Securitization and equilibrium pricing under relative performance concerns

Gonçalo dos Reis

University of Edinburgh

joint work with Jana Bielagk (HU Berlin)

2nd Young researchers in BSDEs

Bordeux, 09 July 2014

Outline

- 2 [Solving the optimization](#page-20-0)
	- **•** [The individual](#page-21-0)
	- [Aggregation and representative agent](#page-29-0)
- 3 [More results on the entropic risk measure](#page-35-0)

[Economic setup](#page-6-0)

Setup

N Agents face tradable (financial) and non-tradable risk (say Temperature or Amount of rain).

[Economic setup](#page-6-0)

Setup

- *N* Agents face tradable (financial) and non-tradable risk (say Temperature or Amount of rain).
- **Securitization**: "Someone" issues a new *tradable* derivative on the non-tradable risk to reduce the basis risk.

[Economic setup](#page-6-0)

Setup

- *N* Agents face tradable (financial) and non-tradable risk (say Temperature or Amount of rain).
- **Securitization**: "Someone" issues a new *tradable* derivative on the non-tradable risk to reduce the basis risk.
- **Performance Concern/Social Interaction**: Agents optimize their own gains from trading but also pay attention to what other are doing.

[Economic setup](#page-6-0)

Setup

- *N* Agents face tradable (financial) and non-tradable risk (say Temperature or Amount of rain).
- **Securitization**: "Someone" issues a new *tradable* derivative on the non-tradable risk to reduce the basis risk.
- **Performance Concern/Social Interaction**: Agents optimize their own gains from trading but also pay attention to what other are doing.
- \triangleright How to price the derivative such that demand matches some constant supply?
- \triangleright How to design the derivative s.t. the market "completes"?
- \triangleright How does the social interaction component affects prices and individual risk perceptions?

Horst et al ('10); Espinosa & Touzi('10,'14); Frei & dR ('11)

[Economic setup](#page-6-0)

The underlyings

$$
(\Omega,\mathcal{F},\mathbb{P});\,t\in[0,\,T];\,\text{with}\,\,W=(W^S,W^R).
$$

Agents $A = \{a, b, c, \ldots\}$ are exposed to tradable and non-tradable risk factors:

 \triangleright Non-tradable risk: diffusion with additive noise:

$$
dH_t = \mu^H(t, H_t)dt + \sigma^H(t, H_t)dW_t^H,
$$

 \triangleright The tradable asset is a GBM type process

$$
dS_t = S_t \mu^S(t, R_t, S_t) dt + S_t \sigma^S(t, R_t, S_t) dW_t^S
$$

= $S_t \mu^S dt + \langle \sigma^S, dW_t \rangle$, $\sigma_t := (S_t \sigma_t^S, 0)$

. Zero interest rates

[Economic setup](#page-6-0)

Endowments and pricing measures

- Agents $a \in A$ is endowed with payoff $H^a = H^a(S_T, R_T)$
- The market is a priori incomplete!

[Economic setup](#page-6-0)

Endowments and pricing measures

- Agents $a \in A$ is endowed with payoff $H^a = H^a(S_T, R_T)$
- The market is a priori incomplete!
- A derivative $H^D = H^D(\mathcal{S}_\mathcal{T}, \mathcal{R}_\mathcal{T})$ is introduced in the market
	- *n* units of Derivative are available (fixed supply)
	- Priced to match supply & demand
- Agents now trade on *S* and *H D*

[Economic setup](#page-6-0)

Endowments and pricing measures

- Agents $a \in A$ is endowed with payoff $H^a = H^a(S_T, R_T)$
- The market is a priori incomplete!
- A derivative $H^D = H^D(\mathcal{S}_\mathcal{T}, \mathcal{R}_\mathcal{T})$ is introduced in the market
	- *n* units of Derivative are available (fixed supply)
	- Priced to match supply & demand
- Agents now trade on *S* and *H D*

Assumption:

all functions are C_b^b , σ^S elliptic *H ^D* completes the market

[Economic setup](#page-6-0)

Pricing schemes

Set of martingale measures \mathbb{P}^{θ} equivalent to $\mathbb P$

$$
\frac{d\mathbb{P}^\theta}{d\mathbb{P}} = \mathcal{E}\big(-\int_0^T \langle \theta, W \rangle\big),
$$

 $dW^{\theta} = dW + \theta dt$ is a \mathbb{P}^{θ} -Brownian motion

 $\theta = (\theta^\mathcal{S}, \theta^R)$ is the *market price of risk*

$$
\bullet \ \theta^{\mathcal{S}} = \mu^{\mathcal{S}} / \sigma^{\mathcal{S}} \in \mathcal{S}^{\infty} \text{ is exogenously given}
$$

 θ^R is endogenously given by an equilibrium condition.

[Economic setup](#page-6-0)

H ^D's price process

• For a MPR
$$
\theta = (\theta^S, \theta^R)
$$

\n
$$
B_t^{\theta} = \mathbb{E}^{\theta}[H^D | \mathcal{F}_t] = \mathbb{E}^{\theta}[H'] + \int_0^t \langle \kappa_s^{\theta}, dW_s^{\theta} \rangle
$$
\n
$$
= B_0^{\theta} + \int_0^t \langle \kappa_s^{\theta}, \theta_s \rangle ds + \int_0^t \langle \kappa_s^{\theta}, dW_s \rangle
$$

 \triangleright Where volatility of H^D is $\kappa^\theta = (\kappa^{\theta, \mathcal{S}}, \kappa^{\theta, R});$

Assumption (Market completion)

 $\kappa^{\theta, R} \neq \mathsf{0}$ P-a.s..

[Economic setup](#page-6-0)

The wealth process $+$ final payoff

• The gains or losses from trading according to $\pi^{\mathbf{a},\theta} := (\pi^{\mathbf{a},1}, \pi^{\mathbf{a},2})$ are (recall $\theta = (\theta^\mathcal{S}, \theta^\mathcal{R}), \, \sigma = (\mathcal{S}\sigma^\mathcal{S}, \mathsf{0}))$

$$
V_t^{a,\theta}(\pi^a) := \int_0^t \pi_s^{a,1} dS_s + \int_0^t \pi_s^{a,2} dB_s^{\theta}
$$

=
$$
\int_0^t \langle \pi^{a,1} \sigma + \pi^{a,2} \kappa^{\theta}, \theta_s \rangle ds + \int_0^t \langle \pi^{a,1} \sigma + \pi^{a,2} \kappa^{\theta}, dW_s \rangle
$$

and agent's *a* payoff at terminal horizon *T* from trading according to $\pi^{\boldsymbol{a},\theta}$ is

$$
H^a + V^{a,\theta}_T(\pi^{a,\theta})
$$

[Economic setup](#page-6-0)

Risk assessment and preferences

Risk Assessment of ξ^a via a risk measure $\rho^a(\xi^a)$

- **o** translation invariance: $\rho(\xi + m) = \rho(\xi) m$, $m \in \mathbb{R}$,
- monotonicity: $\xi_1 \leq \xi_2$ implies $\rho(\xi_1) \geq \rho(\xi_2)$,
- convexity: $\xi \mapsto \rho(\xi)$ is convex.

[Economic setup](#page-6-0)

Risk assessment and preferences

Risk Assessment of ξ^a via a risk measure $\rho^a(\xi^a)$

- **o** translation invariance: $\rho(\xi + m) = \rho(\xi) m$, $m \in \mathbb{R}$,
- **monotonicity:** $\xi_1 < \xi_2$ implies $\rho(\xi_1) > \rho(\xi_2)$,
- convexity: $\xi \mapsto \rho(\xi)$ is convex.

A class of them is given by BSDE: $Y_0^a = Y_0^a(\xi^a)$

$$
Y_t^a = \xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s
$$

- Preferences of Agent *a* are encoded in g^a (C^1 + convex))
- Peng (2004), Gianin (2006), Cheridito et al. (2009, Delbaen et al. (2009), etc...

see references in Mastrogiacomo's + Tangpi's talks

[Economic setup](#page-6-0)

Individual optimization

 $a \in A$ with $|A| < \infty$ Agent $a \in A$ minimizes her risk by minimizing Y^a via π^a :

$$
Y_t^a = -\xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s
$$

where

 $\xi^a = H^a +$ $V^{a,\theta}_{\tau}$ $T^{\boldsymbol{a},\theta}(\pi^{\boldsymbol{a}})$

[Economic setup](#page-6-0)

Individual optimization

 $a \in A$ with $|A| < \infty$ Agent $a \in A$ minimizes her risk by minimizing Y^a via π^a :

$$
Y_t^a = -\xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s
$$

where

$$
\xi^a = H^a + (1 - \lambda^a) V_T^{a,\theta}(\pi^a) + \lambda^a \left(V_T^{a,\theta}(\pi^a) - \frac{1}{N-1} \sum_{b \neq a} V_T^{b,\theta}(\pi^b) \right)
$$

[Economic setup](#page-6-0)

Individual optimization

 $a \in A$ with $|A| < \infty$ Agent $a \in A$ minimizes her risk by minimizing Y^a via π^a :

$$
Y_t^a = -\xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s
$$

where

$$
\xi^{a} = H^{a} + (1 - \lambda^{a}) V_T^{a,\theta}(\pi^{a}) + \lambda^{a} \left(V_T^{a,\theta}(\pi^{a}) - \frac{1}{N - 1} \sum_{b \neq a} V_T^{b,\theta}(\pi^{b}) \right)
$$

= $H^{a} + V_T^{a,\theta}(\pi^{a}) - \frac{\lambda^{a}}{|\mathbb{A}|-1} \sum_{b \neq a} V_T^{b,\theta}(\pi^{b}),$

 $\lambda^a > 0$ is the concern rate

[Economic setup](#page-6-0)

Admissibility and equilibrium

Admissibility sets \mathcal{A}^a depend on g^a , hence: as we go!

Definition (Equilibrium and MPR)

For a given θ we call $\{\pi_*^{\boldsymbol{a}}\}_{\boldsymbol{a}\in\mathbb{A}}$ an equilibrium if $\pi^{\boldsymbol{a}}\in\mathcal{A}^{\boldsymbol{a}}$ and

- $\vDash Y_0^a(\pi_*^a, \pi_*^{-a}) ≤ Y_0^a(\pi^a, \pi_*^{-a})$ for all admissible π^a , i.e. individual optimality, and
- \rhd $\sum_{b \in \mathbb{A}} \pi^{b,2}_{\ast} \equiv$ *n*, i.e. market clearing condition for fixed net supply of derivatives.

[Economic setup](#page-6-0)

Admissibility and equilibrium

Admissibility sets \mathcal{A}^a depend on g^a , hence: as we go!

Definition (Equilibrium and MPR)

For a given θ we call $\{\pi_*^{\boldsymbol{a}}\}_{\boldsymbol{a}\in\mathbb{A}}$ an equilibrium if $\pi^{\boldsymbol{a}}\in\mathcal{A}^{\boldsymbol{a}}$ and

- $\vDash Y_0^a(\pi_*^a, \pi_*^{-a}) ≤ Y_0^a(\pi^a, \pi_*^{-a})$ for all admissible π^a , i.e. individual optimality, and
- \rhd $\sum_{b \in \mathbb{A}} \pi^{b,2}_{\ast} \equiv$ *n*, i.e. market clearing condition for fixed net supply of derivatives.

 $\theta^{\pmb{R}}$ is an equilibrium market price of external risk (EMPR) if

- . E(− R h(θ *^S*, θ*R*), *dw*i) is a true martingale
- \triangleright exist optimal $\pi^a \in \mathcal{A}^a$, $a \in \mathbb{A}$, such that

$$
\sum_{a\in A}\pi_t^{a,2}=n\quad\mathbb{P}\otimes\lambda-a.s.
$$

Gonçalo dos Reis [Equilibrium pricing under relative performance concerns](#page-0-0)

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

Solving the optimization

[The individual](#page-22-0) [Aggregation and representative agent](#page-29-0)

The individual optimization problem - I

$$
Y_t^a = -\xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s
$$

$$
\xi^a := H^a + V_T^{a,\theta} (\pi^a) - \frac{\lambda^a}{|\mathbb{A}|-1} \sum_{b \neq a} V_T^{b,\theta} (\pi^b)
$$

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

The individual optimization problem - I

$$
Y_t^a = -\xi^a + \int_t^T g^a(s, Z_s^a) ds - \int_t^T Z_s^a dW_s
$$

$$
\xi^a := H^a + V_T^{a,\theta} (\pi^a) - \frac{\lambda^a}{|\mathbb{A}| - 1} \sum_{b \neq a} V_T^{b,\theta} (\pi^b)
$$

By a change of variables (note $V_T = V_t + (V_T - V_t)$):

$$
\widehat{Y}_t := Y_t + V_t^{a,\theta} - \frac{\lambda^a}{|\mathbb{A}|-1} \sum_{b \neq a} V_t^{b,\theta}(\pi^b) \qquad \text{plus one for } Z
$$

leads to

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

The individual optimization problem - II

$$
\widehat{Y}_{t}^{a}=-H^{a}+\int_{t}^{T}\widehat{G}(s,\pi^{a},\widehat{Z}_{s}^{a})ds-\int_{t}^{T}\widehat{Z}_{s}^{a}dW_{s}
$$

with

$$
\widehat{G}^{\mathcal{a}}(\omega, t, \pi^{a}_{t}, z) := g^{\mathcal{a}}(t, z - \Upsilon^{a}_{t}) - \langle \Upsilon^{a}_{t}, \theta_{t} \rangle
$$

and

$$
\Upsilon^a:=\pi^{a,1}\sigma+\pi^{a,2}\kappa^\theta-\frac{\lambda^a}{|\mathbb{A}|-1}\sum_{b\in\mathbb{A}\setminus\{a\}}\left(\pi^{b,1}\sigma+\pi^{b,2}\kappa^\theta\right).
$$

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

The individual optimization problem - II

$$
\widehat{Y}_{t}^{a}=-H^{a}+\int_{t}^{T}\widehat{G}(s,\pi^{a},\widehat{Z}_{s}^{a})ds-\int_{t}^{T}\widehat{Z}_{s}^{a}dW_{s}
$$

with

$$
\widehat{G}^{\mathcal{a}}(\omega, t, \pi^{a}_{t}, z) := g^{\mathcal{a}}(t, z - \Upsilon^{a}_{t}) - \langle \Upsilon^{a}_{t}, \theta_{t} \rangle
$$

and

$$
\Upsilon^{\bm{a}}:=\pi^{\bm{a},\bm{1}}\sigma+\pi^{\bm{a},\bm{2}}\kappa^{\theta}-\frac{\lambda^{\bm{a}}}{|\mathbb{A}|-1}\sum_{\bm{b}\in\mathbb{A}\backslash\{\bm{a}\}}\left(\pi^{\bm{b},\bm{1}}\sigma+\pi^{\bm{b},\bm{2}}\kappa^{\theta}\right).
$$

Idea: if comparison holds

$$
\min_{\pi^a} Y^a \quad \Leftrightarrow \quad \min_{\pi} \widehat{G}(t, \pi^a, z) \quad \text{pointwise.}
$$

Gonçalo dos Reis [Equilibrium pricing under relative performance concerns](#page-0-0)

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

FOC and entropic risk measure

If $g^a \in C^1$ then

(FOC)
$$
\min_{\pi^a} \widehat{G} \Leftrightarrow \nabla_{\pi^a} \widehat{G} = 0
$$

For the entropic risk measure (\Leftrightarrow Exponential Utility):

$$
g^{a}(z) = \frac{1}{2\gamma_{a}}|z|^{2}, \qquad \gamma_{a} > 0 \text{ risk aversion}
$$

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

FOC and entropic risk measure

If $g^a \in C^1$ then

(FOC)
$$
\min_{\pi^a} \widehat{G} \Leftrightarrow \nabla_{\pi^a} \widehat{G} = 0
$$

For the entropic risk measure (\Leftrightarrow Exponential Utility):

$$
g^{a}(z) = \frac{1}{2\gamma_{a}}|z|^{2}, \qquad \gamma_{a} > 0 \text{ risk aversion}
$$

then (using fixed net supply of H^D i.e. $\sum_a \pi^{a,2} = n$)

$$
\begin{aligned} \Pi^{a,2} &:= \left(1+\frac{\lambda^a}{|\mathbb{A}|-1}\right)^{-1}\frac{\gamma_a\theta^B+\widehat{Z}^{a,2}}{\kappa^{\theta,B}}.\\ \Pi^{a,1} &:= \frac{\gamma_a[\theta^S\kappa^{\theta,B}-\theta^R\kappa^{\theta,S}] + \widehat{Z}^{a,1}\kappa^{\theta,B}-\widehat{Z}^{a,2}\kappa^{\theta,S}}{\sigma^SS\kappa^{\theta,B}} + \frac{\lambda^a}{|\mathbb{A}|-1}\sum_{b\neq a}\Pi^{b,1}. \end{aligned}
$$

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

Under the optimum

For the entropic risk measure, the BSDE for optimal strategy

$$
\widehat{Y}_{t}^{a}=-H^{a}+\int_{t}^{T}\widehat{G}(s,\Pi^{a},\widehat{Z}_{s}^{a})ds-\int_{t}^{T}\widehat{Z}_{s}^{a}dW_{s}
$$

with

$$
\begin{aligned} \widehat{G}^a(\omega, t, \Pi_t^a, z) &:= g^a(t, z - \Upsilon_t^a(\Pi)) - \langle \Upsilon_t^a(\Pi), \theta_t \rangle \\ &= -\langle z, \theta \rangle - \frac{\gamma_a}{2} |\theta|^2 \quad \to \text{no } \kappa^\theta = (\kappa^S, \kappa^R) \text{ - Great!} \end{aligned}
$$

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

Under the optimum

For the entropic risk measure, the BSDE for optimal strategy

$$
\widehat{Y}_{t}^{a}=-H^{a}+\int_{t}^{T}\widehat{G}(s,\Pi^{a},\widehat{Z}_{s}^{a})ds-\int_{t}^{T}\widehat{Z}_{s}^{a}dW_{s}
$$

with

$$
\begin{aligned} \widehat{G}^a(\omega, t, \Pi_t^a, z) &:= g^a(t, z - \Upsilon_t^a(\Pi)) - \langle \Upsilon_t^a(\Pi), \theta_t \rangle \\ &= -\langle z, \theta \rangle - \frac{\gamma_a}{2} |\theta|^2 \quad \to \text{no } \kappa^\theta = (\kappa^S, \kappa^R) \text{ - Great!}\end{aligned}
$$

but $\theta^{\pmb{R}}$ is unknown! Not great!

How to find θ^R ?

[The individual](#page-21-0) [Aggregation and representative agent](#page-30-0)

Aggregation of the risk measures

- *Representative agent*: for which risk minimization is equivalent to the existence of an equilibrium for the whole system, see Negishi ('60)
- the risk measure Y^{ab} of the rep. agent follows from inf-convolution techniques, see El Karoui & Barrieu (2005) and Mastrogiacomo's talk

For
$$
\xi^a := H^a + \frac{n}{2}H^D
$$
, $a \in \mathbb{A}$

$$
Y_t^{ab} := \inf \left\{ Y_t^a \Big(\xi^a - F \Big) + Y^b \Big(\xi^b + F \Big) \right\}
$$

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

Aggregation of the risk measures

- *Representative agent*: for which risk minimization is equivalent to the existence of an equilibrium for the whole system, see Negishi ('60)
- the risk measure Y^{ab} of the rep. agent follows from inf-convolution techniques, see El Karoui & Barrieu (2005) and Mastrogiacomo's talk

For
$$
\xi^a := H^a + \frac{n}{2}H^D
$$
, $a \in \mathbb{A}$

$$
Y_t^{ab} := \inf \left\{ Y_t^a \Big(\xi^a - F \Big) + Y^b \Big(\xi^b + F \Big) \right\}
$$

 \triangleright This does not work if $\lambda^\mathbf{a}\neq\lambda^\mathbf{b}!$

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

Weighted weightings of risk measures

$$
Y_t^{ab} := \inf_{F \in L^{\infty}} \left\{ w^a Y_t^a \left(\frac{\xi^a - F}{w^a} \right) + w^b Y^b \left(\frac{\xi^b + F}{w^b} \right) \right\}.
$$

Since the risk measures are given by BSDEs, this leads to a combination of the drivers

$$
\widehat{g}^{ab}(z) := \inf_{x \in \mathbb{R}^2} \left\{ w^a g^a \left(\frac{z - x}{w^a} \right) + w^b g^b \left(\frac{x}{w^b} \right) \right\}.
$$

with $w^a := 1/(1 + \lambda^a)$.

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

Again entropic

If
$$
g^a(z) = |z|^2/(2\gamma_a)
$$
 we obtain for the simple case $\mathbb{A} = \{a, b\}$:

$$
g^{ab}(z)=\frac{1}{2\gamma_B}|z|^2,\qquad \gamma_B:=\frac{\gamma_a}{1+\lambda^a}+\frac{\gamma_b}{1+\lambda^b}.
$$

and after variable transformation (as in single agent):

$$
\widehat{Y}_T^{ab} := -\sum_a \frac{1}{1+\lambda^a} (H^a + \frac{n}{2}H^D)
$$

and FOC for representative agent yields

$$
\frac{\widehat{Z}^{ab,1} - \pi^{ab,1}\sigma^S S}{\gamma_B} = -\theta^S, \qquad \frac{\widehat{Z}^{ab,2}}{\gamma_B} = -\theta^R.
$$

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

Again entropic

If
$$
g^a(z) = |z|^2/(2\gamma_a)
$$
 we obtain for the simple case $\mathbb{A} = \{a, b\}$:

$$
g^{ab}(z)=\frac{1}{2\gamma_B}|z|^2,\qquad \gamma_B:=\frac{\gamma_a}{1+\lambda^a}+\frac{\gamma_b}{1+\lambda^b}.
$$

and after variable transformation (as in single agent):

$$
\widehat{Y}_T^{ab} := -\sum_a \frac{1}{1+\lambda^a} (H^a + \frac{n}{2}H^D)
$$

and FOC for representative agent yields

$$
\frac{\widehat{Z}^{ab,1} - \pi^{ab,1}\sigma^S S}{\gamma_B} = -\theta^S, \qquad \frac{\widehat{Z}^{ab,2}}{\gamma_B} = -\theta^R.
$$

Theorem

Optimizing for the rep. agent \Leftrightarrow existence of equilibrium

Gonçalo dos Reis [Equilibrium pricing under relative performance concerns](#page-0-0)

[The individual](#page-21-0) [Aggregation and representative agent](#page-29-0)

Recipe

- \triangleright Solve the BSDE for representative agent
	- \triangleright Get the \overline{Z}^{ab} and hence $\theta^R = -\overline{Z}^{ab,2}/\gamma_R$
- \triangleright Solve the BSDE for the derivative price
	- \triangleright Get the κ^R and κ^S
	- \triangleright Get π^a for single agent from FOC
- \triangleright Solve the BSDE for the individual agents injecting the computed $\theta^{\textit{R}}$ and κ

Following this we have way to analyze the system!

Entropic risk measure:

$$
g^a(z)=\frac{|z|^2}{2\gamma_a}
$$

Gonçalo dos Reis [Equilibrium pricing under relative performance concerns](#page-0-0)

Completion is attainable

Assumption: Everything is C_b^2 and $\partial_{x_2} H^D(x_1, x_2) > 0$

Theorem (Equilibrium MPR exists + market completion)

 $(\theta^S, \theta^R) = (\theta^S, -\hat{Z}^{ab,2}/\gamma_R)$ is the EMPR and $\kappa^R > 0 \ge -a.s.$

Proof.

Malliavin calculus on the BSDE for the price of *H D*

$$
B_t^{\theta} = H^D - \int_t^T \langle \kappa_s^{\theta}, \theta_s \rangle ds - \int_t^T \langle \kappa_s^{\theta}, dW_s \rangle
$$

 u sing the representation $\kappa^R = D^{W^R}B$

Lots of work because $\theta^R = -\frac{1}{\gamma_R} Z^{ab,2}$

Parameter analysis

Theorem

 \triangleright $\gamma_\mathsf{R} = \sum \gamma_\mathsf{a} (1 + \lambda^\mathsf{a})^{-1}$ is Rep. agent risk aversion . *n is number of units of H^D in the market*

$$
\begin{aligned}\n\partial_{\gamma_R}Y_t^w &< 0 \\
\partial_nY_t^w &\leq 0 \\
\end{aligned}\n\quad \partial_nB_0^\theta &< 0, \quad \text{and} \quad \partial_n\theta_t^R &> 0, \quad \forall t, \ \mathbb{P}-a.s.
$$

Next?

- more parameter analysis (e.g. $\lambda^a = 0$ vs $\lambda^a > 0$)
	- \triangleright We expect: if only 1 agent has perf. concerns then all are better off having them!
- other drivers *g a*
- Compare with other relative performance concerns
- analysis for $|\mathbb{A}| \to \infty$
- • Any other ideas?

Thank you!

Thank you for your time!

Gonçalo dos Reis [Equilibrium pricing under relative performance concerns](#page-0-0)

Some References

- G.-E. Espinosa: Stochastic control methods for optimal portfolio investment, 2010, PhD Thesis, Ecole Polytechnique
- G.-E. Espinosa and N. Touzi : Optimal Investment under Relative Performance Concerns, 2013 (*to appear in Math. Finance*)
- C. Frei and G. Dos Reis (2011), A financial market with interacting investors: does an equilibrium exist? Mathematics and financial economics, 4, 161-182