Indifference fee rate ¹

for variable annuities

Ricardo ROMO ROMERO

Etienne CHEVALIER and Thomas LIM

Université d'Évry Val d'Essonne.

Laboratoire de Mathématiques et Modélisation d'Evry

Second Young researchers meeting on BSDEs, Numerics and Finance. 07-09 July 2014, Bordeaux, France.

Ricardo ROMO (Université d'Evry) [Indifference fee rate](#page-30-0) Bordeaux, France 2014 1 / 31

 Ω

 1 This research benefitted from the support of the "Chaire Marchés en Mutation", Fédération Bancaire Française. $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

Outline

¹ [Variable Annuities](#page-2-0)

 2990

造

Outline

[Model](#page-6-0)

[Indifference fees](#page-14-0)

 299

造

What is a Variable Annuity?

Variable annuity is a contract between a policyholder and an insurance company.

- The policyholder gives an initial amount of money to the insurer.
- It is invested in a reference portfolio until a preset date, until the policyholder withdraws from the contract or dies.
- At the end of the contract, the insurance pays an amount of money depending on the performance of the reference portfolio.

Risks

Actuarial risks:

- mortality,
- **·** longevity,
- ..

Financial risks:

- volatility,
- interest rate,
- ..

- 로

 2990

イロト イ部 トイヨ トイヨト

Literature

- Bauer (2008) presents a general framework to define Variable Annuities (VA).
- Boyle and Schwartz (1977), extend the Black-Scholes framework to insurance issues.
- Milvesky and Posner (2001) apply risk neutral option pricing theory to value Guaranteed Minimum Death Benefits (GMDB) in VAs.
- Dai et al. (2008) HJB equation is derived for a singular control problem related to VA.
- • Belanger et al. (2009) describes the GMDB pricing problem as an impulse control problem.

Outline

 299

造

Model (main points)

- No restrictive assumptions on the reference portfolio and the interest rate dynamics (Markovianity of processes is not assumed):
	- Incomplete market, not a unique risk-neutral measure.
	- We introduce a methodology with BSDEs with a jump.
- **Indifference pricing** with continuous fees.

 Ω

Financial Market and Wealth Process

Let $(\Omega, \mathbb{F}, \mathbb{P})$ be a complete probability space, with \mathbb{F} the Brownian filtration.

Financial market:

$$
dS_t^0 = r_t S_t^0 dt, \quad \forall t \in [0, T], \quad S_0^0 = 1 ,dS_t = S_t(\mu_t dt + \sigma_t dB_t), \quad \forall t \in [0, T], \quad S_0 = s > 0
$$

where μ , σ and r are F-adapted bounded processes and σ is lower bounded by a positive constant.

Discounted wealth process:

$$
X_t^{x,\pi} = x + \int_0^t \pi_s(\mu_s - r_s) ds + \int_0^t \pi_s \sigma_s dB_s,
$$

with strategy π and initial capital x.

 Ω

Exit time of a Variable Annuity Policy

Let τ be the exit time which is the minimum time between:

- The time of death of the insured.
- The time of total withdrawal.

The random time τ is not assumed to be an $\mathbb F$ -stopping time. We consider $\mathbb{G} := (\mathcal{G}_t)_{t>0}$ with $\mathcal{G}_t := \mathcal{F}_t \vee \sigma(\mathbb{1}_{\tau\leq u}\,, u\in [0,t]) \quad \text{ for all } t\geq 0.$

Hypothesis

- **Immersion of F in G: every F-martingale is a G-martingale.**
- The process $N_{\cdot} := 1\!\!1_{\tau\leq \cdot}$ admits an $\mathbb F$ -compensator $\int_0^{\cdot\wedge\tau}\lambda_t dt$.

KOD KARD KED KED E VOOR

Dynamics

Discounted Account Value AP:

$$
dA_t^p = A_t^p \left[(\mu_t - r_t - \xi_t - p) dt + \sigma_t dB_t \right], \quad \forall t \in [0, T],
$$

with initial value A_0 , fee-rate p and withdrawal $(\xi_t)_{0 \leq t \leq T}$.

 \equiv \cap α

Pay-off

The discounted pay-off including the withdrawals at time $T \wedge \tau$ to the insured is:

$$
F(p) := F^L(T, A^p) 1\!\!1_{\{T < \tau\}} + F^D(\tau, A^p) 1\!\!1_{\{\tau \le T\}} + \int_0^{T \wedge \tau} \xi_s A^p_s \, ds.
$$

Notice that $F(p)$ is $G_{T \wedge \tau}$ -measurable.

 \equiv \cap α

イロト イ部 トイヨ トイヨト

Guarantees without withdrawals

The common guarantees are:

- Constant guarantee: $G_t^Q(p) = A_0$.
- **Roll-up guarantee**: Let be $\eta > 0$, then $G_t^Q(p) = A_0(1 + \eta)^t$.
- Ratchet guarantee: $G_t^Q(p) = \max(A_t^p)$ $_{t_1}^p,A_{t_1}^p$ t_1^p, \ldots, A_t^p $_{t}^{\rho}$).

For t an anniversary date.

 \equiv \cap α

Usual Guarantees

Outline

[Model](#page-6-0)

Ricardo ROMO (Université d'Evry) [Indifference fee rate](#page-0-0) Bordeaux, France 2014 15 / 31

 2990

造

Finding the Indifference Fees

The objective is to find a fee p^* such that

$$
\sup_{\pi \in \mathcal{A}^{\mathbb{F}}[0,T]} \mathbb{E}\big[U\big(X^{\times,\pi}_\mathcal{T}\big)\big] \;\; = \;\; \sup_{\pi \in \mathcal{A}^{\mathbb{G}}[0,T]} \mathbb{E}\big[U\big(A_0 + X^{\times,\pi}_\mathcal{T} - \mathcal{F}\big(\rho^*\big)\big)\big]\;,
$$

where ${\mathcal{A}}^{\mathbb{F}}[0,\,T]$ (resp. ${\mathcal{A}}^{\mathbb{G}}[0,\,T])$ is the set of admissible strategies between the interval of time [0, T] in $\mathbb F$ (resp. in $\mathbb G$).

Utility function

$$
U(y) = -e^{-\gamma y} , \quad \forall y \in \mathbb{R} ,
$$

where $\gamma > 0$.

D.

 Ω

The classical problem:

$$
V_0=\text{sup}_{\pi\in\mathcal{A}^{\mathbb{F}}[0,T]}\left\{\mathbb{E}\left[\,U\left(X_{\mathcal{T}}^{\pi}\right)\right]\right\}
$$

Hu, Imkeller and Muller (2004), Rouge and El Karoui (2000)

Theorem

The optimal value is $V_0 = -\exp(\gamma y_0)$, using the optimal strategy

$$
\pi_t^* := \frac{\mu_t - r_t}{\gamma \sigma_t^2} + \frac{z_t}{\sigma_t},
$$

where y_0 and z are given by the BSDE

$$
-dy_t=\Big(-\frac{\nu_t^2}{2\gamma}-z_t\nu_t\Big)dt-z_tdB_t\;,\;\; y_T=0\;.
$$

 QQQ

イロト イ押ト イヨト イヨト

Utility Maximization with VA (Step 1) $\mathcal{V}_{\mathbb{G}}(\rho) := \mathsf{sup}_{\pi \in \mathcal{A}^{\mathbb{G}}[0,T]} \, \mathbb{E} \big[\mathcal{U} \big(X_{\mathcal{T}}^{A_0,\pi} - \mathcal{F}(\rho) \big) \big]$

Proposition

The value function is

$$
V_{\mathbb{G}}(p) = \sup_{\pi \in \mathcal{A}^{\mathbb{G}}[0, T \wedge \tau]} \mathbb{E}\big[-\exp\big(-\gamma\big(X_{T \wedge \tau}^{A_0, \pi} - \widehat{F}(p)\big)\big)\big],
$$

where $\widehat{F}(p) :=$

$$
F(p) + \frac{1}{\gamma} \log \bigg\{ \operatorname*{ess\ inf}_{\pi \in \mathcal{A}^{\mathbb{G}}[T \wedge \tau, T]} \mathbb{E}\big[e^{-\gamma\big(X_{T}^{A_0, \pi} - X_{T \wedge \tau}^{A_0, \pi}\big)}\big|\mathcal{G}_{T \wedge \tau}\big]\bigg\}.
$$

目

 QQQ

Utility Maximization with VA (Step 2) Finding $\widehat{F}(p)$

Proposition

There exists a process $Y^{(\tau)}$ such that

ess inf\n
$$
\underset{\pi \in \mathcal{A}^G[T \wedge \tau, T]}{\text{ess inf}} \mathbb{E} \left[\exp \left(- \left(\gamma X_T^{A_0, \pi} - X_{T \wedge \tau}^{A_0, \pi} \right) \right) \middle| \mathcal{G}_{T \wedge \tau} \right] = \exp \left(\gamma Y_{T \wedge \tau}^{(\tau)} \right),
$$

where $(Y^{(\tau)},Z^{(\tau)})$ is solution of the BSDE

$$
\begin{cases}\n dY_t^{(\tau)} = \left[\frac{\nu_t^2}{\gamma} + \nu_t Z_t^{(\tau)}\right] dt + Z_t^{(\tau)} dB_t, \\
Y_T^{(\tau)} = 0.\n\end{cases}
$$

Utility Maximization with VA (Step 3) $\mathcal{V}_{\mathbb{G}}(\rho) := \mathsf{sup}_{\pi \in \mathcal{A}^{\mathbb{G}}[0,T]} \, \mathbb{E} \big[\mathcal{U} \big(X_{\mathcal{T}}^{A_0,\pi} - \mathcal{F}(\rho) \big) \big]$

Theorem

The value function is given by

$$
V_{\mathbb{G}}(p) = -\exp\Big(-\gamma\big(A_0-Y_0(p)\big)\Big),
$$

where $(Y(p), Z(p), U(p))$ is a solution of

$$
Y_t(p) = \widehat{F}(p) + \int_{t \wedge \tau}^{T \wedge \tau} \left(\lambda_s \frac{e^{\gamma U_s(p)} - 1}{\gamma} - \frac{\nu_s^2}{2\gamma} - \nu_s Z_s(p) \right) ds - \int_{t \wedge \tau}^{T \wedge \tau} Z_s(p) dB_s - \int_{t \wedge \tau}^{T \wedge \tau} U_s(p) dH_s, \quad t \in [0, T].
$$

Ricardo ROMO (Université d'Evry) [Indifference fee rate](#page-0-0) Bordeaux, France 2014 20 / 31

(□) () +

 QQQ

目

The Optimal Strategy

The Strategy

$$
\pi^*_t := \left\{ \begin{array}{cl} & \frac{\nu_t}{\gamma \sigma_t} + \frac{Z_t(\rho)}{\sigma_t} \ , \quad t \in [0,\, \mathcal{T} \wedge \tau) \ , \\ & & \\ & \frac{\nu_t}{\gamma \sigma_t} + \frac{Z_t^{(\tau)}}{\sigma_t} \ , \quad t \in [\, \mathcal{T} \wedge \tau, \, \mathcal{T}] \ . \end{array} \right.
$$

4 日下

 \mathcal{A} ×. \mathcal{A} . 299

活

Methodology

Recapitulation

Indifference Fees

$$
\sup_{\pi \in \mathcal{A}^{\mathcal{F}}[0,\,T]}\left\{\mathbb{E}\left[\,U\left(X_{\,\mathcal{T}}^{\pi}\right)\right]\right\} \,=\, \sup_{\pi \in \mathcal{A}^{\mathcal{G}}[0,\,T]}\left\{\mathbb{E}\left[\,U\left(X_{\,\mathcal{T}}^{\pi,\mathcal{A}_{0}} - F(p)\right)\right]\right\}\,.
$$

- √ Utility Maximization:
	- $\sqrt{\frac{1}{N}}$ Classical Utility Maximization Problem. $V_0 = -\exp(\gamma y_0)$.
	- $\bullet \sqrt{}$ Not the Classical Problem.

$$
V_{\mathbb{G}}(p)=-\exp\Big(-\gamma\big(A_0-Y_0(p)\big)\Big).
$$

- Existence of the Indifference Fees. $Y_0(p^*) A_0 = y_0$.
- **Simulations.**

目

 QQQ

Existence of the Indifference Fees

Consider
$$
\psi(p) := Y_0(p) - y_0 - A_0
$$
, $\forall p \in \mathbb{R}$.

Proposition

The function ψ is continuous and non-increasing on \mathbb{R} .

- (i) For any $p \in \mathbb{R}$, we have $\psi(p) > 0$ i.e., for any fee p, we have $V_{\mathbb{G}}(p) < V_{\mathbb{F}}$.
- (ii) For any $p \in \mathbb{R}$, we have $\psi(p) < 0$ i.e., for any fee p, we have $V_{\mathbb{G}}(p) > V_{\mathbb{F}}$.
- (iii) There exist p_1 and p_2 such that $\psi(p_1)\psi(p_2) < 0$. Then, there exists an indifference fee p^* .

A E RA E RI PORTA E RI PORTA

Outline

[Model](#page-6-0)

[Indifference fees](#page-14-0)

 2990

D.

Numerical results.

We assume that r and μ are Markov chains taking values in the states spaces $S^r = \{0, 0.01, \ldots, 0.25\}$ and $S^\mu = \{0, 0.01, 0.02, \ldots, 0.3\}.$ We give the following numerical values to parameters:

$$
\gamma=1.3,\quad \lambda=0.05,\quad \xi=0,\quad A_0=1,
$$

and, for the financial market parameters:

$$
r_0=0.02, \quad \mu_0=0.15.
$$

イロト イ押ト イヨト イヨト

Market Risk

Figure : Ratchet option $(T = 20)$ $(T = 20)$ $(T = 20)$ $(T = 20)$ $(T = 20)$

Ricardo ROMO (Université d'Evry) [Indifference fee rate](#page-0-0) Bordeaux, France 2014 26 / 31

 $\bar{\Xi}$

 OQ

Actuarial Risk

Ricardo ROMO (Université d'Evry) [Indifference fee rate](#page-0-0) Bordeaux, France 2014 27 / 31

Roll up Guarantee Risk

Figure: Roll up option $(T = 20, \sigma = 0.3)$ $(T = 20, \sigma = 0.3)$ [.](#page-22-0)

Ricardo ROMO (Université d'Evry) [Indifference fee rate](#page-0-0) Bordeaux, France 2014 28 / 31

 298

Thank you!

Ricardo ROMO ROMERO

B

4 0 8

rickyromo@gmail.com

 \rightarrow \equiv \rightarrow

 QQ

目

 \mathbf{p} Ricardo ROMO (Université d'Evry) [Indifference fee rate](#page-0-0) Bordeaux, France 2014 29 / 31

Questions?

Ricardo ROMO ROMERO

÷.

4 0 8

rickyromo@gmail.com

 QQ

目

 \sim 一本 重 下 Ricardo ROMO (Université d'Evry) [Indifference fee rate](#page-0-0) Bordeaux, France 2014 30 / 31

[The End](#page-30-0)

Their respective transitional matrix are:

$$
q_{i,j}^{r} = \begin{cases} \frac{1}{2} & \text{if } i = j, \\ \frac{1}{2} & \text{if } i = 1 \text{ and } j = 2, \\ \frac{1}{2} & \text{if } i = 27 \text{ and } j = 26, \\ \frac{1}{4} & \text{if } i = j + 1 \text{ and } i \le 26, \\ 0 & \text{else,} \end{cases} \text{ and}
$$

$$
q_{i,j}^{\mu} = \begin{cases} \frac{1}{2} & \text{if } i = j - 1 \text{ and } j = 2, \\ \frac{1}{2} & \text{if } i = 1 \text{ and } j = 2, \\ \frac{1}{2} & \text{if } i = 32 \text{ and } j = 31, \\ \frac{1}{4} & \text{if } i = j + 1 \text{ and } i \le 31, \\ \frac{1}{4} & \text{if } i = j - 1 \text{ and } i \ge 2, \\ 0 & \text{else,} \end{cases}
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

重