BSDEs with singular terminal condition and applications to optimal trade execution

Thomas Kruse

based on joint work with Stefan Ankirchner and Monique Jeanblanc

Young Researchers Meeting on BSDEs, Numerics and Finance July 7, 2014 Bordeaux

. Financial support from the French Banking Federation through the Chaire Markets in Transition is gratefully acknowledged.

メロメ メ御き メ君き メ君き

Case study: Sell x shares of Adidas within T minutes using market orders.

∢ 重→

 \leftarrow

G

Case study: Sell x shares of Adidas within T minutes using market orders.

 $\leftarrow \Xi \rightarrow$

 \leftarrow

G

Case study: Sell x shares of Adidas within T minutes using market orders.

Assumption (Almgren&Chriss):

$$
S_t^{\text{mid}} - S_t^{\text{real}} = \eta z
$$

- z : amount sold at time t
- η : price impact factor

 \leftarrow \Box

(Bin)

つへへ

Stochastic Liquidity

Stefan Ankirchner, Monique Jeanblanc, Thomas Kruse [Singular BSDEs and optimal trade execution](#page-0-0)

 \leftarrow \Box \rightarrow

 \mathcal{A}

医尿管区

Ξ.

目

Case study: Sell x shares of Adidas within T seconds using market orders.

Assumption (Almgren&Chriss):

$$
S_t^{\text{mid}} - S_t^{\text{real}} = \eta_t z
$$

 z : amount sold at time t (η_t) : price impact process

 \leftarrow \Box

Э×

つくい

Case study: Sell x shares of Adidas within T seconds using market orders.

Assumption (Almgren&Chriss):

$$
S_t^{\text{mid}} - S_t^{\text{real}} = \eta_t z^{p-1}
$$

 z : amount sold at time t (η_t) : price impact process, $p > 1$: shape parameter

 \leftarrow

Э×

つくい

- \blacktriangleright $T < \infty$: time horizon
- \triangleright $x \in \mathbb{R}$: initial position
- ▶ X_t : position size at time $t \in [0, T]$
- \blacktriangleright \dot{X}_t : trading rate $(\dot{X}\geq 0$: buying, $\dot{X}\leq 0$: selling)

$$
X_t = x + \int_0^t \dot{X}_s ds
$$

 \blacktriangleright Constraint: $X_T = 0$

つひへ

The Model: Stochastic liquidity

- \triangleright Brownian basis: $(Ω, F, P, (F_t), (W_t))$
- $S = S^{\text{mid}}$: uninfluenced mid-market price (a martingale)
- \blacktriangleright $(\eta_t)_{t\in[0,T]}$: (positive) price impact process
- \triangleright $p > 1$: shape parameter of the order book (q its Hölder conjugate)
- If $\dot{X}_t \geq 0$, the realized price is given by

$$
S_t^{\text{real}} = S_t + \eta_t X_t^{p-1}
$$

不満 トー 重

The Model: Stochastic liquidity

- \triangleright Brownian basis: $(Ω, F, P, (F_t), (W_t))$
- $S = S^{\text{mid}}$: uninfluenced mid-market price (a martingale)
- \blacktriangleright $(\eta_t)_{t\in[0,T]}$: (positive) price impact process
- \triangleright $p > 1$: shape parameter of the order book (q its Hölder conjugate)
- If $\dot{X}_t \geq 0$, the realized price is given by

$$
S_t^{\text{real}} = S_t + \eta_t \dot{X}_t^{p-1}
$$

▶ In general:
$$
S_t^{\text{real}} = S_t + \eta_t \text{sgn}(\dot{X}_t) |\dot{X}_t|^{p-1}
$$

不満 あい 重

Expected costs:

$$
E\left[\int_0^T S_t^{\text{real}} \dot{X}_t dt\right] = -S_0^{\text{mid}} x + E\left[\int_0^T \eta_t |\dot{X}_t|^p dt\right]
$$

3. 동 >

×

٠

 \leftarrow

 \rightarrow

目

Expected costs:

$$
E\left[\int_0^T S_t^{\text{real}} \dot{X}_t dt\right] = -S_0^{\text{mid}} x + E\left[\int_0^T \eta_t |\dot{X}_t|^p dt\right]
$$

Additive risk functional:

$$
E\left[\int_0^T \gamma_t |X_t|^p dt\right], \text{ with e.g. } \gamma_t = \text{const or } \gamma_t = \lambda(S_t^{\text{mid}})
$$

3. 동 >

 \leftarrow \Box

目

Expected costs:

$$
E\left[\int_0^T S_t^{\text{real}} \dot{X}_t dt\right] = -S_0^{\text{mid}} x + E\left[\int_0^T \eta_t |\dot{X}_t|^p dt\right]
$$

Additive risk functional:

$$
E\left[\int_0^T \gamma_t |X_t|^p dt\right], \text{ with e.g. } \gamma_t = \text{const or } \gamma_t = \lambda(S_t^{\text{mid}})
$$

 \triangleright Optimal liquidation problem:

$$
E\left[\int_0^T \left(\eta_t|\dot{X}_t|^p + \gamma_t|X_t|^p\right)dt\right] \longrightarrow \min_{X_0 = x, X_T = 0}
$$

∢ 重→

 \Box

G

Our aim & related literature

- \triangleright We aim at providing a purely probabilistic solution of the control problem
- \triangleright Characterize the optimal control by means of a BSDE with singular terminal condition

∢ 重→

G

Our aim & related literature

- \triangleright We aim at providing a purely probabilistic solution of the control problem
- \triangleright Characterize the optimal control by means of a BSDE with singular terminal condition
- \triangleright Schied 2013: Solves a variant of this problem in a Markovian framework using superprocesses
- Graewe, Horst, Séré 2013: Allow for jumps in the state process X and show smoothness of the value function in a Markovian framework
- ▶ Graewe, Horst, Qiu 2013: Analyze both Markovian and non-Markovian dependence of the coefficients by means of BSPDEs

K 로)

つひへ

A maximum principle

$$
v(t,x) = \underset{X \in \mathcal{A}_0(t,x)}{\text{ess inf}} E\left[\int_t^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds | \mathcal{F}_t\right] \tag{1}
$$

 \Box

 QQ

э

K 로)

Proposition (Maximum Principle) Let $X \in \mathcal{A}_0(t,x)$ such that

$$
M_s=\eta_s|\dot{X}_s|^{p-1}+\int_t^s\gamma_r|X_r|^{p-1}dr
$$

is a martingale. Then X is optimal in (1) .

A maximum principle

$$
v(t,x) = \inf_{X \in \mathcal{A}_0(t,x)} E\left[\int_t^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds | \mathcal{F}_t\right]
$$
(2)

Proposition (Maximum Principle)
Let
$$
X \in A_0(t, x)
$$
, *i.e.*

$$
dX_s = \dot{X}_s ds, \quad X_t = x \quad \& \quad X_T = 0
$$

such that

$$
M_s = \eta_s |\dot{X}_s|^{p-1} + \int_t^s \gamma_r |X_r|^{p-1} dr
$$

is a martingale. Then X is optimal in (2) .

重め メ唐あい

 $4.17 \times$

目

$$
v(t,x) = \underset{X \in \mathcal{A}_0(t,x)}{\mathrm{ess}\inf} E\left[\int_t^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds \big| \mathcal{F}_t\right]
$$

 \blacktriangleright The value function is explicit in the x variable:

$$
v(t,x)=Y_t|x|^p
$$

for some coefficient process Y .

4. 동)

 \leftarrow

G

$$
v(t,x) = \underset{X \in \mathcal{A}_0(t,x)}{\mathrm{ess}\inf} E\left[\int_t^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds \big| \mathcal{F}_t\right]
$$

 \blacktriangleright The value function is explicit in the x variable:

$$
v(t,x)=Y_t|x|^p
$$

for some coefficient process Y .

 \blacktriangleright The maximum principle implies:

$$
dY_t = \left((p-1)\frac{Y_t^q}{\eta_t^{q-1}} - \gamma_t \right) dt + Z_t dW_t
$$

∢ 重→

G

$$
v(t,x) = \underset{X \in \mathcal{A}_0(t,x)}{\mathrm{ess}\inf} E\left[\int_t^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds \big| \mathcal{F}_t\right]
$$

 \blacktriangleright The value function is explicit in the x variable:

$$
v(t,x)=Y_t|x|^p
$$

for some coefficient process Y .

 \blacktriangleright The maximum principle implies:

$$
dY_t = \left((p-1)\frac{Y_t^q}{\eta_t^{q-1}} - \gamma_t \right) dt + Z_t dW_t
$$

F Terminal constraint leads to singular terminal condition: $Y_T = \infty$

G Э×

BSDEs with singular terminal condition

So far only considered by Popier 2006, 2007

Þ

œ

So far only considered by Popier 2006, 2007

$$
dY_t = \left((p-1)\frac{Y_t^q}{\eta_t^{q-1}} - \gamma_t \right) dt + Z_t dW_t \tag{3}
$$

 \rightarrow \Rightarrow

重

 Ω

Definition

 (Y, Z) is a solution of the BSDE [\(3\)](#page-20-0) with singular terminal condition $Y_T = \infty$ if it satisfies

\n- (i) for all
$$
0 \leq s \leq t < T
$$
:
\n- $Y_s = Y_t - \int_s^t \left((p-1) \frac{Y_t^q}{\eta_t^{q-1}} - \gamma_r \right) dr - \int_s^t Z_r dW_r$;
\n- (ii) $\liminf_{t \nearrow T} Y_t = \infty$, a.s.
\n

(iii) for all
$$
0 \le t < T
$$
: $E\left[\sup_{0 \le s \le t} |Y_s|^2 + \int_0^t |Z_r|^2 dr\right] < \infty$;

Integrability Assumptions and Approximation

For the remainder of the talk we assume that η satisfies

$$
E\int_0^T\frac{1}{\eta_t^{q-1}}dt < \infty, \quad E\int_0^T\eta_t^2dt < \infty
$$

and that γ satisfies

$$
E\int_0^T\gamma_t^2dt<\infty
$$

Þ

œ

Integrability Assumptions and Approximation

For the remainder of the talk we assume that η satisfies

$$
E\int_0^T\frac{1}{\eta_t^{q-1}}dt < \infty, \quad E\int_0^T\eta_t^2dt < \infty
$$

and that γ satisfies

$$
E\int_0^T\gamma_t^2dt<\infty
$$

 \blacktriangleright Approximation

$$
dY_t^L = \left((p-1) \frac{(Y_t^L)^q}{\eta_t^{q-1}} - \gamma_t \right) dt + Z_t^L dW_t
$$

$$
Y_T^L = L
$$

Þ

œ

Existence and Minimality

Proposition

There exists a solution (Y^L, Z^L) . Y^L is bounded from above

$$
Y_t^{\mathcal{L}} \leq \frac{1}{(\mathcal{T}-t)^p} E\left[\left.\int_t^{\mathcal{T}}(\eta_s+(\mathcal{T}-s)^p\gamma_s)ds\right|\mathcal{F}_t\right].
$$

Existence also follows from Briand, Delyon, Hu, Pardoux, Stoica 2003

∢ 重→

G

Proposition

There exists a solution (Y^L, Z^L) . Y^L is bounded from above

$$
Y_t^{\perp} \leq \frac{1}{(\mathcal{T}-t)^p} E\left[\left.\int_t^{\mathcal{T}}(\eta_s+(\mathcal{T}-s)^p\gamma_s)ds\right|\mathcal{F}_t\right].
$$

Existence also follows from Briand, Delyon, Hu, Pardoux, Stoica 2003

Theorem

There exists a process (Y, Z) such that for every $t < T$ and as $L \nearrow \infty$

- $\blacktriangleright Y_t^L \nearrow Y_t$ a.s.
- \blacktriangleright $Z^L \rightarrow Z$ in $L^2(\Omega \times [0, t]).$

The pair (Y, Z) is the minimal solution to [\(3\)](#page-20-0) with singular terminal condition $Y_{\tau} = \infty$.

 $\leftarrow \equiv +$

Consider the unconstrained minimization problem

$$
v^{L}(0,x) = \inf_{X \in \mathcal{A}(0,x)} E\left[\int_0^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds + L |X_T|^p\right] \tag{4}
$$

Proposition

The control

$$
X_t^L = xe^{-\int_0^t \left(\frac{Y_s^L}{\eta_s}\right)^{q-1}ds}
$$

is optimal in [\(4\)](#page-26-0) and $v^L(0,x) = Y_0^L|x|^p$.

∢ 重→

G

Theorem The control

$$
X_t = xe^{-\int_0^t \left(\frac{Y_s}{\eta_s}\right)^{q-1}ds}
$$

belongs to $A_0(0,x)$ and is optimal in [\(1\)](#page-15-0). Moreover, $v(t,x) = Y_t |x|^p$.

 \rightarrow \equiv \rightarrow

 \mathbf{p} Ξ

 $4.17 +$

G

Theorem The control

$$
X_t = xe^{-\int_0^t \left(\frac{Y_s}{\eta_s}\right)^{q-1}ds}
$$

belongs to $A_0(0,x)$ and is optimal in [\(1\)](#page-15-0). Moreover, $v(t,x) = Y_t |x|^p$.

Proof

Define $M_t = p\eta_t |\dot{X}_t|^{p-1} + \int_0^t p\gamma_s |X_s|^{p-1} ds$. Then $dM_t = X_t^{p-1} Z_t dW_t$. Hence M is a nonnegative, local martingale on $[0, T)$. In particular M converges almost surely for $t \nearrow T$. This implies

$$
0 \leq X_t = \left(\frac{M_t - p \int_0^t \gamma_s X_s^{p-1} ds}{pY_t}\right)^{q-1} \leq \left(\frac{M_t}{pY_t}\right)^{q-1} \to 0
$$

a.s. for $t \nearrow T$

 \rightarrow \equiv \rightarrow

つへへ

Definition

 η has uncorrelated multiplicative increments (umi) if

$$
E\left[\frac{\eta_t}{\eta_s} \big| \mathcal{F}_s\right] = E\left[\frac{\eta_t}{\eta_s}\right]
$$

for all $s \leq t \leq T$.

œ ∍

Definition

 η has uncorrelated multiplicative increments (umi) if

$$
E\left[\frac{\eta_t}{\eta_s} \big| \mathcal{F}_s\right] = E\left[\frac{\eta_t}{\eta_s}\right]
$$

for all $s \leq t \leq T$.

Examples

- \blacktriangleright η is deterministic
- \blacktriangleright η is a martingale

$$
\blacktriangleright d\eta_t = \mu(t)\eta_t dt + \sigma(t,\eta_t)dW_t
$$

 $\blacktriangleright \eta_t = e^{Z_t}$ where Z is a Lévy process

 \Rightarrow \rightarrow

Assume $\gamma = 0$.

Proposition

Suppose that η has umi, then

$$
Y_t = \frac{1}{\left(\int_t^T \frac{1}{E[\eta_s|\mathcal{F}_t]^{q-1}} ds\right)^{p-1}}
$$

is the minimal solution to [\(3\)](#page-20-0) with singular terminal condition. The deterministic control

$$
X_t = x \frac{1}{\int_0^T \frac{1}{E[\eta_s]^{q-1}} ds} \int_t^T \frac{1}{E[\eta_s]^{q-1}} ds
$$

is optimal in [\(1\)](#page-15-0). In particular, if $p=2$, then $\dot{X}_t = -c \frac{1}{E[\eta_t]}.$

∢ ヨ ≯

Assume $\gamma = 0$.

Proposition

Suppose that η has umi, then

$$
Y_t = \frac{1}{\left(\int_t^T \frac{1}{E[\eta_s|\mathcal{F}_t]^{q-1}} ds\right)^{p-1}}
$$

is the minimal solution to [\(3\)](#page-20-0) with singular terminal condition. The deterministic control

$$
X_t = x \frac{1}{\int_0^T \frac{1}{E[\eta_s]^{q-1}} ds} \int_t^T \frac{1}{E[\eta_s]^{q-1}} ds
$$

is optimal in [\(1\)](#page-15-0). In particular, if $p=2$, then $\dot{X}_t = -c \frac{1}{E[\eta_t]}.$ Vice versa, assume that the optimal control $X_t = xe^{-\int_0^t (\frac{Y_s}{\eta_s})^{q-1} ds}$ is deterministic. Then η has umi.

つくい

Consider

$$
\inf_{X \in \mathcal{A}(0,x)} E\left[\int_0^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds + \xi |X_T|^p\right] \tag{5}
$$

 \leftarrow

∢ 重→

G

 $2Q$

where ξ is nonnegative and \mathcal{F}_T -measurable with $P[\xi = \infty] > 0$.

Consider

$$
\inf_{X \in \mathcal{A}(0,x)} E\left[\int_0^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds + \xi |X_T|^p\right] \tag{5}
$$

モミト

 Ω

where ξ is nonnegative and \mathcal{F}_T -measurable with $P[\xi = \infty] > 0$.

Examples

- \triangleright binding liquidation: $\xi = \infty$
- ► excepted scenarios: $\xi = \infty 1_A$ (e.g. $A = \{ \int_0^T \eta_t dt \le k \}$)

Associated BSDE

$$
dY_t = \left((p-1)\frac{Y_t^q}{\eta_t^{q-1}} - \gamma_t \right) dt + Z_t dW_t, \quad Y_T = \xi \tag{6}
$$

∢ 重→

э

つへへ

Theorem

There exists a minimal supersolution Y (lim inf_{t λT} $Y_t \ge \xi$) to [\(6\)](#page-35-0). The strategy

$$
X_t = xe^{-\int_0^t \left(\frac{Y_s}{\eta_s}\right)^{q-1}ds}
$$

is optimal in the relaxed liquidation problem [\(5\)](#page-33-0).

Position targeting & directional views

Consider

$$
v(x) = \inf_{X \in \tilde{\mathcal{A}}_0(0,x)} E\left[\int_0^T \left(\left(S_u + \eta_u \dot{X}_u\right) \dot{X}_u + \gamma_u |X_u|^2\right) du\right], \quad (7)
$$

where S is a semimartingale.

∢ 重→

 \Box

Þ

Position targeting & directional views

Consider

$$
v(x) = \inf_{X \in \tilde{\mathcal{A}}_0(0,x)} E\left[\int_0^T \left(\left(S_u + \eta_u \dot{X}_u\right) \dot{X}_u + \gamma_u |X_u|^2\right) du\right], \quad (7)
$$

where S is a semimartingale. Let Y be the minimal solution to

$$
dY_t = \left(\frac{Y_t^2}{\eta_t} - \gamma_t\right)dt + Z_t dW_t, \quad Y_T = \infty
$$

and define

$$
H_t = \exp\left(-\int_0^t \frac{Y_s}{\eta_s} ds\right), \quad U_t = -\frac{1}{2} E\left[\int_t^T \frac{H_u}{H_t} dS_u | \mathcal{F}_t\right]
$$

 $\leftarrow \Xi \rightarrow$

G

Proposition

The strategy $X \in \tilde{A}_0(0, x)$ solving the ODE

$$
\dot{X}_t = -\frac{1}{\eta_t} \left(U_t + Y_t X_t \right)
$$

is optimal in [\(7\)](#page-36-0). The value function is given by

$$
v(x) = Y_0 x^2 + (2U_0 - S_0)x - E\left[\int_0^T \frac{U_s^2}{\eta_s} ds\right].
$$

∢ 重→

重

つへへ

Position targeting & directional views

Consider

$$
v(x) = \inf_{X \in \mathcal{A}_{\lambda}(0,x)} E\left[\int_0^T \left(\left(S_u + \eta \dot{X}_u\right) \dot{X}_u\right) ds\right],\tag{8}
$$

 $2Q$

Э× ∍

where $X_T = \int_0^T \lambda_s ds$ and S is a martingale.

Consider

$$
v(x) = \inf_{X \in \mathcal{A}_{\lambda}(0,x)} E\left[\int_0^T \left(\left(S_u + \eta \dot{X}_u\right) \dot{X}_u\right) ds\right],\tag{8}
$$

 $2Q$

œ

where $X_T = \int_0^T \lambda_s ds$ and S is a martingale.

Corollary

The strategy solving the ODE

$$
\dot{X}_t = -\frac{1}{T-t} \left(X_t - E \left[\int_0^T \lambda_s ds \middle| \mathcal{F}_t \right] \right)
$$

is optimal in [\(8\)](#page-39-0).

Literature

The talk is based on

- \triangleright S. Ankirchner, M. Jeanblanc and T. Kruse. BSDEs with singular terminal condition and control problems with constraints. SIAM Journal on Control and Optimization, 52(2):893913, 2014.
- ▶ S. Ankirchner, T. Kruse. Optimal position targeting with stochastic linear-quadratic costs. To appear in the AMaMeF volume of Banach Center Publications, 2014.

Further references

- P. Briand, B. Delyon, Y. Hu, Ying, E. Pardoux and L. Stoica. L^p solutions of backward stochastic differential equations. Stochastic Processes and Their Applications, 2003
- ▶ P. Graewe, U. Horst, J. Qiu. A Non-Markovian Liquidation Problem and Backward SPDEs with Singular Terminal Conditions, 2013
- \triangleright P. Graewe, U. Horst, E. Séré. Smooth solutions to portfolio liquidation problems under price-sensitive market impact, 2013
- \triangleright A. Popier. Backward stochastic differential equations with singular terminal condition. Stochastic Processes and Their Applications, 2006.
- \triangleright A. Popier. Backward stochastic differential equations with random stopping time and singular final condition. Annals of Probability, 2007.

つひへ

 \triangleright A. Schied. A control problem with fuel constraint and Dawson-Watanabe superprocesses, 2013. To appear in Annals of Appli[ed](#page-40-0) [Pro](#page-42-0)[b](#page-40-0)[abi](#page-41-0)[lit](#page-42-0)[y.](#page-32-0)

Thank you!

 \leftarrow \Box

重

→ 差→

∍ ×