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Markov chains

Consider a time homogenous finite/countable-state continuous-time
Markov chain X.

X is a process in (Ω,F , {Ft}t≥0,P), where {Ft} is the natural filtration of
X.

X takes values in X , the standard basis of RN where
N = number of states ≤ ∞.

X jumps from state Xt− to state ei ∈ X at rate e∗i AXt−, so

Xt = X0 +

∫
]0,t]

AXu−du + Mt

for some RN-valued martingale M.

A is a RN×N matrix, with [A]ij ≥ 0 for i 6= j, and 1∗Aei =
∑

j[A]ij ≡ 0.
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Example
For N = 4, we can consider the Markov chain with matrix

A =


−3 1 0 0
1 −3 2 2
2 2 −3 1
0 0 1 −3


Which can be drawn as a weighted directed graph
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BSDEs

A Backward Stochastic Differential Equation (BSDE) is an equation of the form

Yt = ξ +

∫
]t,T]

f (ω, s,Ys−,Zs)ds−
∫

]t,T]
Z∗s dMs

or equivalently,

dYt = −f (ω, t,Yt−,Zt)dt + Z∗t dMt, YT = ξ.

These are useful for various problems, particularly in stochastic control.

Classically, they are closely linked to semilinear PDEs.

Simple examples:

f ≡ 0 (Martingale representation)

f (z) = z∗(B− A)Xs− (Measure change)
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BSDE Existence and Uniqueness

Theorem
Let f be a predictable function with

|f (ω, t, y, z)− f (ω, t, y′, z′)|2 ≤ c(|y− y′|2 + ‖z− z′‖2
Mt

)

for some c > 0, and E[
∫

]0,T] |f (ω, t, 0, 0)|2dt] <∞.

Then for any ξ ∈ L2(FT) the BSDE

Yt = ξ +

∫
]t,T]

f (ω, t,Yu−,Zu)du−
∫

]t,T]
Z∗u dMu

has a unique adapted solution (Y,Z) with appropriate integrability.

Here ‖z‖2
Mt

:= z∗ d〈M〉
dt z is a natural (semi)norm for our problem.
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γ-balanced drivers

To get a comparison theorem, we need the following definition.

Definition
f is γ-balanced if there exists a random field λ, with λ(·, ·, z, z′) predictable
and λ(ω, t, ·, ·) Borel measurable, such that

f (ω, t, y, z)− f (ω, t, y, z′) = (z− z′)∗(λ(ω, t, z, z′)− AXt−),

for each ei ∈ X ,
e∗i λ(ω, t, z, z′)

e∗i AXt−
∈ [γ, γ−1]

for some γ > 0, where 0/0 := 1,

1∗λ(ω, t, z, z′) ≡ 0 and

λ(ω, t, z + α1, z′) = λ(ω, t, z, z′) for all α ∈ R.
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Comparison theorem

Definition
Summary: f is γ balanced if, for each terminal condition, the BSDE solution
can be written in terms of some expectation, under a measure with similar
jump rates as under P.

The purpose of this definition is to obtain:

Theorem (Comparison theorem)
Let f be γ-balanced for some γ > 0. Then if

ξ ≥ ξ′ and f (ω, t, y, z) ≥ f ′(ω, t, y, z),

the associated BSDE solutions satisfy Yt ≥ Y ′t for all t, and Yt = Y ′t on A ∈ Ft

iff Ys = Y ′s on A for all s ≥ t.
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Comparison theorem

Lemma
If f (u; · · · ) is γ-balanced for each u, then g(· · · ) := ess supu{f (u; · · · )} is
γ-balanced (given it is always finite).

As mentioned before, if B is another rate matrix, we write EB for the
expectation under the corresponding measure.

Lemma
If B ∼γ A (to be defined) then f (ω, t, y, z) = z∗(B− A)Xt− is γ-balanced with
λ(· · · ) = BXt−, and Yt = EB[ξ|Ft].
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Definition
For γ > 0, we say ‘A γ-controls B’ (and write A �γ B) if B− γA is also a rate
matrix.

If A �γ B and B �γ A we write A ∼γ B.

Example

A =


−3 1 0 0
1 −3 2 2
2 2 −3 1
0 0 1 −3

 B =


−4 1 0 0
2 −3 2 2
2 2 −3 1
0 0 1 −3


Then for γ ≤ 1/2, A ∼γ B.
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Markovian Solutions

We can also obtain a Feynman–Kac type result.

Theorem

Let f : X × [0,T]× R× RN , and consider the BSDE with

Yt = φ(XT) +

∫
]t,T]

f (Xt−, t,Yu−,Zu)du−
∫

]t,T]
Z∗u dMu

for some function φ : X → R. Then the solution satisfies

Yt = u(t,Xt) = X∗t ut, Zt = ut

for u solving

dut = −(f(t,ut) + A∗ut)dt; e∗i uT = φ(ei)

where e∗i f(t,ut) := f (ei, t, e∗i ut,ut).
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Application to Control

Consider the problem

min
u

Eu
[
e−rTφ(XT) +

∫
]0,T]

e−rtL(ut; Xt−, t)dt
]

where u is a predictable process with values in U, and Eu is the expectation
under which X has compensator λt(ut) ∈ RN .

Suppose λt(·) satisfies e∗i λt(·)
e∗i AXt−

∈ [γ, γ−1] for some γ > 0.

Define the Hamiltonian

f (ω, t, y, z) = −rYt + inf
u∈U
{L(u; Xt−, t) + z∗(λt(u)− AXt−(ω))}

The dynamic value function Yt satisfies the BSDE with driver f , terminal
value φ(Xt).

By the comparison theorem, we have existence and uniqueness of an
optimal feedback control.
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Ergodic BSDEs

For the study of graphs, we are often interested in ’steady state’
behaviour of a random walk/Markov chain living on the graph.

Understanding the steady state of controlled systems naturally leads to
‘Ergodic’ BSDEs.

These equations are less intuitive than BSDEs, but give a useful
framework to study these systems.
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Uniform ergodicity

If X0 ∼ µ, for some probability measure µ on X , we write Xt ∼ Ptµ.

Writing µ as a vector, Ptµ ≡ eAtµ.

We say X is uniformly ergodic if

‖Ptµ− π‖TV ≤ Re−ρt for all µ

for some R, ρ > 0, some probability measure π on X .

‖ · ‖TV is the total variation norm (and writing signed measures as
vectors, ‖ · ‖TV = ‖ · ‖`1 ).

The measure π is the ergodic measure of the Markov chain and is unique.

It also satisfies Ptπ = π, so it is stationary.

We call (R, ρ) the parameters of ergodicity.

Irreducible finite state chains are always uniformly ergodic.
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Stability of Uniform Ergodicity

We can tie together the matrix A and the measure P.

Hence a change of measure corresponds to using a different (stochastic,
time varying?) matrix B.

We say A is uniformly ergodic if X is uniformly ergodic under PA

Question

Suppose the chain is uniformly ergodic under the measure PA, and has
associated parameters (RA, ρA).

If A and B are ‘similar’, can we say the chain is uniformly ergodic under PB,
and can we say anything about (RB, ρB)?

We wish to find a relationship between A and B under which we can get a
uniform estimate of ρB.
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Our key result is:

Theorem
Suppose A is uniformly ergodic and γ ∈ ]0, 1[ . Then there exist constants R̄, ρ̄
dependent on γ and A such that B is uniformly ergodic with parameters (R̄, ρ̄)
whenever A �γ B.

The key is that these constants are uniform in B, so these measures are
‘uniformly uniformly-ergodic’.
Using these estimates, we can prove the following...
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EBSDE Existence/Uniqueness

Theorem
Suppose X is uniformly ergodic. Then the ergodic BSDE

dYt = −(f (Xt,Zt)− λ)dt + Z∗t dMt

admits a bounded solution (Y,Z, λ) with Yt = u(Xt) and u(x̂) = 0, whenever f
is γ-balanced with |f (x, 0)| < C.

Any other bounded solution has the same λ, any other bounded Markovian
solution has Y ′t = Yt + c.

Our Feynman–Kac type result gives, with Y = u(Xt) = X∗t u, Z = u,

f(u)− λ1 = −A∗u

which is readily calculable for small dimensions.
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Properties

The comparison theorem does not hold for Y for EBSDEs. However, it does
hold for λ.

Theorem
Let f , f ′ be γ-balanced and f ≥ f ′. Then we have λ ≥ λ′ in the EBSDE
solutions.

Theorem

Let πA denote the ergodic measure when X has matrix A. Then for some
Bu ∼γ A,

λ =

∫
X

f (x,u)dπA(x) =

∫
X

f (x, 0)dπBu
(x)

Yt + c =

∫
X

f (x,u)µA
X0

(x) =

∫
X

f (x, 0)µBu

X0
(x)

where µA
x =

∫
R+(PA

uδx − πA)du.
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Applications

Application to Ergodic control similar to the finite-horizon case, with value

λ = min
u

{
lim sup

T→∞
Eu
[ 1

T

∫
]0,T]

L(ut; Xt−)dt
]}

Write f as the Hamiltonian, comparison theorem gives optimal feedback
control, etc...

Instead, we will look at creating spatially stable nonlinear probabilities on
graphs.

These attempt to generalize the ergodic distribution of a Markov chain to
a nonlinear setting.
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Applications

Consider the driver f (x, z) = I{x∈Ξ} + g(x, z). Then if g ≡ 0, the EBSDE
solutions will be λ = π(Ξ).

If g is convex, we will have a ‘convex ergodic probability’ or ‘ergodic
capacity’.

A common problem when we study graphs is to find the most ‘central’
nodes.

One method (connected to ‘random walk centrality’) is to look at the
ergodic distribution of a Markov chain on the graph.

What happens if we instead dynamically take the minimum over a range
of rate matrices?
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Nonlinear Graph Centrality

Consider the undirected graph below with a Markov chain moving at a
constant exit rate. The ergodic probabilities under this basic model can be
simply calculated.

11.1%

11.1%

16.7%

16.7% 11.1% 16.7%

5.6%

11.1%

We have three states which are equally highest ranked, even though they have
different positions in the graph.

S.N. Cohen (Oxford) BSDEs and networks YRBSDE 2014 21 / 30



Nonlinear Graph Centrality

Now suppose a bias can be introduced dynamically, so that the relative rate of
jumping to the right/left can be doubled. Then the EBSDE can be solved with
drivers

f (x, z) = I{x∈Ξ} + min
B
{z∗(B− A)x}

for each Ξ ⊆ X . The corresponding values λΞ (for Ξ singletons) are

4.3%

5.5%

11.4%

10.3% 4.8% 7.8%

2.0%

6.8%
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Nonlinear Graph Centrality

To assess centrality (as opposed to ergodic importance), it is more
interesting to look at the change in ergodic probability when the system is
controlled.
The ‘controllability centrality’

CC = log
( controlled probability

uncontrolled probability

)
gives interesting results.
Nodes near the edge change more (so have CC ↓ −∞)
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Bank networks

Consider an interbank liability network.

Taking liabilities as links, we obtain a weighted directed graph.

We can consider a continuous time Markov chain with these values as
rates of change.

Data from Austrian banking system, Dec 2008. (Thanks to Martin
Summer of the Österreichische Nationalbank)

In the following:

Size related to total liability

Colour based on log(Ergodic probability), Blue= low→ Red=high.

Thanks to Lucas Jeub for visualization help.
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Ergodic distribution
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Controlled ergodic distribution
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Determined using a 10% change in any/all connection strength, corresponding
to BSDE driver

f (x, z) = 0.1
∑
ej 6=x

Aij|(ej − x)∗z|.
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Controllability Centrality
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CC is somewhat related to ergodic probability.
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Controllability Centrality
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Bank networks

This gives a natural notion of ‘robustness’ of the network.

If a node has a high CC, then only a small change in the network is
needed to noticeably change its significance.

Conversely, low CC means large structural changes would be needed to
alter the node’s importance.

Reweighting the graph to have a constant exit rate significantly changes
the ergodic distribution.

The CC is qualitatively similar (Clear linear relationship between the
values of CC calculated in each setting, r2 = 0.87).
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Conclusion

BSDEs represent control problems nicely.

Ergodic BSDEs with Markov chains can be applied to control of graphs.

This yields a ‘controllability centrality’ measure.

Future work: Connect these approaches to specific models of interbank
lending, compare with other notions of systemic risk.
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