Securitization and equilibrium pricing under relative performance concerns

Gonçalo dos Reis

University of Edinburgh

joint work with Jana Bielagk (HU Berlin)

2nd Young researchers in BSDEs

Bordeux, 09 July 2014

Outline

- Setup: market and securitization
 - Economic setup
- Solving the optimization
 - The individual
 - Aggregation and representative agent
- 3 More results on the entropic risk measure
- Outlook

 N Agents face tradable (financial) and non-tradable risk (say Temperature or Amount of rain).

- N Agents face tradable (financial) and non-tradable risk (say Temperature or Amount of rain).
- Securitization: "Someone" issues a new tradable derivative on the non-tradable risk to reduce the basis risk.

- N Agents face tradable (financial) and non-tradable risk (say Temperature or Amount of rain).
- Securitization: "Someone" issues a new tradable derivative on the non-tradable risk to reduce the basis risk.
- Performance Concern/Social Interaction: Agents optimize their own gains from trading but also pay attention to what other are doing.

- N Agents face tradable (financial) and non-tradable risk (say Temperature or Amount of rain).
- Securitization: "Someone" issues a new tradable derivative on the non-tradable risk to reduce the basis risk.
- Performance Concern/Social Interaction: Agents optimize their own gains from trading but also pay attention to what other are doing.
- ▶ How to price the derivative such that demand matches some constant supply?
- ▶ How to design the derivative s.t. the market "completes"?
- How does the social interaction component affects prices and individual risk perceptions?

Horst et al ('10); Espinosa & Touzi('10,'14); Frei & dR ('11)

The underlyings

$$(\Omega, \mathcal{F}, \mathbb{P})$$
; $t \in [0, T]$; with $W = (W^S, W^R)$.

Agents $A = \{a, b, c, ...\}$ are exposed to tradable and non-tradable risk factors:

Non-tradable risk: diffusion with additive noise:

$$dR_t = \mu^R(t, R_t)dt + \sigma^R(t, R_t)dW_t^R,$$

The tradable asset is a GBM type process

$$dS_t = S_t \mu^{S}(t, R_t, S_t) dt + S_t \sigma^{S}(t, R_t, S_t) dW_t^{S}$$

= $S_t \mu^{S} dt + \langle \sigma^{S}, dW_t \rangle$, $\sigma_t := (S_t \sigma_t^{S}, 0)$

Zero interest rates

Endowments and pricing measures

- Agents $a \in \mathbb{A}$ is endowed with payoff $H^a = H^a(S_T, R_T)$
- The market is a priori incomplete!

Endowments and pricing measures

- Agents $a \in \mathbb{A}$ is endowed with payoff $H^a = H^a(S_T, R_T)$
- The market is a priori incomplete!
- A derivative $H^D = H^D(S_T, R_T)$ is introduced in the market
 - n units of Derivative are available (fixed supply)
 - Priced to match supply & demand
- Agents now trade on S and H^D

Endowments and pricing measures

- Agents $a \in \mathbb{A}$ is endowed with payoff $H^a = H^a(S_T, R_T)$
- The market is a priori incomplete!
- A derivative $H^D = H^D(S_T, R_T)$ is introduced in the market
 - n units of Derivative are available (fixed supply)
 - Priced to match supply & demand
- Agents now trade on S and H^D

Assumption:

all functions are C_b^b , σ^S elliptic H^D completes the market

Pricing schemes

ullet Set of martingale measures $\mathbb{P}^{ heta}$ equivalent to \mathbb{P}

$$rac{oldsymbol{\sigma}\mathbb{P}^{ heta}}{oldsymbol{\sigma}\mathbb{P}}=\mathcal{E}ig(-\int_{0}^{\mathcal{T}}\langle heta,oldsymbol{W}
angleig),$$

 $dW^{\theta} = dW + \theta dt$ is a \mathbb{P}^{θ} -Brownian motion

- $\theta = (\theta^S, \theta^R)$ is the market price of risk
 - $\theta^{S} = \mu^{S}/\sigma^{S} \in \mathcal{S}^{\infty}$ is exogenously given
 - θ^R is endogenously given by an equilibrium condition.

HD's price process

• For a MPR $\theta = (\theta^S, \theta^R)$

$$\begin{split} B_t^{\theta} &= \mathbb{E}^{\theta}[H^D | \mathcal{F}_t] = \mathbb{E}^{\theta}[H^I] + \int_0^t \langle \kappa_s^{\theta}, dW_s^{\theta} \rangle \\ &= B_0^{\theta} + \int_0^t \langle \kappa_s^{\theta}, \theta_s \rangle ds + \int_0^t \langle \kappa_s^{\theta}, dW_s \rangle \end{split}$$

▶ Where volatility of H^D is $\kappa^{\theta} = (\kappa^{\theta, S}, \kappa^{\theta, R})$;

Assumption (Market completion)

$$\kappa^{\theta,R} \neq 0$$
 P-a.s..

The wealth process + final payoff

• The gains or losses from trading according to $\pi^{a,\theta} := (\pi^{a,1}, \pi^{a,2})$ are (recall $\theta = (\theta^S, \theta^R), \sigma = (S\sigma^S, 0)$)

$$\begin{split} V_t^{a,\theta}(\pi^a) &:= \int_0^t \pi_s^{a,1} dS_s + \int_0^t \pi_s^{a,2} dB_s^{\theta} \\ &= \int_0^t \langle \pi^{a,1} \sigma + \pi^{a,2} \kappa^{\theta}, \theta_s \rangle ds + \int_0^t \langle \pi^{a,1} \sigma + \pi^{a,2} \kappa^{\theta}, dW_s \rangle \end{split}$$

and agent's *a* payoff at terminal horizon T from trading according to $\pi^{a,\theta}$ is

$$H^a + V_T^{a, heta}(\pi^{a, heta})$$

Risk assessment and preferences

Risk Assessment of ξ^a via a risk measure $\rho^a(\xi^a)$

- translation invariance: $\rho(\xi + m) = \rho(\xi) m, m \in \mathbb{R}$,
- monotonicity: $\xi_1 \leq \xi_2$ implies $\rho(\xi_1) \geq \rho(\xi_2)$,
- convexity: $\xi \mapsto \rho(\xi)$ is convex .

Risk assessment and preferences

Risk Assessment of ξ^a via a risk measure $\rho^a(\xi^a)$

- translation invariance: $\rho(\xi + m) = \rho(\xi) m, m \in \mathbb{R}$,
- monotonicity: $\xi_1 \leq \xi_2$ implies $\rho(\xi_1) \geq \rho(\xi_2)$,
- convexity: $\xi \mapsto \rho(\xi)$ is convex .

A class of them is given by BSDE: $Y_0^a = Y_0^a(\xi^a)$

$$Y_t^a = \xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s$$

- Preferences of Agent a are encoded in g^a (C¹ + convex))
- Peng (2004), Gianin (2006), Cheridito et al. (2009, Delbaen et al. (2009), etc...

see references in Mastrogiacomo's + Tangpi's talks

Individual optimization

 $a \in \mathbb{A}$ with $|\mathbb{A}| < \infty$

Agent $a \in \mathbb{A}$ minimizes her risk by minimizing Y^a via π^a :

Outlook

$$Y_t^a = -\xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s$$

where

$$\xi^a = H^a + V_T^{a,\theta}(\pi^a)$$

Individual optimization

 $a \in \mathbb{A}$ with $|\mathbb{A}| < \infty$

Agent $a \in \mathbb{A}$ minimizes her risk by minimizing Y^a via π^a :

$$Y_t^a = -\xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s$$

where

$$\xi^a = H^a + (1 - \lambda^a) V_T^{a,\theta}(\pi^a) + \lambda^a \left(V_T^{a,\theta}(\pi^a) - \frac{1}{N-1} \sum_{b \neq a} V_T^{b,\theta}(\pi^b) \right)$$

Individual optimization

 $a \in \mathbb{A}$ with $|\mathbb{A}| < \infty$

Agent $a \in \mathbb{A}$ minimizes her risk by minimizing Y^a via π^a :

$$Y_t^a = -\xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s$$

where

$$egin{aligned} \xi^a &= H^a + (1-\lambda^a) V_T^{a, heta}(\pi^a) + \lambda^a \left(V_T^{a, heta}(\pi^a) - rac{1}{N-1} \sum_{b
eq a} V_T^{b, heta}(\pi^b)
ight) \ &= H^a + V_T^{a, heta}(\pi^a) - rac{\lambda^a}{|\mathbb{A}|-1} \sum_{b
eq a} V_T^{b, heta}(\pi^b), \end{aligned}$$

 $\lambda^a > 0$ is the concern rate

Admissibility and equilibrium

Admissibility sets A^a depend on g^a , hence: as we go!

Outlook

Definition (Equilibrium and MPR)

For a given θ we call $\{\pi_*^a\}_{a\in\mathbb{A}}$ an equilibrium if $\pi^a\in\mathcal{A}^a$ and

- $V_0^a(\pi_*^a,\pi_*^{-a}) \leq Y_0^a(\pi^a,\pi_*^{-a})$ for all admissible π^a , i.e. individual optimality, and
- $ho \sum_{b \in \mathbb{A}} \pi_*^{b,2} \equiv n$, i.e. market clearing condition for fixed net supply of derivatives.

Admissibility and equilibrium

Admissibility sets A^a depend on g^a , hence: as we go!

Outlook

Definition (Equilibrium and MPR)

For a given θ we call $\{\pi^a_*\}_{a\in\mathbb{A}}$ an equilibrium if $\pi^a\in\mathcal{A}^a$ and

- $V_0^a(\pi_*^a,\pi_*^{-a}) \leq Y_0^a(\pi^a,\pi_*^{-a})$ for all admissible π^a , i.e. individual optimality, and
- $\triangleright \sum_{b\in\mathbb{A}} \pi_*^{b,2} \equiv n$, i.e. market clearing condition for fixed net supply of derivatives.

 θ^R is an equilibrium market price of external risk (EMPR) if

- $\triangleright \mathcal{E}(-\int \langle (\theta^S, \theta^R), dw \rangle)$ is a true martingale
- \triangleright exist optimal $\pi^a \in \mathcal{A}^a, a \in \mathbb{A}$, such that

$$\sum_{a\in\mathbb{A}}\pi_t^{a,2}=n\quad \mathbb{P}\otimes\lambda-a.s.$$

The individual Aggregation and representative agent

Solving the optimization

The individual optimization problem - I

Outlook

$$Y_t^a = -\xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s$$
 $\xi^a := H^a + V_T^{a, \theta}(\pi^a) - rac{\lambda^a}{|\mathbb{A}| - 1} \sum_{b
eq a} V_T^{b, \theta}(\pi^b)$

The individual optimization problem - I

Outlook

$$Y_t^a = -\xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s$$
 $\xi^a := H^a + V_T^{a, heta}(\pi^a) - rac{\lambda^a}{|\mathbb{A}| - 1} \sum_{b
eq a} V_T^{b, heta}(\pi^b)$

By a change of variables (note $V_T = V_t + (V_T - V_t)$):

$$\widehat{Y}_t := Y_t + V_t^{a, heta} - rac{\lambda^a}{|\mathbb{A}| - 1} \sum_{b
eq a} V_t^{b, heta}(\pi^b)$$
 plus one for Z

leads to

The individual optimization problem - II

$$\widehat{Y}_t^a = -H^a + \int_t^T \widehat{G}(s,\pi^a,\widehat{Z}_s^a) ds - \int_t^T \widehat{Z}_s^a dW_s$$

Outlook

with

$$\widehat{G}^{a}(\omega, t, \pi_{t}^{a}, z) := g^{a}(t, z - \Upsilon_{t}^{a}) - \langle \Upsilon_{t}^{a}, \theta_{t} \rangle$$

and

$$\Upsilon^{a} := \pi^{a,1}\sigma + \pi^{a,2}\kappa^{\theta} - \frac{\lambda^{a}}{|\mathbb{A}| - 1} \sum_{b \in \mathbb{A} \setminus \{a\}} \left(\pi^{b,1}\sigma + \pi^{b,2}\kappa^{\theta} \right).$$

The individual optimization problem - II

Outlook

$$\widehat{Y}_t^a = -H^a + \int_t^T \widehat{G}(s,\pi^a,\widehat{Z}_s^a) ds - \int_t^T \widehat{Z}_s^a dW_s$$

with

$$\widehat{G}^a(\omega,t,\pi_t^a,z) := g^a(t,z-\Upsilon_t^a) - \langle \Upsilon_t^a, heta_t
angle$$

and

$$\Upsilon^{a} := \pi^{a,1}\sigma + \pi^{a,2}\kappa^{\theta} - \frac{\lambda^{a}}{|\mathbb{A}| - 1} \sum_{b \in \mathbb{A} \setminus \{a\}} \left(\pi^{b,1}\sigma + \pi^{b,2}\kappa^{\theta} \right).$$

Idea: if comparison holds

$$\min_{\pi^a} Y^a \Leftrightarrow \min_{\pi} \widehat{G}(t, \pi^a, z)$$
 pointwise.

FOC and entropic risk measure

If $g^a \in C^1$ then

$$(\mathsf{FOC}) \qquad \min_{\pi^a} \widehat{G} \Leftrightarrow \nabla_{\pi^a} \widehat{G} = 0$$

For the entropic risk measure (⇔ Exponential Utility):

Outlook

$$g^a(z) = \frac{1}{2\gamma_a}|z|^2$$
, $\gamma_a > 0$ risk aversion

FOC and entropic risk measure

If $g^a \in C^1$ then

$$(\mathsf{FOC}) \qquad \min_{\pi^a} \widehat{G} \Leftrightarrow \nabla_{\pi^a} \widehat{G} = 0$$

For the entropic risk measure (⇔ Exponential Utility):

Outlook

$$g^a(z) = \frac{1}{2\gamma_a}|z|^2, \qquad \gamma_a > 0$$
 risk aversion

then (using fixed net supply of H^D i.e. $\sum_a \pi^{a,2} = n$)

$$\Pi^{a,2} := \left(1 + \frac{\lambda^a}{|\mathbb{A}| - 1}\right)^{-1} \frac{\gamma_a \theta^R + \overline{Z}^{a,2}}{\kappa^{\theta,R}}.$$

$$\Pi^{a,1} := \frac{\gamma_a [\theta^S \kappa^{\theta,R} - \theta^R \kappa^{\theta,S}] + \widehat{Z}^{a,1} \kappa^{\theta,R} - \widehat{Z}^{a,2} \kappa^{\theta,S}}{\sigma^S S \kappa^{\theta,R}} + \frac{\lambda^a}{|\mathbb{A}| - 1} \sum_{h \neq s} \Pi^{b,1}.$$

Under the optimum

For the entropic risk measure, the BSDE for optimal strategy

Outlook

$$\widehat{Y}_t^a = -H^a + \int_t^T \widehat{G}(s,\Pi^a,\widehat{Z}_s^a) ds - \int_t^T \widehat{Z}_s^a dW_s$$

with

$$\begin{split} \widehat{G}^{a}(\omega,t,\Pi^{a}_{t},z) &:= g^{a}(t,z-\Upsilon^{a}_{t}(\Pi)) - \langle \Upsilon^{a}_{t}(\Pi),\theta_{t} \rangle \\ &= -\langle z,\theta \rangle - \frac{\gamma_{a}}{2} |\theta|^{2} \quad \rightarrow \text{no } \kappa^{\theta} = (\kappa^{S},\kappa^{R}) \text{ - Great!} \end{split}$$

Under the optimum

For the entropic risk measure, the BSDE for optimal strategy

Outlook

$$\widehat{Y}_t^a = -H^a + \int_t^T \widehat{G}(s, \Pi^a, \widehat{Z}_s^a) ds - \int_t^T \widehat{Z}_s^a dW_s$$

with

$$\begin{split} \widehat{G}^{a}(\omega,t,\Pi^{a}_{t},z) &:= g^{a}(t,z-\Upsilon^{a}_{t}(\Pi)) - \langle \Upsilon^{a}_{t}(\Pi),\theta_{t} \rangle \\ &= -\langle z,\theta \rangle - \frac{\gamma_{a}}{2} |\theta|^{2} \quad \rightarrow \text{no } \kappa^{\theta} = (\kappa^{S},\kappa^{R}) \text{ - Great!} \end{split}$$

but θ^R is unknown! Not great!

How to find θ^R ?

Aggregation of the risk measures

- Representative agent: for which risk minimization is equivalent to the existence of an equilibrium for the whole system, see Negishi ('60)
- the risk measure Y^{ab} of the rep. agent follows from inf-convolution techniques, see El Karoui & Barrieu (2005) and Mastrogiacomo's talk

For
$$\xi^a:=H^a+rac{n}{2}H^D$$
, $a\in\mathbb{A}$
$$Y^{ab}_t:=\inf\left\{Y^a_t\Big(\xi^a-F\Big)+Y^b\Big(\xi^b+F\Big)\right\}$$

Aggregation of the risk measures

- Representative agent: for which risk minimization is equivalent to the existence of an equilibrium for the whole system, see Negishi ('60)
- the risk measure Y^{ab} of the rep. agent follows from inf-convolution techniques, see El Karoui & Barrieu (2005) and Mastrogiacomo's talk

For
$$\xi^a:=H^a+rac{n}{2}H^D$$
, $a\in\mathbb{A}$
$$Y^{ab}_t:=\inf\left\{Y^a_t\Big(\xi^a-F\Big)+Y^b\Big(\xi^b+F\Big)\right\}$$

 \triangleright This does not work if $\lambda^a \neq \lambda^b$!

Weighted weightings of risk measures

$$Y^{ab}_t := \inf_{F \in L^\infty} \left\{ w^a Y^a_t \Big(\frac{\xi^a - F}{w^a} \Big) + w^b Y^b \Big(\frac{\xi^b + F}{w^b} \Big) \right\}.$$

Since the risk measures are given by BSDEs, this leads to a combination of the drivers

$$\widehat{g}^{ab}(z) := \inf_{x \in \mathbb{R}^2} \left\{ w^a g^a \left(\frac{z-x}{w^a} \right) + w^b g^b \left(\frac{x}{w^b} \right) \right\}.$$

with
$$w^a := 1/(1 + \lambda^a)$$
.

Again entropic

If $g^a(z) = |z|^2/(2\gamma_a)$ we obtain for the simple case $\mathbb{A} = \{a, b\}$:

Outlook

$$g^{ab}(z) = \frac{1}{2\gamma_R}|z|^2, \qquad \gamma_R := \frac{\gamma_a}{1+\lambda^a} + \frac{\gamma_b}{1+\lambda^b}.$$

and after variable transformation (as in single agent):

$$\widehat{Y}_T^{ab} := -\sum_a rac{1}{1+\lambda^a} (H^a + rac{n}{2} H^D)$$

and FOC for representative agent yields

$$rac{\widehat{Z}^{ab,1} - \pi^{ab,1} \sigma^{\mathcal{S}} \mathcal{S}}{\gamma_{\mathcal{B}}} = -\theta^{\mathcal{S}}, \qquad rac{\widehat{Z}^{ab,2}}{\gamma_{\mathcal{B}}} = -\theta^{\mathcal{B}}.$$

Again entropic

If $g^a(z) = |z|^2/(2\gamma_a)$ we obtain for the simple case $\mathbb{A} = \{a, b\}$:

Outlook

$$g^{ab}(z) = \frac{1}{2\gamma_R}|z|^2, \qquad \gamma_R := \frac{\gamma_a}{1+\lambda^a} + \frac{\gamma_b}{1+\lambda^b}.$$

and after variable transformation (as in single agent):

$$\widehat{Y}_T^{ab} := -\sum_a rac{1}{1+\lambda^a} (H^a + rac{n}{2} H^D)$$

and FOC for representative agent yields

$$rac{\widehat{Z}^{ab,1} - \pi^{ab,1} \sigma^{\mathcal{S}} \mathcal{S}}{\gamma_{\mathcal{B}}} = -\theta^{\mathcal{S}}, \qquad rac{\widehat{Z}^{ab,2}}{\gamma_{\mathcal{B}}} = -\theta^{\mathcal{B}}.$$

Theorem

Optimizing for the rep. agent ⇔ existence of equilibrium

Recipe

- Solve the BSDE for representative agent
 - ightharpoonup Get the \widehat{Z}^{ab} and hence $\theta^R = -\widehat{Z}^{ab,2}/\gamma_R$
- ▷ Solve the BSDE for the derivative price
 - \triangleright Get the κ^R and κ^S
 - \triangleright Get π^a for single agent from FOC
- \triangleright Solve the BSDE for the individual agents injecting the computed θ^R and κ

Following this we have way to analyze the system!

Entropic risk measure:

$$g^a(z) = \frac{|z|^2}{2\gamma_a}$$

Completion is attainable

Assumption: Everything is C_b^2 and $\partial_{x_2}H^D(x_1,x_2)>0$

Theorem (Equilibrium MPR exists + market completion)

$$(\theta^S, \theta^R) = (\theta^S, -\widehat{Z}^{ab,2}/\gamma_R)$$
 is the EMPR and $\kappa^R > 0$ $\mathbb{P} - a.s.$

Proof.

Malliavin calculus on the BSDE for the price of H^D

$$extbf{B}_t^{ heta} = extbf{H}^D - \int_t^T \langle \kappa_s^{ heta}, heta_s
angle extbf{d}s - \int_t^T \langle \kappa_s^{ heta}, extbf{d}W_s
angle$$

using the representation $\kappa^R = D^{W^R}B$

• Lots of work because $\theta^R = -\frac{1}{\gamma_R} Z^{ab,2}$

Parameter analysis

Theorem

 $\Rightarrow \gamma_R = \sum \gamma_a (1 + \lambda^a)^{-1}$ is Rep. agent risk aversion ⊳ n is number of units of H^D in the market

$$\partial_{\gamma_R} Y_t^W < 0$$

 $\partial_{\alpha} Y_t^W < 0$ $\partial_{\alpha} B_{\alpha}^{\theta} < 0$ and $\partial_{\alpha} \theta_t^R > 0$ $\forall t \ \mathbb{P} - a.s.$

$$\partial_n Y_t^w \leq 0$$
 $\partial_n B_0^{\theta} < 0$, and $\partial_n \theta_t^R > 0$, $\forall t, \mathbb{P} - a.s.$

Next?

- more parameter analysis (e.g. $\lambda^a = 0$ vs $\lambda^a > 0$)
 - ▶ We expect: if only 1 agent has perf. concerns then all are better off having them!
- other drivers g^a
- Compare with other relative performance concerns
- analysis for $|\mathbb{A}| \to \infty$
- Any other ideas?

Setup: market and securitization
Solving the optimization
More results on the entropic risk measure
Outlook

Thank you!

Thank you for your time!

Some References

- G.-E. Espinosa: Stochastic control methods for optimal portfolio investment, 2010, PhD Thesis, Ecole Polytechnique
- G.-E. Espinosa and N. Touzi: Optimal Investment under Relative Performance Concerns, 2013 (to appear in Math. Finance)
- C. Frei and G. Dos Reis (2011), A financial market with interacting investors: does an equilibrium exist? Mathematics and financial economics, 4, 161-182