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Peacocks

Peacocks

e A peacock is a stochastic process (X;, t > 0), if
(i) it is integrable, i.e. E[|X¢|] < o0, Vt > 0;

(ii) it increases in convex ordering, i.e. for every convex function
¢ :R — R, the map t — E[¢(X;)] is increasing.

e Kellerer's theorem : Every peacock has the same one-dimensional
marginals as a martingale (M, t > 0), i.e
E[M:|M,,0 < r <s] = Ms and X; ~ M; in law for every t > 0.
e Remarks :
@ PCOC : “Processus Croissant pour |'Ordre Convexe’.

@ A peacock is determined by the family of one-dimensional
marginal distributions.
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Peacocks

Peacocks and
Associated
Martingales, with
Explicit Constructions
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Peacocks

Peacocks

A proud peacock spreads
Its tail pretending to be

A martingale.
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Peacocks

Optimal martingale peacocks

e Let i = (ut, t > 0) be a peacock, & be a reward/cost function on
the martingale M, we look for the optimal martingale associated to
the peacocks 1 :

sup E[¢(M)].
M martingale peacock
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Peacocks

Martingale Optimal Transport

e Monge-Kantorovich's Optimal Transportation Problem :

sup EF [C(Xo, Xl)]
PeP(10,k1)

= inf {pio(X0) + (M) < do(x) + M () = c(x,¥)}.

e Martingale Transportation Problem :

sup EP [C(Xo, Xl)]
PeM(po,p11)

= inf {po(A0) + i (M) : Mo(x) + Ma(y) + h(x)(y — %) = clx, ) }.
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Peacocks

Martingale Optimal Transport and Finance

e Primal problem : finding extremal martingale given marginals :

sup E[§(M)]
MeM(po,p1)

e Dual problem : finding the minimum super hedging cost :
(Beiglbock, Henry-Labordére, Penkner)

inf { 1o(R0) + 11 (M) < 20(X0) + 21 (%) + h(X0)(Xa — Xo) = £(X0, X0),
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Peacocks

Main problems

e Given a peacock p = (put)e>0,

sup E[¢(M)].
M martingale peacock

e Main problems
@ Duality
@ Find the optimal martingale
@ Find the dual optimazer

@ The value
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A discrete time martingale transport problem

Martingale Transportation Problem

e Monge-Kantorovich's Optimal Transportation Problem :

sup EF [C(Xo, Xl)]
PeP(10,k1)

= inf {pio(X0) + (M) < do(x) + M () = c(x,¥)}.

e Martingale Transportation Problem :

sup EP [C(Xo, Xl)]
PeM(po,p11)

= inf {po(A0) + i (M) : Mo(x) + Ma(y) + h(x)(y — %) = clx, ) }.
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A discrete time martingale transport problem

Martingale version of Brenier's theorem

e Brenier's theorem (Fréchet-Hoeffding coupling) in the
one-dimensional case : when 0,,c > 0, the solution is given by the
monotone transference plan T := Fl_1 o Fy.

e Martingale version (Beiglbock-Juillet, Henry-Labordére -Touzi) :
When 0., c > 0, the optimal solution is given by the left-monotone
martingale transference plan (which is a binomial model).

e The transition kernel of the binomial model is, with

Ta(x) < x < Ty(x), q(x) :== T:E;)%d_gzx)’

T.(x, dy) = q(x)07,(x)(dy) + (1 — q(x))d7,x)(dy)-
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A discrete time martingale transport problem

Martingale version of Brenier's theorem

Determinate T, and T4 : assume that 6 F := F; — Fg has only one
local maximizer m.

e Coupled ODE, on [m, c0),

d(0F o Ty) = —(1—q)dFy, d(Fio T,)= qdFo.

e Resolution of ODE : denote g(x,y) := F; ' (Fo(x) + 6F(y)),

Tq(x)

| R©) - or@+ [ (ete) - 0dsF©) =0

| T.(x) = g(x. Ta(x)).
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A discrete time martingale transport problem

Martingale version of Brenier's theorem
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Figure : An example of T, and T,.
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A discrete time martingale transport problem

The optimal dual components

e The dynamic strategy h, :
1oy S0 Tu(x)) = ex(x, Ta(x))
hb) = Tu(x) — Ta(x)
he(x) = ho (T 1 (x)) + ¢, (x, %) — ¢, (T (x), x), ¥x € (—o0, m).

, Vx € [m, 00),

e The static strategy (Ao, A1) :

/\/1 = C}/(Tilv )= hio T717 T = 7_uill[m,oo) + 7_d_ll(*oo,m)'
)‘0 = q(C('7 Tu) - /\l(Tu)) + (1 — q)(c(-, Td) — )\1(Td)).
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A discrete time martingale transport problem

The multi-marginals case

e An easy extension to the multi-marginals case

n

E¥ Xie—1, Xk)| .
PeM(S;OF,)...M) [;C( k=1 k)}

e The extremal model is a Markov chain (martingale), and the
optimal dual strategies are all explicit.

e What happens if n — oo ?
@ Do they “converge”’?

o the criteria function,
e the Markov chain,
o the super hedging strategy.

@ Does the limit keep the optimality ?
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Main results
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Problem formulation
Main results
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Limit of the criteria function

e Assumption : c(x, x) = ¢,(x,x) =0, cqy(x,y) > 0.
e Quadratic variation (Fdllmer) of a cadlag path x : [0,1] — R,

lim Z (th—th,1)25tk,1(dt)-

n—o00
1<k<n

e It is proved in Hobson and Klimmek (2012) that

n 1 1
> el i) = €0 = 5 [ epleemddldi + 3 el

k=1 0<t<1
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Problem formulation
Main results
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Continuous-time martingale transport

e Let 1 = (ut)o<t<1 be increasing in convex ordering,
right-continuous and unif. integrable.

e Let Q := D([0,1],R), M, the set of martingale measures on Q
and M. (u) that subset of measures under which X fits all
marginals.

e MT problem

Pso(pt) :=  sup EP[C(X.)].
PeMoo (1)
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Problem formulation
Main results
Continuous-time limit Applications

Dual formulation

e Dynamic strategy : Hp : [0, 1] x Q — R denotes the set of all
predictable, locally bounded processes,

H = {H € Hg : H- X is a P-supermartingale for every P € ./\/loo}.
o A= {\(x,dt) = \O(t, x)y(dt),
M) = (A€ A = () < oo}, )= [ [ X0t x)nelae)(ao)

e Dual problem

1
Doo(1t) := {(H, NE /0 A X, dt) + (H - X)1 > C(X), P-ass., VP € Moo}.
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Problem formulation
Main results
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The limit of Markov chain

e (i) Suppose that (1it)e[o,1] admits smooth density functions
f(t,x). Denote by F(t,x) the distribution function.
(ii) x — 0¢F(t, x) has only one local maximizer m(t).

e Define T4 :[0,1) x [m(t),00) — R by

| x-gafiede = o

Ta(t,x)

Ja(t,x) == x— Ty(t,x)

OtF(t, Ty(t, x)) — 0cF(t, x)
f(t,x) ’

Ju(t,x) =
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Technical Lemma

The functions j4 and j, are both continuous in (t,x) and locally
Lipschitz in x.

We have the asymptotic estimates

To(t, x) = x + eju(t, x) + 0(62), T5(t, x) = x — ja(t,x) + O(e).
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Problem formulation
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The limit of dual component

e Dynamic strategy : h* : [0,1) x R is defined by

cx(x,x) — ex(x, T4(t, x))
jd(t,X)
h*(t, x) = h*(t, T; 1t x)) — ¢, (T 1 (t, x), %), x < m(t).

Oxh*(t,x) := , x> m(t),

e Static strategy : let /* and A§ be defined by
O™ (t, x) := —h*(t,x),

3 = 00+ (007 + (070) =97 a0+ e = () ) Lezmtey
the static strategy is given by

1
’Lf’J*(17 X) - ’U}'*(O,X) + / )\S(t,x)dt.
JO
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Main results

Theorem

Let (m")p>1 be a sequence of partitions of [0,1], and X" be the
associated optimal Markov chain, then the law of X" converge to
P* € Mo(), under which X is local Lévy process

ot .
Xe = Xo — / 1X57>m(5)jd(s,Xsf)(st — j_—:(s,Xsf)ds),
0

where N is a pure jump process with predictable compensated
process j.—z. Under further integrability conditions, we have
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Robust hedging of variance swap

e The payoff of variance swap : in discrete-time case
n 2 Xy - . .
> hqlog X, + in continuous-time case

1io/[x]wr > o 2 X
o XE & X

e Application of the main result with c(x, y) := log?(x/y), we find
an optimal no-arbitrage bounds as well as the super-hedging
strategies.
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