Indifference fee rate ¹

for variable annuities

Ricardo ROMO ROMERO

Etienne CHEVALIER and Thomas LIM

Université d'Évry Val d'Essonne, Laboratoire de Mathématiques et Modélisation d'Evry

Second Young researchers meeting on BSDEs, Numerics and Finance. 07-09 July 2014, Bordeaux, France.

¹This research benefitted from the support of the "Chaire Marchés en Mutation", Fédération Bancaire Française.

Outline

- Variable Annuities
- Model
- Indifference fees
- Mumerical Results

Outline

- Variable Annuities
- 2 Model
- Indifference fees
- Mumerical Results

What is a Variable Annuity?

Variable annuity is a contract between a policyholder and an insurance company.

- The policyholder gives an initial amount of money to the insurer.
- It is invested in a reference portfolio until a preset date, until the policyholder withdraws from the contract or dies.
- At the end of the contract, the insurance pays an amount of money depending on the performance of the reference portfolio.

Risks

- Actuarial risks:
 - mortality,
 - longevity,
 - ..
- Financial risks:
 - volatility,
 - interest rate,
 - **.** . .

Literature

- Bauer (2008) presents a general framework to define Variable Annuities (VA).
- Boyle and Schwartz (1977), extend the Black-Scholes framework to insurance issues.
- Milvesky and Posner (2001) apply risk neutral option pricing theory to value Guaranteed Minimum Death Benefits (GMDB) in VAs.
- Dai et al. (2008) HJB equation is derived for a singular control problem related to VA.
- Belanger et al. (2009) describes the GMDB pricing problem as an impulse control problem.

Outline

- Variable Annuities
- Model
- 3 Indifference fees
- Mumerical Results

Model (main points)

- No restrictive assumptions on the reference portfolio and the interest rate dynamics (Markovianity of processes is not assumed):
 - Incomplete market, not a unique risk-neutral measure.
 - We introduce a **methodology with BSDEs** with a jump.
- Indifference pricing with continuous fees.

Financial Market and Wealth Process

Let $(\Omega, \mathbb{F}, \mathbb{P})$ be a complete probability space, with \mathbb{F} the Brownian filtration.

Financial market:

$$\begin{array}{lll} dS_t^0 & = & r_t S_t^0 dt \;, & \forall t \in [0,T] \;, & S_0^0 = 1 \;, \\ dS_t & = & S_t \big(\mu_t dt + \sigma_t dB_t \big) \;, & \forall t \in [0,T] \;, & S_0 = s > 0 \end{array}$$

where μ , σ and r are \mathbb{F} -adapted bounded processes and σ is lower bounded by a positive constant.

Discounted wealth process:

$$X_t^{x,\pi} = x + \int_0^t \pi_s(\mu_s - r_s)ds + \int_0^t \pi_s\sigma_sdB_s$$

with strategy π and initial capital x.

Exit time of a Variable Annuity Policy

Let τ be the exit time which is the minimum time between:

- The time of death of the insured.
- The time of total withdrawal.

The random time au is not assumed to be an \mathbb{F} -stopping time.

We consider $\mathbb{G}:=(\mathcal{G}_t)_{t\geq 0}$ with

$$\mathcal{G}_t := \mathcal{F}_t \vee \sigma(\mathbb{1}_{\tau \leq u}, u \in [0, t])$$
 for all $t \geq 0$.

Hypothesis

- Immersion of \mathbb{F} in \mathbb{G} : every \mathbb{F} -martingale is a \mathbb{G} -martingale.
- The process $N_{\cdot} := \mathbb{1}_{\tau \leq \cdot}$ admits an \mathbb{F} -compensator $\int_0^{\cdot \wedge \tau} \lambda_t dt$.

Dynamics

Discounted Account Value A^p :

$$dA_t^p = A_t^p \left[(\mu_t - r_t - \xi_t - p) dt + \sigma_t dB_t \right], \quad \forall t \in [0, T],$$

with initial value A_0 , fee-rate p and withdrawal $(\xi_t)_{0 \le t \le T}$.

Pay-off

The discounted pay-off including the withdrawals at time $T \wedge \tau$ to the insured is:

$$F(p) := F^{L}(T, A^{p}) \mathbb{1}_{\{T < \tau\}} + F^{D}(\tau, A^{p}) \mathbb{1}_{\{\tau \le T\}} + \int_{0}^{T \wedge \tau} \xi_{s} A_{s}^{p} ds.$$

Notice that F(p) is $\mathcal{G}_{T \wedge \tau}$ -measurable.

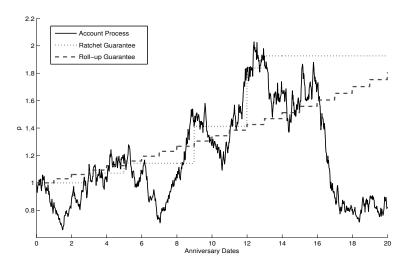
Guarantees without withdrawals

The common guarantees are:

- Constant guarantee: $G_t^Q(p) = A_0$.
- Roll-up guarantee: Let be $\eta > 0$, then $G_t^Q(p) = A_0(1+\eta)^t$.
- Ratchet guarantee: $G_t^Q(p) = \max(A_{t_1}^p, A_{t_2}^p, \dots, A_t^p)$.

For t an anniversary date.

Usual Guarantees



Outline

- Variable Annuities
- 2 Model
- Indifference fees
- Mumerical Results

Finding the Indifference Fees

The objective is to find a fee p^* such that

$$\sup_{\pi \in \mathcal{A}^{\mathbb{F}}[0,T]} \mathbb{E}\big[U\big(X_T^{\mathbf{x},\pi}\big)\big] = \sup_{\pi \in \mathcal{A}^{\mathbb{G}}[0,T]} \mathbb{E}\big[U\big(A_0 + X_T^{\mathbf{x},\pi} - F(\rho^*)\big)\big] ,$$

where $\mathcal{A}^{\mathbb{F}}[0,T]$ (resp. $\mathcal{A}^{\mathbb{G}}[0,T]$) is the set of admissible strategies between the interval of time [0,T] in \mathbb{F} (resp. in \mathbb{G}).

Utility function

$$U(y) = -e^{-\gamma y}$$
, $\forall y \in \mathbb{R}$,

where $\gamma > 0$.

The classical problem:

$$V_0 = \sup_{\pi \in \mathcal{A}^{\mathbb{F}}[0,T]} \left\{ \mathbb{E}\left[U\left(X_T^{\pi}
ight)
ight]
ight\}$$

Hu, Imkeller and Muller (2004), Rouge and El Karoui (2000)

Theorem

The optimal value is $V_0 = -\exp(\gamma y_0)$, using the optimal strategy

$$\pi_t^* := \frac{\mu_t - r_t}{\gamma \sigma_t^2} + \frac{z_t}{\sigma_t} ,$$

where y_0 and z are given by the BSDE

$$-dy_t = \left(-\frac{\nu_t^2}{2\gamma} - z_t \nu_t\right) dt - z_t dB_t , \quad y_T = 0 .$$

Utility Maximization with VA (Step 1)

$$V_{\mathbb{G}}(p) := \mathsf{sup}_{\pi \in \mathcal{A}^{\mathbb{G}}[0,T]} \, \mathbb{E} ig[Uig(X^{A_0,\pi}_{\mathcal{T}} - F(p) ig) ig]$$

Proposition

The value function is

$$V_{\mathbb{G}}(p) = \sup_{\pi \in \mathcal{A}^{\mathbb{G}}[0, T \wedge \tau]} \mathbb{E} \big[- \exp \big(- \gamma \big(X_{T \wedge \tau}^{A_0, \pi} - \widehat{F}(p) \big) \big) \big] ,$$

where
$$\widehat{F}(p) :=$$

$$F(p) + \frac{1}{\gamma} \log \left\{ \underset{\pi \in \mathcal{A}^{\mathbb{G}}[T \wedge \tau, T]}{\operatorname{ess inf}} \mathbb{E} \left[e^{-\gamma \left(X_{T}^{A_{0}, \pi} - X_{T \wedge \tau}^{A_{0}, \pi} \right)} \middle| \mathcal{G}_{T \wedge \tau} \right] \right\}.$$

Utility Maximization with VA (Step 2)

Finding $\widehat{F}(p)$

Proposition

There exists a process $Y^{(\tau)}$ such that

$$\underset{\pi \in \mathcal{A}^{\mathbb{G}}[T \wedge \tau, T]}{\operatorname{ess inf}} \, \mathbb{E} \big[\exp \big(- \big(\gamma X_{T}^{A_{0}, \pi} - X_{T \wedge \tau}^{A_{0}, \pi} \big) \big) | \mathcal{G}_{T \wedge \tau} \big] \quad = \quad \exp \big(\gamma Y_{T \wedge \tau}^{(\tau)} \big) \, ,$$

where $(Y^{(\tau)}, Z^{(\tau)})$ is solution of the BSDE

$$\begin{cases} dY_t^{(\tau)} = \left[\frac{\nu_t^2}{\gamma} + \nu_t Z_t^{(\tau)}\right] dt + Z_t^{(\tau)} dB_t, \\ Y_T^{(\tau)} = 0. \end{cases}$$

Utility Maximization with VA (Step 3)

$$V_{\mathbb{G}}(p) := \mathsf{sup}_{\pi \in \mathcal{A}^{\mathbb{G}}[0,T]} \, \mathbb{E} ig[Uig(X^{A_0,\pi}_{T} - F(p) ig) ig]$$

Theorem

The value function is given by

$$V_{\mathbb{G}}(p) = -\exp\left(-\gamma(A_0 - Y_0(p))\right),$$

where (Y(p), Z(p), U(p)) is a solution of

$$Y_{t}(p) = \widehat{F}(p) + \int_{t \wedge \tau}^{T \wedge \tau} \left(\lambda_{s} \frac{e^{\gamma U_{s}(p)} - 1}{\gamma} - \frac{\nu_{s}^{2}}{2\gamma} - \nu_{s} Z_{s}(p) \right) ds$$
$$- \int_{t \wedge \tau}^{T \wedge \tau} Z_{s}(p) dB_{s} - \int_{t \wedge \tau}^{T \wedge \tau} U_{s}(p) dH_{s} , \quad t \in [0, T] .$$

The Optimal Strategy

The Strategy

$$\pi_t^* := \left\{ egin{array}{ll} rac{
u_t}{\gamma \sigma_t} + rac{Z_t(
ho)}{\sigma_t} \;, & t \in [0, T \wedge au) \;, \ & \ rac{
u_t}{\gamma \sigma_t} + rac{Z_t^{(au)}}{\sigma_t} \;, & t \in [T \wedge au, T] \;. \end{array}
ight.$$

Methodology

Recapitulation

Indifference Fees

$$\sup_{\pi \in \mathcal{A}^{\mathcal{F}}[0,T]} \left\{ \mathbb{E}\left[U\left(X_{T}^{\pi}\right)\right]\right\} = \sup_{\pi \in \mathcal{A}^{\mathcal{G}}[0,T]} \left\{ \mathbb{E}\left[U\left(X_{T}^{\pi,A_{0}} - F(p)\right)\right]\right\}.$$

- \(\text{Utility Maximization:} \)
 - $\sqrt{\text{Classical Utility Maximization Problem. } V_0 = -\exp(\gamma y_0).}$

$$V_{\mathbb{G}}(p) = -\exp\left(-\gamma(A_0 - Y_0(p))\right).$$

- Existence of the Indifference Fees. $Y_0(p^*) A_0 = y_0$.
- Simulations.

Existence of the Indifference Fees

Consider
$$\psi(p) := Y_0(p) - y_0 - A_0$$
, $\forall p \in \mathbb{R}$.

Proposition

The function ψ is continuous and non-increasing on \mathbb{R} .

- (i) For any $p\in\mathbb{R}$, we have $\psi(p)>0$ i.e., for any fee p, we have $V_{\mathbb{C}}(p)< V_{\mathbb{F}}$.
- (ii) For any $p\in\mathbb{R}$, we have $\psi(p)<0$ i.e., for any fee p, we have $V_{\mathbb{G}}(p)>V_{\mathbb{F}}$.
- (iii) There exist p_1 and p_2 such that $\psi(p_1)\psi(p_2) < 0$. Then, there exists an indifference fee p^* .

Outline

- Variable Annuities
- 2 Model
- 3 Indifference fees
- Mumerical Results

Numerical results.

We assume that r and μ are Markov chains taking values in the states spaces $S^r = \{0, 0.01, \dots, 0.25\}$ and $S^\mu = \{0, 0.01, 0.02, \dots, 0.3\}$. We give the following numerical values to parameters:

$$\gamma = 1.3, \quad \lambda = 0.05, \quad \xi = 0, \quad A_0 = 1,$$

and, for the financial market parameters:

$$r_0 = 0.02, \quad \mu_0 = 0.15.$$

Market Risk

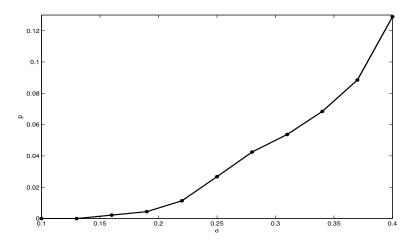


Figure : Ratchet option (T = 20).

Actuarial Risk

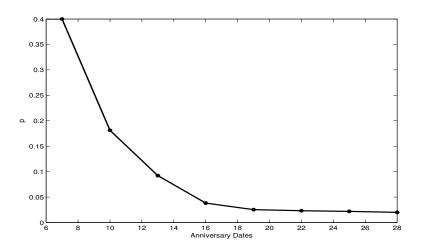


Figure : Ratchet option ($\sigma = 0.3$).

Roll up Guarantee Risk

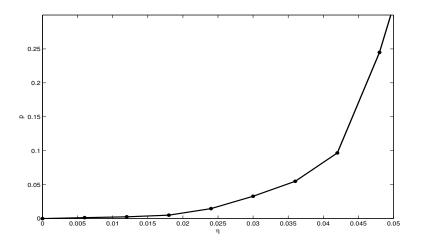


Figure : Roll up option (T = 20, $\sigma = 0.3$).

Thank you!

Ricardo ROMO ROMERO rickyromo@gmail.com

Questions?

Ricardo ROMO ROMERO rickyromo@gmail.com

Their respective transitional matrix are:

$$q_{i,j}^r = \begin{cases} \frac{1}{2} & \text{if} & i = j, \\ \frac{1}{2} & \text{if} & i = 1 \text{ and } j = 2, \\ \frac{1}{2} & \text{if} & i = 27 \text{ and } j = 26, \\ \frac{1}{4} & \text{if} & i = j + 1 \text{ and } i \leq 26, \\ \frac{1}{4} & \text{if} & i = j - 1 \text{ and } i \geq 2, \\ 0 & \text{else,} \end{cases}$$
 and
$$q_{i,j}^\mu = \begin{cases} \frac{1}{2} & \text{if} & i = j, \\ \frac{1}{2} & \text{if} & i = 1 \text{ and } j = 2, \\ \frac{1}{2} & \text{if} & i = 32 \text{ and } j = 31, \\ \frac{1}{4} & \text{if} & i = j + 1 \text{ and } i \leq 31, \\ \frac{1}{4} & \text{if} & i = j - 1 \text{ and } i \geq 2, \\ 0 & \text{else,} \end{cases}$$