BSDE REPRESENTATION FOR STOCHASTIC CONTROL PROBLEMS WITH CONTROLLED INTENSITY

Andrea COSSO

Université Paris Diderot, LPMA

joint work with Sébastien CHOUKROUN Université Paris Diderot, LPMA

July 9th, 2014

Second Young researchers meeting on BSDEs, Numerics and Finance

Introduction

2 Randomization of the control

3 BSDE with partially zero diffusive component and nonlinear Feynman-Kac formula

1 Introduction

2 Randomization of the control

3 BSDE with partially zero diffusive component and nonlinear Feynman-Kac formula

Problem

• Hamilton-Jacobi-Bellman equation with controlled intensity:

$$\frac{\partial v}{\partial t} + \sup_{\mathbf{a} \in A} \left[b(x, \mathbf{a}) . D_x v + \frac{1}{2} \text{tr} \left(\sigma \sigma^{\mathsf{T}}(x, \mathbf{a}) D_x^2 v \right) + f(x, \mathbf{a}) \right]$$

$$+ \int_E \left(v(t, x + \beta(x, \mathbf{a}, e)) - v(t, x) - \beta(x, \mathbf{a}, e) . D_x v(t, x) \right) \lambda(\mathbf{a}, de) = 0,$$

on $[0,T) \times \mathbb{R}^d$, with terminal condition

$$v(T,x) = g(x), \qquad x \in \mathbb{R}^d.$$

- \blacktriangleright Existence and Uniqueness of a viscosity solution v.
- ► Nonlinear Feynman-Kac formula:

$$v(t,x) \stackrel{?}{=} Y_t^{t,x}$$
.

How to solve it: two approaches

- Second-order BSDE with jumps (2BSDEJs):
- (i) M. N. Kazi-Tani, D. Possamaï, C. Zhou (2014) Second Order BSDEs with Jumps: Formulation and Uniqueness, preprint arXiv.
- (ii) M. N. Kazi-Tani, D. Possamaï, C. Zhou (2014) Second Order BSDEs with Jumps: Existence and probabilistic representation for fully-nonlinear PIDEs, preprint arXiv.

• Randomization of the control:

I. Kharroubi and H. Pham (2012) Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs, to appear on Annals of Probability.

► Main goals:

- Try to extend the randomization of the control method to get existence and the nonlinear Feynman-Kac formula.
- Comparison theorem: implement the nonlocal version of Jensen-Ishii's lemma of Barles & Imbert.

Motivation

• Model uncertainty:

$$\frac{\partial v}{\partial t} + \sup_{(\mathbf{b}, \mathbf{c}, \mathbf{F}) \in \Theta} \left[\mathbf{b}.D_x v + \frac{1}{2} \text{tr} \left(\mathbf{c} D_x^2 v \right) \right]$$
$$+ \int_F \left(v(t, x + z) - v(t, x) - D_x v(t, x).z \mathbf{1}_{\{|z| \le 1\}} \right) \mathbf{F}(dz) = 0,$$

on $[0,T)\times\mathbb{R}^d$, with terminal condition

$$v(T, x) = g(x), \qquad x \in \mathbb{R}^d.$$

 Θ denotes a set of Lévy triplets (b, c, F).

 \blacktriangleright The unique viscosity solution v is represented as follows:

$$v(t,x) = \mathcal{E}(g(x+\mathcal{X}_t)),$$

where \mathcal{X} is a nonlinear Lévy process under the nonlinear expectation $\mathcal{E}(\cdot)$.

Literature review

- G. Barles and C. Imbert (2008) Second-order elliptic integro-differential equations: viscosity solutions' theory revisited, Annales de l'Institut Henri Poincaré.
- M. Hu and S. Peng (2009) G-Lévy Processes under Sublinear Expectations, preprint arXiv.
- M. N. Kazi-Tani, D. Possamaï, C. Zhou (2014) Second Order BSDEs with Jumps: Formulation and Uniqueness, preprint arXiv.
- M. N. Kazi-Tani, D. Possamaï, C. Zhou (2014) Second Order BSDEs with Jumps: Existence and probabilistic representation for fully-nonlinear PIDEs, preprint arXiv.
- I. Kharroubi and H. Pham (2012) Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDEs, to appear on Annals of Probability.
- A. Neufeld and M. Nutz (2014) Nonlinear Lévy Processes and their Characteristics, preprint arXiv.

Stochastic control representation: intuition

We expect that v has the stochastic control representation

$$v(t,x) = \sup_{\alpha \in \mathcal{A}} \mathbb{E}^{\alpha} \left[\int_{t}^{T} f(X_{s}^{t,x,\alpha}, \alpha_{s}) ds + g(X_{T}^{t,x,\alpha}) \right],$$

where $X^{t,x,\alpha}$ has the controlled dynamics on $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P}^{\alpha})$

$$dX_s^{\alpha} = b(X_s^{\alpha}, \alpha_s)ds + \sigma(X_s^{\alpha}, \alpha_s)dW_s + \int_E \beta(X_{s^{-}}^{\alpha}, \alpha_s, e)\tilde{\pi}(ds, de)$$

$$X_t^{\alpha} = x$$

with

$$\tilde{\pi}(dt, de) = \pi(dt, de) - \lambda(\alpha_t, de)dt$$

the compensated martingale measure of π .

▶ Randomization of the control will be developed having in mind this stochastic control representation.

Introduction

2 Randomization of the control

3 BSDE with partially zero diffusive component and nonlinear Feynman-Kac formula

Forward process

• Randomization by an independent Brownian motion B mapped on $A \subset \mathbb{R}^q$ by means of a C^2 surjection $h \colon \mathbb{R}^q \to A$:

$$X_{s} = x + \int_{t}^{s} b(X_{r}, \underline{I_{r}}) dr + \int_{t}^{s} \sigma(X_{r}, \underline{I_{r}}) dW_{r}$$
$$+ \int_{t}^{s} \int_{E} \beta(X_{r^{-}}, \underline{I_{r}}, e) \tilde{\pi}(dr, de),$$
$$I_{s} = h(a + B_{s} - B_{t}), \qquad t \leq s \leq T,$$

where $\tilde{\pi}(dr, de) = \pi(dr, de) - \lambda(I_r, de)dr$ is the compensated martingale measure of π .

► Main issues:

- Why do we randomize with a Brownian motion B?
- Existence and uniqueness of $(X^{t,x,a}, I^{t,a})$?

Brownian randomization

• Poisson random measure: in Kharroubi & Pham an independent Poisson random measure μ on $\mathbb{R}_+ \times A$ is used to randomize the control. No surjection is needed.

► Martingale representation theorem

- Unlike Kharroubi & Pham, we have dependence between B (or μ) and π through the compensator of π .
- However, B is **orthogonal** to π , since B is a continuous martingale.
- \Rightarrow Martingale representation for (W, B, π) , while not clear for (W, μ, π) due to the dependence between μ and π .

Wellposedness of the SDE

- Nonstandard SDE: The jump part of the driving factors is not given, but depends on the solution via its intensity.
 - J. Jacod and P. Protter (1982) Quelques remarques sur un nouveau type d'équations différentielles stochastiques, Séminaire de Probabilités XVI.
- Dominated case $\lambda(a, de) = m(a)\bar{\lambda}(de)$: we can solve the forward SDE bringing it back to a standard SDE, via a change of intensity "à la Girsanov".

▶ Nondominated case

- (1) We solve first the SDE for the process $I^{t,a}$.
- (2) Then, we construct a probability measure $\mathbb{P}^{t,a}$ on (Ω, \mathcal{F}) such that the random measure $\pi(dt, de)$ admits $\lambda(I_s^{t,a}, de)ds$ as compensator.
- (3) Finally, we solve by standard methods the SDE for $X^{t,x,a}$.

Introduction

2 Randomization of the control

3 BSDE with partially zero diffusive component and nonlinear Feynman-Kac formula

BSDE with partially zero diffusive component

• **BSDE:** for any $(t, x, a) \in [0, T] \times \mathbb{R}^d \times \mathbb{R}^q$,

$$Y_{s} = g(X_{T}^{t,x,a}) + \int_{s}^{T} f(X_{r}^{t,x,a}, I_{r}^{t,a}) dr + K_{T} - K_{s} - \int_{s}^{T} Z_{r} dW_{r}$$
$$- \int_{s}^{T} V_{r} dB_{r} - \int_{s}^{T} \int_{E} U_{r}(e) \tilde{\pi}(dr, de), \qquad t \leq s \leq T, \, \mathbb{P}^{t,a} \, a.s.$$

and

$$V_s = 0 ds \otimes d\mathbb{P}^{t,a} a.e.$$

► Main issues:

- We look for a solution for which the *B*-component resulting from the martingale representation theorem is zero.
- Existence is guaranteed if we add the increasing process K.
- Uniqueness is guaranteed if we look for the **minimal** solution (Y, Z, V, U, K), i.e., for any solution $(\bar{Y}, \bar{Z}, \bar{V}, \bar{U}, \bar{K})$ we must have $Y \leq \bar{Y}$.

Minimal solution: existence

• Penalized BSDE: for any $n \in \mathbb{N}$, $(t, x, a) \in [0, T] \times \mathbb{R}^d \times \mathbb{R}^q$,

$$Y_{s}^{n} = g(X_{T}^{t,x,a}) + \int_{s}^{T} f(X_{r}^{t,x,a}, I_{r}^{t,a}) dr + K_{T}^{n} - K_{s}^{n} - \int_{s}^{T} Z_{r}^{n} dW_{r}$$
$$- \int_{s}^{T} V_{r}^{n} dB_{r} - \int_{s}^{T} \int_{E} U_{r}^{n}(e) \tilde{\pi}(dr, de), \quad t \leq s \leq T, \, \mathbb{P}^{t,a} \, a.s.$$

where

$$K_s^n = n \int_t^s |V_r^n| dr, \qquad t \le s \le T.$$
 • Wellposedness is based, as usual, on the martingale

- representation theorem and on a fixed point argument.

 Monotonicity: from the comparison theorem for BS
- \bullet Monotonicity: from the $comparison\ theorem$ for BSDEs with jumps we have

$$Y^0 \leq \cdots \leq Y^n \nearrow Y \leq \bar{Y}, \quad \forall n, \text{ for any other solution } \bar{Y}.$$

• Uniform estimates for $(Z^n, V^n, U^n, K^n)_n$ allow to obtain weak convergence of these components, so to pass to the limit in the BSDE, and to end up with the *minimal solution*.

Viscosity property of the penalized BSDE

• Penalized HJB equation

$$\begin{split} \frac{\partial v_n^h}{\partial t} + b(x,h(a)).D_x v_n^h + \frac{1}{2} \mathrm{tr} \big(\sigma \sigma^\intercal(x,h(a)) D_x^2 v_n^h \big) + f(x,h(a)) \\ + \int_E \big[v_n^h(t,x+\beta(x,h(a),e)) - v_n^h(t,x) \\ -\beta(x,h(a),e).D_x v_n^h(t,x) \big] \lambda(h(a),de) \\ + \frac{1}{2} \mathrm{tr} \big(D_a^2 v_n^h(t,x,a) \big) + n \big| D_a v_n^h(t,x,a) \big| = 0, \end{split}$$

on $[0,T) \times \mathbb{R}^d \times \mathbb{R}^q$, with terminal condition

$$v_n^h(T, x, a) = g(x), \qquad (x, a) \in \mathbb{R}^d \times \mathbb{R}^q.$$

▶ Nonlinear Feynman-Kac formula: the unique continuous viscosity solution, satisfying a linear growth condition, is given by

$$v_n^h(t,x,a) \ := \ Y_t^{n,t,x,h(a)}, \qquad (t,x,a) \in [0,T] \times \mathbb{R}^d \times \mathbb{R}^q,$$

Viscosity property of the BSDE

- $Y_t^{n,t,x,h(a)} = v_n^h(t,x,a) \nearrow v(t,x,a) = Y_t^{t,x,a}.$
 - v does not depend on a, but only on (t, x).
- Existence: v is a (discontinuous) viscosity solution to the HJB equation. The result follows from:
 - the viscosity property of v_n^h
 - the convergence $v_n^h \nearrow v$ as $n \to \infty$
 - stability arguments for viscosity solutions.
- Uniqueness: v is the unique viscosity solution to the HJB equation, satisfying a linear growth condition.
 - The result follows from the *comparison theorem*, which is proved relying on the nonlocal version of Jensen-Ishii's lemma of Barles & Imbert.

Conclusion

- ▶ Study of a class of Hamilton-Jacobi-Bellman equations with:
 - Controlled diffusion coefficient; possibly degenerate.
 - Controlled intensity; possibly nondominated.
- ▶ Introduction of a class of BSDEs with partially zero diffusive component which provides:
 - Existence of a viscosity solution.
 - Nonlinear Feynman-Kac formula.
- ► Comparison theorem and uniqueness.

THANK YOU!