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Optimal position closure

Case study: Sell x shares of Adidas within T minutes using market orders.

Assumption (Almgren&Chriss):

Smid
t − S real

t = ηz

z : amount sold at time t
η: price impact factor
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Stochastic Liquidity
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Optimal position closure

Case study: Sell x shares of Adidas within T seconds using market orders.

Assumption (Almgren&Chriss):

Smid
t − S real

t = ηtz

z : amount sold at time t
(ηt): price impact process
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Optimal position closure

Case study: Sell x shares of Adidas within T seconds using market orders.

Assumption (Almgren&Chriss):

Smid
t − S real

t = ηtz
p−1

z : amount sold at time t
(ηt): price impact process, p > 1: shape parameter

Stefan Ankirchner, Monique Jeanblanc, Thomas Kruse Singular BSDEs and optimal trade execution



The model: Trading rates determine remaining position

I T <∞: time horizon

I x ∈ R: initial position

I Xt : position size at time t ∈ [0,T ]

I Ẋt : trading rate (Ẋ ≥ 0: buying, Ẋ ≤ 0: selling)

Xt = x +

∫ t

0

Ẋsds

I Constraint: XT = 0
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The Model: Stochastic liquidity

I Brownian basis: (Ω,F ,P, (Ft), (Wt))

I S = Smid: uninfluenced mid-market price (a martingale)

I (ηt)t∈[0,T ]: (positive) price impact process

I p > 1: shape parameter of the order book (q its Hölder conjugate)

I If Ẋt ≥ 0, the realized price is given by

S real
t = St + ηtẊ

p−1
t

I In general: S real
t = St + ηtsgn(Ẋt)|Ẋt |p−1
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I If Ẋt ≥ 0, the realized price is given by

S real
t = St + ηtẊ
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Optimal position closure

I Expected costs:

E

[∫ T

0

S real
t Ẋtdt

]
= −Smid

0 x + E

[∫ T

0

ηt |Ẋt |pdt

]

I Additive risk functional:

E

[∫ T

0

γt |Xt |pdt

]
, with e.g. γt = const or γt = λ(Smid

t )

I Optimal liquidation problem:

E

[∫ T

0

(
ηt |Ẋt |p + γt |Xt |p

)
dt

]
−→ min

X0=x,XT =0
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ηt |Ẋt |p + γt |Xt |p

)
dt

]
−→ min

X0=x,XT =0

Stefan Ankirchner, Monique Jeanblanc, Thomas Kruse Singular BSDEs and optimal trade execution



Optimal position closure

I Expected costs:

E

[∫ T

0

S real
t Ẋtdt
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Our aim & related literature

I We aim at providing a purely probabilistic solution of the control
problem

I Characterize the optimal control by means of a BSDE with singular
terminal condition

I Schied 2013: Solves a variant of this problem in a Markovian
framework using superprocesses

I Graewe, Horst, Séré 2013: Allow for jumps in the state process X
and show smoothness of the value function in a Markovian
framework

I Graewe, Horst, Qiu 2013: Analyze both Markovian and
non-Markovian dependence of the coefficients by means of BSPDEs
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A maximum principle

v(t, x) = ess inf
X∈A0(t,x)

E

[∫ T

t

(
ηs |Ẋs |p + γs |Xs |p

)
ds
∣∣Ft

]
(1)

Proposition (Maximum Principle)
Let X ∈ A0(t, x) such that

Ms = ηs |Ẋs |p−1 +

∫ s

t

γr |Xr |p−1dr

is a martingale. Then X is optimal in (1).
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A maximum principle

v(t, x) = inf
X∈A0(t,x)

E

[∫ T

t

(
ηs |Ẋs |p + γs |Xs |p

)
ds
∣∣Ft

]
(2)

Proposition (Maximum Principle)
Let X ∈ A0(t, x), i.e.

dXs = Ẋsds, Xt = x & XT = 0

such that

Ms = ηs |Ẋs |p−1 +

∫ s

t

γr |Xr |p−1dr

is a martingale. Then X is optimal in (2).
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Derivation of the BSDE

v(t, x) = ess inf
X∈A0(t,x)

E

[∫ T

t

(
ηs |Ẋs |p + γs |Xs |p

)
ds
∣∣Ft

]

I The value function is explicit in the x variable:

v(t, x) = Yt |x |p

for some coefficient process Y .

I The maximum principle implies:

dYt =

(
(p − 1)

Y q
t

ηq−1
t

− γt
)

dt + ZtdWt

I Terminal constraint leads to singular terminal condition: YT =∞
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BSDEs with singular terminal condition

So far only considered by Popier 2006, 2007

dYt =

(
(p − 1)

Y q
t

ηq−1
t

− γt
)

dt + ZtdWt (3)

Definition
(Y ,Z ) is a solution of the BSDE (3) with singular terminal condition
YT =∞ if it satisfies

(i) for all 0 ≤ s ≤ t < T :

Ys = Yt −
∫ t

s

(
(p − 1)

Y q
r

ηq−1
r
− γr

)
dr −

∫ t

s
ZrdWr ;

(ii) lim inft↗T Yt =∞, a.s.

(iii) for all 0 ≤ t < T : E
[
sup0≤s≤t |Ys |2 +

∫ t

0
|Zr |2dr

]
<∞;
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Integrability Assumptions and Approximation

I For the remainder of the talk we assume that η satisfies

E

∫ T

0

1

ηq−1
t

dt <∞, E

∫ T

0

η2
t dt <∞

and that γ satisfies

E

∫ T

0

γ2
t dt <∞

I Approximation

dY L
t =

(
(p − 1)

(Y L
t )q

ηq−1
t

− γt
)

dt + ZL
t dWt

Y L
T = L
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Existence and Minimality

Proposition
There exists a solution (Y L,ZL). Y L is bounded from above

Y L
t ≤

1

(T − t)p
E

[∫ T

t

(ηs + (T − s)pγs)ds

∣∣∣∣∣Ft

]
.

Existence also follows from Briand, Delyon, Hu, Pardoux, Stoica 2003

Theorem
There exists a process (Y ,Z ) such that for every t < T and as L↗∞

I Y L
t ↗ Yt a.s.

I ZL → Z in L2(Ω× [0, t]).

The pair (Y ,Z ) is the minimal solution to (3) with singular terminal
condition YT =∞.
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Optimal Controls - Penalization

Consider the unconstrained minimization problem

vL(0, x) = inf
X∈A(0,x)

E

[∫ T

0

(
ηs |Ẋs |p + γs |Xs |p

)
ds + L|XT |p

]
(4)

Proposition
The control

X L
t = xe

−
∫ t

0

(
YL
s

ηs

)q−1

ds

is optimal in (4) and vL(0, x) = Y L
0 |x |p.
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Optimal Controls

Theorem
The control

Xt = xe−
∫ t

0 ( Ys
ηs

)q−1
ds

belongs to A0(0, x) and is optimal in (1). Moreover, v(t, x) = Yt |x |p.

Proof
Define Mt = pηt |Ẋt |p−1 +

∫ t

0
pγs |Xs |p−1ds. Then dMt = X p−1

t ZtdWt .
Hence M is a nonnegative, local martingale on [0,T ). In particular M
converges almost surely for t ↗ T . This implies

0 ≤ Xt =

(
Mt − p

∫ t

0
γsX p−1

s ds

pYt

)q−1

≤
(

Mt

pYt

)q−1

→ 0

a.s. for t ↗ T
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Processes with uncorrelated multiplicative increments

Definition
η has uncorrelated multiplicative increments (umi) if

E

[
ηt
ηs

∣∣Fs

]
= E

[
ηt
ηs

]
for all s ≤ t < T .

Examples

I η is deterministic

I η is a martingale

I dηt = µ(t)ηtdt + σ(t, ηt)dWt

I ηt = eZt where Z is a Lévy process
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umi processes ↔ deterministic controls

Assume γ = 0.

Proposition
Suppose that η has umi, then

Yt =
1(∫ T

t
1

E [ηs |Ft ]q−1 ds
)p−1

is the minimal solution to (3) with singular terminal condition. The
deterministic control

Xt = x
1∫ T

0
1

E [ηs ]q−1 ds

∫ T

t

1

E [ηs ]q−1
ds

is optimal in (1). In particular, if p = 2, then Ẋt = −c 1
E [ηt ]

.

Vice versa, assume that the optimal control Xt = xe−
∫ t

0 ( Ys
ηs

)q−1
ds is

deterministic. Then η has umi.
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Relaxing the liquidation constraint

Consider

inf
X∈A(0,x)

E

[∫ T

0

(
ηs |Ẋs |p + γs |Xs |p

)
ds + ξ|XT |p

]
(5)

where ξ is nonnegative and FT -measurable with P[ξ =∞] > 0.

Examples

I binding liquidation: ξ =∞
I excepted scenarios: ξ =∞1A (e.g. A = {

∫ T

0
ηtdt ≤ k})
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Relaxing the liquidation constraint

Associated BSDE

dYt =

(
(p − 1)

Y q
t

ηq−1
t

− γt
)

dt + ZtdWt , YT = ξ (6)

Theorem
There exists a minimal supersolution Y (lim inft↗T Yt ≥ ξ ) to (6). The
strategy

Xt = xe−
∫ t

0 ( Ys
ηs

)q−1
ds

is optimal in the relaxed liquidation problem (5).
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Position targeting & directional views

Consider

v(x) = inf
X∈Ã0(0,x)

E

[∫ T

0

((
Su + ηuẊu

)
Ẋu + γu|Xu|2

)
du

]
, (7)

where S is a semimartingale.

Let Y be the minimal solution to

dYt =

(
Y 2
t

ηt
− γt

)
dt + ZtdWt , YT =∞

and define

Ht = exp

(
−
∫ t

0

Ys

ηs
ds

)
, Ut = −1

2
E

[∫ T

t

Hu

Ht
dSu

∣∣Ft

]
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Position targeting & directional views

Proposition
The strategy X ∈ Ã0(0, x) solving the ODE

Ẋt = − 1

ηt
(Ut + YtXt)

is optimal in (7). The value function is given by

v(x) = Y0x2 + (2U0 − S0)x − E

[∫ T

0

U2
s

ηs
ds

]
.
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Position targeting & directional views

Consider

v(x) = inf
X∈Aλ(0,x)

E

[∫ T

0

((
Su + ηẊu

)
Ẋu

)
ds

]
, (8)

where XT =
∫ T

0
λsds and S is a martingale.

Corollary
The strategy solving the ODE

Ẋt = − 1

T − t

(
Xt − E

[∫ T

0

λsds

∣∣∣∣∣Ft

])

is optimal in (8).
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Thank you!
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