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Introduction

Some NLP tasks

Spam detection
Let’s&go&to&Agra!&

Buy$V1AGRA$…$

Part of Speech (POS) tagging

Colorless'''green'''ideas'''sleep'''furiously

ADJ'''''''ADJ''''''NOUN''VERB'''''ADV

Coreference resolution

Carter'told'Mubarak'he'shouldn’t'run'again

Syntactic Parsing

I see him with a telescope

Word Sense Disambiguation

I need new batteries for my mouse

Machine Translation

13�����	����…�

The 13th Shanghai Film festival ...

Paraphrase
XYZ'acquired'ABC'yesterday

ABC'has'been'taken'over'by'XYZ

Summarization
The Dow Jones is up

The S&P 500 jumped

Housing price rose

Economy 
is good

Dialog / Question Answering
Where is a Bug's life playing ?

Sept Parnassien at 7:30
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Introduction

Ambiguous, noisy and with great variability
Why NLP is so hard ?

Named entities and Idioms

Where is A Bug’s Life playing (...)

Let It Be was recorded (...)

Push the daisies

lose face

Neologism

unfriend, retweet,

bromance, +1, ...

Non-canonical language

Great job @justinbieber! Were SOO
PROUD of what youve done!

U taught us 2 #neversaynever & you
yourself should never give up either

World knowledge

Mary and Sue are sisters

Mary and Sue are mothers

Hospitals are Sued by 7 Foot Doctors
Kids Make Nutritious Snacks

Iraqi Head Seeks Arms
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Introduction

Statistical NLP
A very successful approach, indeed

From Peter Norvig (http://norvig.com/chomsky.html)

Search engines: 100% of major players are trained and probabilistic.

Speech recognition: 100% of major systems ...

Machine translation: 100% of top competitors ...

Question answering: the IBM Watson system ...

Today, add neural network/deep-learning

Statistical NLP ?

Using statistical techniques to infer structures from text based on
statistical language modeling.
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Introduction

Statistical NLP - a (very) brief history

1970 -1983: Early success in speech reocgnition

Hidden Markov models for acoustic modeling

The first notion of language modeling as a Makov Chain

1983 - : Dominance of empiricism and statistical methods

Incorporate probabilities for most language processing

Use large corpora for training and evaluation

2003 - : Neural networks

As a component at the beginning ...

to end-to-end systems today
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Introduction

NLP: Statistical issues

Data sparsity in high dimension

For most of NLP tasks:

model structured data

with very peculiar and sparse distributions

with a large set of possible outcomes

Ambiguity and variability

The context is essential.

Language is difficult to “interpret”, even for human

→ Learning to efficiently represent language data
→ Neural networks have renewed the research perspectives
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Introduction

Is it so important ?
It is decisive !

Machine translation issue :
Opinion mining and Stock prediction

A. Hathaway vs Berkshire Hathaway
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The language modeling and tagging tasks

n-gram language model

Applications

Automatic Speech Recognition, Machine Translation, OCR, ...

The goal

Estimate the (non-zero) probability of a word sequence for a given vocabulary

n-gram assumption

P (w1:L) =

L∏

i=1

P (wi|wi−n+1:i−1), ∀i, wi ∈ V
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The language modeling and tagging tasks

Discrete n-gram model (conventional)
A word given its context

n = 4: P (wi = ?|wi−3, wi−2, wi−1︸ ︷︷ ︸
context

)

time goes by︸ ︷︷ ︸
context

→ ?
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A word given its context

n = 4: P (wi = ?|wi−3, wi−2, wi−1︸ ︷︷ ︸
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time goes by︸ ︷︷ ︸
context

→ ?

the

vocabulary:

fastly

slowly

P (?|time goes by)

θthe

θfastly

θslowly

|V|

|V|4 parameters, Maximum Likelihood Estimate
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The language modeling and tagging tasks

The Zipf law (for French)

frequency ∝ 1/rank

0 200 400 600 800 1000 1200
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The language modeling and tagging tasks

The Zipf law (for English)
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The language modeling and tagging tasks

Consequences

Large vocabulary

For many applications, |V| ∝ 105 or 106

but most of the words quite never occur.

For n-gram model, it is even worse

Most of n-grams never occur.

⇒ a restricted context (n = 4, 5 at most)

With 7 billions of running English words and |V| = 200 000:

200 0004 ≈ 1.6× 1021 possible 4-grams,

Hardly 1 billion observed

Most of them just once

Some conventional remedies

Increase the amount of data

Smoothing methods (Chen and Goodman1998)
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The language modeling and tagging tasks

Lack of generalization - 1
A word given its context

n = 4:

time goes by︸ ︷︷ ︸
context

→ ?

the

vocabulary: P (?|time goes by):

θthe

θfastly

θslowly

fastly

slowly

For each context, a multinomial distribution

A word in its context = one parameter to learn

No parameter tying between words

⇒ No knowledge sharing
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The language modeling and tagging tasks

Lack of generalization - 2
and for different contexts

time goes by θtime goes by =

train goes by θtrain goes by =

Each distribution is independant of the others
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The language modeling and tagging tasks

Sequence tagging

w = wL
1 = w1, w2, ..., wL

t = tL1 = t1, t2, ..., tL

Example : Part-of-Speech (POS) tagging

Sentence POS-tags
Er PPER-case=nom|@gender=masc|number=sg|person=3
fürchtet VVFIN-mood=ind|number=sg|person=3|tense=pres
noch ADV
Schlimmeres NN-case=acc|gender=neut|number=sg
. $.
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The language modeling and tagging tasks

Conditional Random Fields (CRF)
Linear chain

P (t|w) =
1

Z(w)

L∏

i=1

exp
(
〈θ,φ(ti, ti−1,w)〉

)

=
1

Z(w)

L∏

i=1

exp
(
〈θu,φu(ti,w)〉+ 〈θb,φb(ti, ti−1,w)〉

)

ti−1 ti ti+1

wi−1 wi wi+1
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Conditional Random Fields (CRF)
Linear chain

P (t|w) =
1

Z(w)

L∏

i=1

exp
(
〈θ,φ(ti, ti−1,w)〉

)

=
1

Z(w)

L∏

i=1

exp
(
〈θu,φu(ti,w)〉+ 〈θb,φb(ti, ti−1,w)〉

)

The basic feature template with binary indicators:

φu(ti,w) = φu(ti, wi) = I
(
wi ∧ ti

)

φb(ti, ti−1,w) = φb(ti, ti−1) = I
(
ti−1 ∧ ti

)

...

A hand-crafted word representation :

θu ←→ φu(ti, wi)

θu,ti ←→ φu,ti(wi)
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The language modeling and tagging tasks

Word representation in CRF

Word representation may include:

surface form
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The language modeling and tagging tasks

Word representation in CRF

Word representation may include:

surface form

prefix

suffix

...

wi → xi =

slowly
apparently

suffix:ing

suffix:ly

prefix:slow
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The language modeling and tagging tasks

Word vectors

A word is described by a feature vector: its representation or embedding

The goal

address the sparsity issue

a better generalization

Drawbacks

“expertise” is required and dedicated to the task, the language, the
domain, ...

in practice, relies on linguistic resources
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Neural network language model

Outline
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Neural network language model

Estimate n-gram probabilities in a continuous space

Introduced in (Bengio and Ducharme2001; Bengio et al.2003) and applied to
speech recognition and machine translation in (Schwenk and Gauvain2002).

In a nutshell

1 associate each word with a continuous feature vector

2 express the probability function of a word sequence in terms of the
feature vectors of these words

3 learn simultaneously the feature vectors and the parameters of that
probability function.

Why should it work ?

”similar” words are expected to have a similar feature vectors

the probability function is a smooth function of these feature values

⇒ a small change in the features will induce a small change in the probability

A. Allauzen (Univ. Paris-Sud/LIMSI) NNet & NLP 19/01/2017 24 / 46



Neural network language model

Estimate n-gram probabilities in a continuous space

Introduced in (Bengio and Ducharme2001; Bengio et al.2003) and applied to
speech recognition and machine translation in (Schwenk and Gauvain2002).

In a nutshell

1 associate each word with a continuous feature vector

2 express the probability function of a word sequence in terms of the
feature vectors of these words

3 learn simultaneously the feature vectors and the parameters of that
probability function.

Why should it work ?

”similar” words are expected to have a similar feature vectors

the probability function is a smooth function of these feature values

⇒ a small change in the features will induce a small change in the probability

A. Allauzen (Univ. Paris-Sud/LIMSI) NNet & NLP 19/01/2017 24 / 46



Neural network language model

Project a words into a continuous space

The vocabulary is a neural network layer

Word continuous representation:
add a second layer fully connected

For a 4-gram, the history is a sequence of
3 words

Merge these three vectors to derive a
single vector for the history

0
1
0
0
0
0
0
0
0

w

|V|: 
vocabulary

size

A neural network layer
represents a vector of
values,

one neuron per value
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Neural network language model

Project a words into a continuous space

The vocabulary is a neural network layer

Word continuous representation:
add a second layer fully connected

For a 4-gram, the history is a sequence of
3 words

Merge these three vectors to derive a
single vector for the history

0
1
0
0
0
0
0
0
0

w

R v

The connection between
two layers is a matrix
operation

The matrix R contains all
the connection weights

v is a continuous vector
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Neural network language model

Estimate the n-gram probability

The program

Given the history expressed as a feature
vector : v

Create a feature vector for the word to be
predicted:

h = f(Wvhv)

Estimate probabilities for all words given
the history:

o = f(Whoh)

P (w|wi−n+1:i−1) =
exp(owi)∑

w∈V exp(owi
)

wi-1

wi-2

wi-3

R

R

R

W Wvh ho

 shared projection space

context layer
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Neural network language model

Estimate the n-gram probability

The program

Given the history expressed as a feature
vector : v

Create a feature vector for the word to be
predicted:

h = f(Wvhv)

Estimate probabilities for all words given
the history:

o = f(Whoh)

P (w|wi−n+1:i−1) =
exp(owi)∑

w∈V exp(owi
)

wi-1

wi-2

wi-3

R

R

R

W Wvh ho

prediction space

output layer
(softmax)

 shared projection space
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Neural network language model

Early assessment

Key points

The projection in continuous
spaces

→ reduces the sparsity issues

Learn simultaneously the
projection and the prediction:
(R,Wvh,Who)

Complexity issues

The input vocabulary can be as
large as we want.

Increasing the order of n does not
increase the complexity.

The problem is the output
vocabulary size.

wi-1

wi-2

wi-3

R

R

R

W Wvh ho

Probability estimation based 
on the similarity 

among the feature vectors
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Neural network language model

Early assessment

Key points

The projection in continuous
spaces

→ reduces the sparsity issues

Learn simultaneously the
projection and the prediction:
(R,Wvh,Who)

Complexity issues

The input vocabulary can be as
large as we want.

Increasing the order of n does not
increase the complexity.

The problem is the output
vocabulary size.

wi-1

wi-2

wi-3

R

R

R

W Wvh ho

  Matrix multiplication
500 x |V|    
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Neural network language model

A solution : class-based language model

Main ideas

As proposed by (Mnih and Hinton2008):

Represent the vocabulary as a clustering tree (Brown et al.1992).

Predict the path in this clustering tree.

Word clustering

Put each word w with a single root class c1(w)

Split these word classes in sub-classes (c2(w)) and so on.
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Predict the path in this clustering tree.

Word clustering

Put each word w with a single root class c1(w)

Split these word classes in sub-classes (c2(w)) and so on.

C1(w)

C2(w)

C3(w)

A. Allauzen (Univ. Paris-Sud/LIMSI) NNet & NLP 19/01/2017 28 / 46



Neural network language model

Word probabilities

C1(w)

C2(w)

C3(w)

P (wi|h) = P (c1(wi)|h)

D∏

d=2

P (cd(wi)|h, c1:d−1)

c1:D(wi) = c1, . . . , cD : path for the word wi in the clustering tree,

D : depth of the tree,

cd(wi): (sub-)class,

cD(wi): leaf.
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Neural network language model

The SOUL language model
A solution for large vocabulary NLP tasks (Le et al.2011)

wi-1

wi-2

wi-3

R

R

R

W Wih ho

C1(w)
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Neural network language model

The SOUL language model
A solution for large vocabulary NLP tasks (Le et al.2011)

wi-1

wi-2

wi-3

R

R

R

Wih
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Neural network language model

The SOUL language model
A solution for large vocabulary NLP tasks (Le et al.2011)

wi-1

wi-2

wi-3

R

R

R

Wih
C1(w)

C2(w)

C3(w)

P (wi|h) = P (c1(wi)|h)

DY

d=2

P (cd(wi)|h, c1:d�1)

A. Allauzen (Univ. Paris-Sud/LIMSI) NNet & NLP 19/01/2017 30 / 46



Neural network language model

Experimental results

For automatic speech recognition

On Mandarin Chinese and Arabic data (GALE)

Significant improvements over state of the art systems.

For machine translation

WMT International evaluation campaign on european language pairs

best results for French-English in 2010 and 2011.

Extension to translation modeling (Le et al.2012)

Best results for French-English in 2012, 2013 and 2015.
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Character based model sequence tagging

Outline
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Character based model sequence tagging

Motivations

For morphologically-rich and non-canonical languages

Very productive word formation processes

⇒ generate a proliferation of word forms.

Freundschaftsbezeigungen, görüntülenebilir ↔ MYL, AFAIK, cul8r

Consequences

Morphologically-rich and under-resourced language processing

Social Media implies fast change in the language use

→ An evolving vocabulary with new compound tokens, abbreviations, ...

Tokens decipherment/encoding
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Character based model sequence tagging

Ex: German POS-Tagging

The Task

The TIGER corpus defines a POS-tagging task with very rich tagset (around
600 tags)

State of the art results (Mueller et al.2013)

A second order CRF

with an intensive feature engineering to describe the morphology

Deep Net approach (Santos and Zadrozny2014)

A lot of information about words can be leveraged from subword features.

⇒ Learn to infer a word representation from the character level

⇒ Make these representations aware of the context (sentence level)
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Character based model sequence tagging

A training example

Sentence POS-tags
Er PPER-case=nom|@gender=masc|number=sg|person=3
fürchtet VVFIN-mood=ind|number=sg|person=3|tense=pres
noch ADV
Schlimmeres NN-case=acc|gender=neut|number=sg
. $.
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Character based model sequence tagging

Recurrent network
Interlude

xt

yt

ht

W vh

W ho

W hh

A dynamic system, at time t:

maintains a hidden representation,
the internal state: ht

Updated with the observation of
xt and the previous state ht−1

The prediction yt depends on the
internal state (ht)

xt comes from word embeddings

The same parameter set is shared across time steps
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Character based model sequence tagging

Recurrent network
Unfolding the structure: a deep-network

<s> Er fürchtet noch ...

PPER VVFIN ...

R

W vh W vh

W ho

W hh

At each step t

Read the word wt → xt from R

Update the hidden state
ht = f(W vhxt +Whhht−1)

The tag at t can be predicted from
ht:

yt = g(W hoht)

g is the softmax function over the
tagset
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Character based model sequence tagging

Training recurrent model

Training algorithm

Back-Propagation through time (Rumelhart et al.1986; Mikolov et al.2011):

for each step t

compute the loss gradient
Back-Propagation through the unfolded structure

Inference

Cannot be easily integrated to conventional approaches (ASR, SMT, ... )

Well suited for sequence tagging

ht represent the word wt in its left context

A powerful device for end-to-end system

Known issues

Vanishing gradient → LSTM

Long-term memory → Bi-recurrent network
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Character based model sequence tagging

Bi-recurrent network
Unfolding the structure: a deep-network

<s> Er fürchtet noch ...
R R

−→
W vh

←−
W vh

−→
W hh

←−
W hh

At each step t, from left to right

wt → xt−→
h t = f(

−→
W vhxt +

−→
W hh

−→
h t−1)

At each step t, from right to left

wt → xt←−
h t = f(

←−
W vhxt +

←−
W hh

←−
h t−1)

For the prediction :

yt = g(W ho[
−→
h t;
−→
h t])

[
−→
h t;
←−
h t] is a contextual representation of wt
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Character based model sequence tagging

From characters to word representation

A word is a sequence of characters !

Sequence representation

Recurrent network (Elman1990; Mikolov et al.2011)

Convolutional network + pooling (Kalchbrenner et al.2014; Santos and
Zadrozny2014)

Convolutional net + pooling

f ä h r t ##

Char 
embeddings

word representation
A convolution net is applied at
each position

In 1-D, it mixes the inputs within
a window (represent the local
context)

Max-pooling reduces this sequence
in one vector
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Character based model sequence tagging

Putting all together
(Labeau et al.2015)

A unified model that can

Infer word representation from the character level

which takes sentence level information into account

Make sequence prediction

Training

Maximize the conditional log-likelihood of the tag sequence given the
word sequence

Optimization with AdaGrad (Duchi et al.2011)

Results

This model achieves state of the art performance

without any feature engineering
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Conclusion

Summary

Neural Networks : how to efficiently represent language data

To address the sparsity issue

To deal with large (output) vocabulary

To handle different kinds of contexts

Ongoing work

End-to-end neural system for complexe tasks:

Automatic speech recognition

Machine translation

Summarization, ....
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Conclusion

World Wide NLP
Everyone does not speak like the Wall Street Journal

All the other languages

Access to resources is very uneven and patchy:

→ under-resourced languages

→ different morphological, syntactical and semantical
properties

Freundschaftsbezeigungen, görüntülenebilir

Cultural heritage and digital humanities

Allow users to communicate in their native language

Preserve the language diversity

Language studies
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Conclusion

User generated content

User generated content

URaQT ;-) I<3U BFF CUL8R 4evER !!!

Social Media implies fast change in the language use and writting style

Spontaneous and noisy

→ An evolving vocabulary with new compound tokens, abbreviations, ...

Challenges

Learning to decipher new texts

NLP is not “context free”

Linked-data processing (image, video, speech and sounds)

A. Allauzen (Univ. Paris-Sud/LIMSI) NNet & NLP 19/01/2017 45 / 46



Conclusion

Thank you for your attention
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin.

2003.

A neural probabilistic language model.

Journal of Machine Learning Research, 3:1137–1155.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and
Jenifer C. Lai.

1992.

Class-based n-gram models of natural language.

Computational Linguistics, 18(4):467–479.

Stanley F. Chen and Joshua T. Goodman.

1998.

An empirical study of smoothing techniques for language modeling.

Technical Report TR-10-98, Computer Science Group, Harvard University.

John Duchi, Elad Hazan, and Yoram Singer.

2011.
A. Allauzen (Univ. Paris-Sud/LIMSI) NNet & NLP 19/01/2017 46 / 46



Conclusion

Adaptive subgradient methods for online learning and stochastic optimization.

J. Mach. Learn. Res., 12:2121–2159, July.

Jeffrey L. Elman.

1990.

Finding structure in time.

Cognitive Science, 14(2):179–211.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom.

2014.

A convolutional neural network for modelling sentences.

In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 655–665, Baltimore, Maryland, June.
Association for Computational Linguistics.

Matthieu Labeau, Kevin Löser, and Alexandre Allauzen.

2015.

Non-lexical neural architecture for fine-grained pos tagging.

In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 232–237, Lisbon, Portugal, September. Association for
Computational Linguistics.

Hai-Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc Gauvain, and François Yvon.

2011.

Structured output layer neural network language model.
A. Allauzen (Univ. Paris-Sud/LIMSI) NNet & NLP 19/01/2017 46 / 46



Conclusion

In Proceedings of ICASSP, pages 5524–5527.

Hai-Son Le, Alexandre Allauzen, and François Yvon.

2012.

Continuous space translation models with neural networks.

In Proceedings of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), pages 39–48, Montréal,
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