi = dist
(

Φ(Si+1),Φ(Sti+1
)
)

≤ ec h dist
(
Si+1, Sti+1

)
+ Rθ

i

= ec hεi+1 + Rθ
i ,

where Rθ
i is a remainder term. Rθ

i = 0 corresponds to the
usual stability estimate.
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Convergence for the mostly implicit schemes

This gives

εi ≤ ec hεi+1 + Rθ
i + τi .

Gronwall type estimation leads to (Fundamental Lemma)

ERR
(

(Si)i , (Sti )i
)
. Err(Term.Cond) +

N−1∑
i=0

τi +RS ,

where RS =
∑

i R
θ
i is the stability remainder.
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Convergence for the mostly implicit schemes

ERR
(

(Si)i , (Sti )i
)
. Err(Term.Cond) +

N−1∑
i=0

τi +RS .

Err(Term.Cond) +
∑N−1

i=0 τi : similar to Lipschitz drivers.
. ERR(X ) + REGf (Y ,Z ).

Stability remainder RS =
∑

i R
θ
i : due to superlinear growth,

and scheme-specific.

Arnaud LIONNET Numerical approximation of monotone BSDEs



Convergence for the mostly implicit schemes

Our analysis shows that :

- For θ = 1 (implicit scheme) : Rθ
i = 0. Hence the scheme is

stable in the usual sense, and we have convergence.

- For θ ∈ [1
2
, 1[ : Rθ

i 6= 0 but further estimation (using θ ≥ 1
2
)

allows to show that RS → 0 as h→ 0.

- For θ = 1
2
, and under further assumptions on f , we find

higher-order estimates for RS as well as
∑N−1

i=0 τi , hence we
have a higher-order scheme.

This analysis also allows us to study the convergence of a
simple tamed explicit scheme (cf Lukasz’s talk).
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Some numerical simulations
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Implicit scheme

Linear fit, slope = −0.96141

Explicit scheme

Linear fit, slope=−0.99073

Trapezoidal scheme

Linear fit, slope=−0.029893

Figure: Driver f (y) = y − y3, term.cond. g(x) = 1/(1 + ex ), X=BM. Time grid
with N = 10 . . . 70. Expectations computed by regression on a basis of polynomials up
to degree K = 7, with M = 200k simulated paths.
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Some numerical simulations
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implicit scheme

linear fit, slope=−0.49995

Figure: Driver f (y) = −y3, term.cond. g(x) = x , X=gBM (µ = σ = 1
2
) Time

grid with N = 30 . . . 90. Expectations computed by regression on a basis of
polynomials up to degree K = 4, with M = 100k simulated paths.
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Summary

We study the time-discretization for BSDEs with monotone
drivers.

Lipschitz/linear growth  Gronwall  bounds. Explosion
cannot happen. BSDE and schemes well behaved.
Superlinear growth : no guarantee. The discretization “breaks
the structure”.
Explicit Euler scheme : unstable, explodes.
Implicit Euler scheme : stable, converges.

General and abstract analysis of the global error : allows to
easily study the convergence of time-discretization schemes.
Study of θ-schemes. θ ≥ 1

2
⇒ convergence (but θ = 1 more

stable).
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That’s all folks ...

THANK YOU

FOR YOUR

ATTENTION
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